File size: 6,754 Bytes
2d6056b 7b298de 2d6056b 7b298de ed1f511 7b298de ed1f511 7b298de ed1f511 2d6056b c4aaaa2 84c94b3 7b298de c4aaaa2 40491dd 9948645 c4aaaa2 7c21e35 7b298de 7c21e35 40491dd 7c21e35 f06e4c9 7c21e35 9948645 7c21e35 9f185dc 7c21e35 9948645 7c21e35 9948645 7c21e35 c4aaaa2 7c21e35 c4aaaa2 9948645 c4aaaa2 2d6056b c4aaaa2 7c21e35 c4aaaa2 7c21e35 c4aaaa2 7c21e35 c4aaaa2 9948645 c4aaaa2 9948645 9f185dc 9948645 9f185dc 9948645 9f185dc 7c21e35 f06e4c9 7c21e35 f06e4c9 c4aaaa2 84c94b3 7c21e35 84c94b3 9f185dc 84c94b3 9f185dc 84c94b3 7b298de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
---
annotations_creators:
- human
- machine-generated
language_creators:
- found
language:
- en
- ar
- es
- fr
- ru
- hi
- ms
- sw
- az
- ko
- pt
- hy
- th
- uk
- ur
- sr
- iw
- ja
- hr
- tl
- ky
- vi
- fa
- tg
- mg
- nl
- ne
- uz
- my
- da
- dz
- id
- is
- tr
- lo
- sl
- so
- mn
- bn
- bs
- ht
- el
- it
- to
- ka
- sn
- sq
- zh
license: mit
multilinguality:
- multilingual
source_datasets:
- manestay/borderlines
task_categories:
- question-answering
pretty_name: BordIRlines
arxiv: 2410.01171
---
# BordIRLines Dataset
This is the dataset associated with the paper "BordIRlines: A Dataset for Evaluating Cross-lingual Retrieval-Augmented Generation" ([link](https://arxiv.org/abs/2410.01171)).
Code: https://github.com/manestay/bordIRlines
## Dataset Summary
The **BordIRLines Dataset** is an information retrieval (IR) dataset constructed from various language corpora. It contains queries and corresponding ranked docs along with their relevance scores. The dataset includes multiple languages, including English, Arabic, Spanish, and others, and is split across different sources like LLM-based outputs.
Each `doc` is a passage from a Wikipedia article.
### Languages
The dataset includes docs and queries in the following **languages**:
- `en`: English
- `zht`: Traditional Chinese
- `ar`: Arabic
- `zhs`: Simplified Chinese
- `es`: Spanish
- `fr`: French
- `ru`: Russian
- `hi`: Hindi
- `ms`: Malay
- `sw`: Swahili
- `az`: Azerbaijani
- `ko`: Korean
- `pt`: Portuguese
- `hy`: Armenian
- `th`: Thai
- `uk`: Ukrainian
- `ur`: Urdu
- `sr`: Serbian
- `iw`: Hebrew
- `ja`: Japanese
- `hr`: Croatian
- `tl`: Tagalog
- `ky`: Kyrgyz
- `vi`: Vietnamese
- `fa`: Persian
- `tg`: Tajik
- `mg`: Malagasy
- `nl`: Dutch
- `ne`: Nepali
- `uz`: Uzbek
- `my`: Burmese
- `da`: Danish
- `dz`: Dzongkha
- `id`: Indonesian
- `is`: Icelandic
- `tr`: Turkish
- `lo`: Lao
- `sl`: Slovenian
- `so`: Somali
- `mn`: Mongolian
- `bn`: Bengali
- `bs`: Bosnian
- `ht`: Haitian Creole
- `el`: Greek
- `it`: Italian
- `to`: Tonga
- `ka`: Georgian
- `sn`: Shona
- `sq`: Albanian
- `zh`: Chinese
- `control`: see below
The **control** language is English, and contains the queries for all 251 territories. In contrast, **en** is only the 38 territories which have an English-speaking claimant.
### Annotations
The dataset contains two types of relevance annotations:
1. **Human Annotations**: Provided by multiple annotators for a subset of query-document pairs and relevance is determined by majority vote across annotators.
2. **LLM Annotations**:
- Includes two modes:
- **Zero-shot**: Predictions without any task-specific examples.
