bniladridas commited on
Commit
89fc0ac
·
verified ·
1 Parent(s): f4100bc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -93
README.md CHANGED
@@ -9,71 +9,21 @@ tags:
9
  datasets:
10
  - nvidia-gpu-dataset
11
  ---
 
12
 
13
- # NVIDIA Project
14
-
15
- This project processes scraped data related to NVIDIA GPUs using a Dockerized Python environment. It runs scripts to scrape data (`webscraped.py`) and generate a summary report (`summary.py`).
16
-
17
- ## Pushing to Hugging Face
18
-
19
- To push the dataset to Hugging Face, follow these steps:
20
-
21
- 1. **Install the Hugging Face Datasets library**:
22
- ```bash
23
- pip install datasets
24
- ```
25
-
26
- 2. **Prepare your dataset**: Ensure your dataset is in a compatible format (e.g., JSON, CSV).
27
-
28
- 3. **Upload the dataset**:
29
- Use the following command to upload your dataset:
30
- ```bash
31
- huggingface-cli dataset create --dataset_name bniladridas/nvidia-gpu-dataset --path <path_to_your_dataset>
32
- ```
33
-
34
- 4. **Add metadata**: Optionally, you can add a dataset card to describe your dataset.
35
-
36
- 5. **Validate your dataset**: After uploading, check the Hugging Face website to ensure your dataset is correctly formatted and accessible.
37
-
38
- For more detailed instructions, refer to the [Hugging Face documentation](https://huggingface.co/docs).
39
-
40
- To push the dataset to Hugging Face, follow these steps:
41
-
42
- 1. **Install the Hugging Face Datasets library**:
43
- ```bash
44
- pip install datasets
45
- ```
46
-
47
- 2. **Prepare your dataset**: Ensure your dataset is in a compatible format (e.g., JSON, CSV).
48
-
49
- 3. **Upload the dataset**:
50
- Use the following command to upload your dataset:
51
- ```bash
52
- huggingface-cli dataset create --dataset_name <your_dataset_name> --path <path_to_your_dataset>
53
- ```
54
-
55
- 4. **Add metadata**: Optionally, you can add a dataset card to describe your dataset.
56
-
57
- 5. **Validate your dataset**: After uploading, check the Hugging Face website to ensure your dataset is correctly formatted and accessible.
58
-
59
- For more detailed instructions, refer to the [Hugging Face documentation](https://huggingface.co/docs).
60
-
61
-
62
- This project processes scraped data related to NVIDIA GPUs using a Dockerized Python environment. It runs scripts to scrape data (`webscraped.py`) and generate a summary report (`summary.py`), outputting results like `nvidia_gpu_summary_report.csv`.
63
-
64
- ## Prerequisites
65
-
66
- - [Docker](https://docs.docker.com/get-docker/) installed on your system.
67
- - Basic familiarity with command-line tools.
68
 
69
- ## Project Setup and Usage
70
 
71
- ### Building the Docker Image
72
 
73
- The entire environment, including dependencies, is managed by Docker—no need for virtual environments like `virtualenv` inside the container. Everything is defined in the `Dockerfile` and `requirements.txt`.
 
 
74
 
75
- ### Directory Structure
76
 
 
77
  ```
78
  nvidia_project/
79
  ├── Dockerfile
@@ -83,65 +33,71 @@ nvidia_project/
83
  └── README.md
84
  ```
85
 
86
- ## Workflow
87
-
88
- ### 1. Build the Docker Image
89
-
90
- Build the container image with all dependencies:
91
-
92
  ```bash
93
  docker build -t nvidia_project .
94
  ```
95
 
96
- ### 2. Run the Container
97
-
98
- Launch the container to execute the scripts (`webscraped.py` followed by `summary.py`):
99
-
100
  ```bash
101
  docker run --rm -it nvidia_project
102
  ```
 
 
103
 
104
- - `--rm`: Automatically removes the container after it stops, keeping your system clean.
105
- - `-it`: Runs interactively with a terminal.
106
-
107
- ### 3. Access the Output
108
-
109
- Copy the generated report from the container to your local machine (adjust the path as needed):
110
-
111
  ```bash
112
- docker cp $(docker ps -l -q):/app/nvidia_gpu_summary_report.csv /path/to/your/local/folder
113
  ```
114
-
115
  Example:
116
-
117
  ```bash
118
  docker cp $(docker ps -l -q):/app/nvidia_gpu_summary_report.csv /Users/niladridas/Desktop/nvidia_doc
119
  ```
120
 
121
- ## Debugging
 
122
 
123
- If something goes wrong, inspect the container:
 
 
 
 
 
 
 
 
 
