--- language: - en license: mit tags: - nvidia - gpu - dataset datasets: - nvidia-gpu-dataset --- --- 🚫 **Hands Off!** This dataset’s locked down—no downloading or messing with it unless you’re cleared. Regular Hugging Face users, this ain’t for you. # NVIDIA GPU Scraper This project crunches NVIDIA GPU data in a slick Docker setup. It scrapes the web with `webscraped.py`, then whips up a tidy report with `summary.py`. Think CSV gold like `nvidia_gpu_summary_report.csv`. ## What You Need - [Docker](https://docs.docker.com/get-docker/) on your machine. - Basic command-line chops. ## Quick Start ### Project Layout ``` nvidia_project/ ├── Dockerfile ├── requirements.txt ├── webscraped.py ├── summary.py └── README.md ``` ### 1. Build It Fire up the Docker image—all dependencies baked in, no virtualenv nonsense: ```bash docker build -t nvidia_project . ``` ### 2. Run It Spin the container and let the scripts rip: ```bash docker run --rm -it nvidia_project ``` - `--rm`: Cleans up after itself. - `-it`: Keeps you in the loop with a terminal. ### 3. Grab the Goods Snag the output CSV from the container: ```bash docker cp $(docker ps -l -q):/app/nvidia_gpu_summary_report.csv /your/local/path ``` Example: ```bash docker cp $(docker ps -l -q):/app/nvidia_gpu_summary_report.csv /Users/niladridas/Desktop/nvidia_doc ``` ## Pushing to Hugging Face Want it on Hugging Face? Here’s the drill: 1. **Get the Tools**: ```bash pip install datasets ``` 2. **Prep the Data**: Make sure it’s in JSON or CSV shape. 3. **Upload It**: ```bash huggingface-cli dataset create --dataset_name bniladridas/nvidia-gpu-dataset --path /path/to/your/data ``` (Swap `bniladridas/nvidia-gpu-dataset` for your own dataset name if needed.) 4. **Spice It Up**: Add a dataset card with the juicy details. 5. **Check It**: Hit Hugging Face to confirm it’s live and legit. More deets? Peek at the [Hugging Face docs](https://huggingface.co/docs). ## Debugging Stuff breaking? Dive in: - **Peek Inside**: ```bash docker run -it nvidia_project /bin/sh ``` Scope out `/app` with: ```bash ls -l /app ``` - **Read the Tea Leaves**: ```bash docker logs $(docker ps -l -q) ``` ## Pro Tips - **Docker’s Your Friend**: No need to fuss with `source .venv/bin/activate`—it’s all contained. - Keep it lean—let the container handle the heavy lifting. - Double-check your `Dockerfile` copies `webscraped.py` and `summary.py` to `/app` and sets the entrypoint right. - Tweak that `docker cp` path to wherever you want the CSV to land.