- **Few-shot**: Predictions with a small number of task-specific examples.
- Default mode is **few-shot**.
## Systems
We have processed retrieval results for these IR systems:
- `openai`: OpenAI's model `text-embedding-3-large`, cosine similarity
- `m3`: M3-embedding ([link](https://huggingface.co/BAAI/bge-m3)) (Chen et al., 2024)
## Modes
Considering a user query in language `l` on a territory `t`, there are 4 modes for the IR.
- `qlang`: consider passages in `{l}`. This is monolingual IR (the default).
- `qlang_en`: consider passages in either `{l, en}`.
- `en`: consider passages in `{en}`.
- `rel_langs`: consider passages in all relevant languages to `t` + `en`, so `{l1, l2, ..., en}`. This is a set, so `en` will not be duplicated if it already is relevant.
## Dataset Structure
### Data Fields
The dataset consists of the following fields:
- `query_id (string)`: The id of the query.
- `query (string)`: The query text as provided by the `queries.tsv` file.
- `territory (string)`: The territory of the query hit.
- `rank (int32)`: The rank of the document for the corresponding query.
- `score (float32)`: The relevance score of the document as provided by the search engine or model.
- `doc_id (string)`: The unique identifier of the article.
- `doc_text (string)`: The full text of the corresponding article or document.
- `relevant_human (bool)`: Majority relevance determined by human annotators.
- `territory_human (list[string])`: Territories as judged by human annotators.
- `relevant_llm_zeroshot (bool)`: LLM zero-shot relevance prediction.
- `relevant_llm_fewshot (bool)`: LLM few-shot relevance prediction.
### Download Structure
The dataset is structured as follows:
```
data/
{lang}/
{system}/
{mode}/
{lang}_query_hits.tsv
...
all_docs.json
queries.tsv
human_annotations.tsv
llm_annotations.tsv
```
- `queries.tsv`: Contains the list of query IDs and their associated query texts.
- `all_docs.json`: JSON dict containing all docs. It is organized as a nested dict, with keys `lang`, and values another dict with keys `doc_id`, and values `doc_text`.
- `{lang}\_query_hits.tsv`: A TSV file with relevance scores and hit ranks for queries.
- `human_annotations.tsv`: A TSV file with human relevance annotations.
- `llm_annotations.tsv`: A TSV file with LLM relevance predictions.
Currently, there are 50 langs _ 1 system _ 4 modes = 200 query hit TSV files.
## Example Usage
```python
from datasets import load_dataset
# load DatasetDict with all 4 modes, for control language, 10 hits
dsd_control = load_dataset("borderlines/bordirlines", "control")
# load Dataset for English, with rel_langs mode, 50 hits
ds_oa_en = load_dataset("borderlines/bordirlines", "en", split="openai.rel_langs", n_hits=50)
# load Dataset for Simplified Chinese, en mode
ds_oa_zhs1 = load_dataset("borderlines/bordirlines", "zhs", split="openai.en")
# load Dataset for Simplified Chinese, qlang mode
ds_oa_zhs2 = load_dataset("borderlines/bordirlines", "zhs", split="openai.qlang")
# load Dataset for Simplified Chinese, en mode, m3 embedding
ds_m3_zhs1 = load_dataset("borderlines/bordirlines", "zhs", split="m3.en")
# load Dataset for Simplified Chinese, qlang mode, m3 embedding
ds_m3_zhs2 = load_dataset("borderlines/bordirlines", "zhs", split="m3.qlang")
# Load Dataset for English, relevant-only with human annotations
ds_human_en = load_dataset("borderlines/bordirlines", "en", relevance_filter="relevant", annotation_type="human")
# Load Dataset for Simplified Chinese, few-shot LLM mode, only non-relevant
ds_llm_fewshot_zhs = load_dataset("borderlines/bordirlines", "zhs", relevance_filter="non-relevant", annotation_type="llm", llm_mode="fewshot")
```
## Citation
```
@misc{li2024bordirlines,
title={BordIRlines: A Dataset for Evaluating Cross-lingual Retrieval-Augmented Generation},
author={Bryan Li and Samar Haider and Fiona Luo and Adwait Agashe and Chris Callison-Burch},
year={2024},
eprint={2410.01171},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2410.01171},
}
``` |