 
 
 
 
124
 
125
- 1. **Enter the container**:
 
 
 
 
 
 
 
126
  ```bash
127
  docker run -it nvidia_project /bin/sh
128
  ```
129
- Check files with:
130
  ```bash
131
  ls -l /app
132
  ```
133
 
134
- 2. **View logs**:
135
  ```bash
136
  docker logs $(docker ps -l -q)
137
  ```
138
 
139
- ## Key Lessons
140
-
141
- - **Trust Docker**: No need to activate a virtual environment (e.g., `source .venv/bin/activate`) inside the container—Docker handles isolation.
142
- - Keep workflows simple and let the container manage dependencies.
143
-
144
- ## Notes
145
-
146
- - Ensure your `Dockerfile` is configured to copy `webscraped.py` and `summary.py` into `/app` and set the entrypoint to run them.
147
- - Update the local path in the `docker cp` command to match your system.
 
9
  datasets:
10
  - nvidia-gpu-dataset
11
  ---
12
+ ---
13
 
14
+ 🚫 **Hands Off!** This dataset’s locked down—no downloading or messing with it unless you’re cleared. Regular Hugging Face users, this ain’t for you.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
+ # NVIDIA GPU Scraper
17
 
18
+ This project crunches NVIDIA GPU data in a slick Docker setup. It scrapes the web with `webscraped.py`, then whips up a tidy report with `summary.py`. Think CSV gold like `nvidia_gpu_summary_report.csv`.
19
 
20
+ ## What You Need
21
+ - [Docker](https://docs.docker.com/get-docker/) on your machine.
22
+ - Basic command-line chops.
23
 
24
+ ## Quick Start
25
 
26
+ ### Project Layout
27
  ```
28
  nvidia_project/
29
  ├── Dockerfile
 
33
  └── README.md
34
  ```
35
 
36
+ ### 1. Build It
37
+ Fire up the Docker image—all dependencies baked in, no virtualenv nonsense:
 
 
 
 
38
  ```bash
39
  docker build -t nvidia_project .
40
  ```
41
 
42
+ ### 2. Run It
43
+ Spin the container and let the scripts rip:
 
 
44
  ```bash
45
  docker run --rm -it nvidia_project
46
  ```
47
+ - `--rm`: Cleans up after itself.
48
+ - `-it`: Keeps you in the loop with a terminal.
49
 
50
+ ### 3. Grab the Goods
51
+ Snag the output CSV from the container:
 
 
 
 
 
52
  ```bash
53
+ docker cp $(docker ps -l -q):/app/nvidia_gpu_summary_report.csv /your/local/path
54
  ```
 
55
  Example:
 
56
  ```bash
57
  docker cp $(docker ps -l -q):/app/nvidia_gpu_summary_report.csv /Users/niladridas/Desktop/nvidia_doc
58
  ```
59
 
60
+ ## Pushing to Hugging Face
61
+ Want it on Hugging Face? Here’s the drill:
62
 
63
+ 1. **Get the Tools**:
64
+ ```bash
65
+ pip install datasets
66
+ ```
67
+
68
+ 2. **Prep the Data**: Make sure it’s in JSON or CSV shape.
69
+
70
+ 3. **Upload It**:
71
+ ```bash
72
+ huggingface-cli dataset create --dataset_name bniladridas/nvidia-gpu-dataset --path /path/to/your/data
73
+ ```
74
+ (Swap `bniladridas/nvidia-gpu-dataset` for your own dataset name if needed.)
75
+
76
+ 4. **Spice It Up**: Add a dataset card with the juicy details.
77
 
78
+ 5. **Check It**: Hit Hugging Face to confirm it’s live and legit.
79
+
80
+ More deets? Peek at the [Hugging Face docs](https://huggingface.co/docs).
81
+
82
+ ## Debugging
83
+ Stuff breaking? Dive in:
84
+
85
+ - **Peek Inside**:
86
  ```bash
87
  docker run -it nvidia_project /bin/sh
88
  ```
89
+ Scope out `/app` with:
90
  ```bash
91
  ls -l /app
92
  ```
93
 
94
+ - **Read the Tea Leaves**:
95
  ```bash
96
  docker logs $(docker ps -l -q)
97
  ```
98
 
99
+ ## Pro Tips
100
+ - **Docker’s Your Friend**: No need to fuss with `source .venv/bin/activate`—it’s all contained.
101
+ - Keep it lean—let the container handle the heavy lifting.
102
+ - Double-check your `Dockerfile` copies `webscraped.py` and `summary.py` to `/app` and sets the entrypoint right.
103
+ - Tweak that `docker cp` path to wherever you want the CSV to land.