Niladri Das commited on
Commit
0bfbee7
·
1 Parent(s): c44ba13

Add NVIDIA GPU dataset files

Browse files
Dockerfile ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ───────────────────────────────────────
2
+ # 🚀 1️⃣ Multi-Stage Build for Smallest Image
3
+ # ───────────────────────────────────────
4
+ FROM python:3.9-slim AS builder
5
+
6
+ # Set a fixed working directory
7
+ WORKDIR /app
8
+
9
+ # Install essential build tools
10
+ RUN apt-get update && apt-get install -y gcc g++ python3-dev libffi-dev && \
11
+ python3 -m venv venv && \
12
+ . venv/bin/activate && \
13
+ pip install --no-cache-dir --upgrade pip setuptools wheel
14
+
15
+ # Copy only requirements first for better caching
16
+ COPY requirements.txt .
17
+ RUN apt-get install -y gfortran libopenblas-dev && \
18
+ . venv/bin/activate && \
19
+ pip install --no-cache-dir -r requirements.txt
20
+
21
+ # Copy the rest of the app files
22
+ COPY . .
23
+
24
+ # ───────────────────────────────────────
25
+ # 🚀 2️⃣ Runtime Image - Minimal & Secure
26
+ # ───────────────────────────────────────
27
+ FROM python:3.9-slim
28
+
29
+ # Set working directory
30
+ WORKDIR /app
31
+
32
+ # Copy virtual environment from builder stage
33
+ COPY --from=builder /app/venv /app/venv
34
+
35
+ # Environment Variables for Performance & Security
36
+ ENV PATH="/app/venv/bin:$PATH" \
37
+ PYTHONUNBUFFERED=1 \
38
+ PYTHONDONTWRITEBYTECODE=1 \
39
+ APP_USER=appuser
40
+
41
+ # Security: Create and use non-root user
42
+ RUN addgroup appgroup && adduser appuser && \
43
+ adduser appuser appgroup && \
44
+ chown -R appuser:appgroup /app
45
+
46
+ USER $APP_USER
47
+
48
+ # Copy application code (Ensures proper permissions)
49
+ COPY --chown=$APP_USER:appgroup . .
50
+
51
+ # Debugging commands to check working directory and list files
52
+ RUN pwd && ls -l /app
53
+
54
+ # Use a health check to ensure the container is running correctly
55
+ HEALTHCHECK --interval=30s --timeout=10s --start-period=5s \
56
+ CMD python3 -c 'import os; exit(0 if os.path.exists("summary.py") else 1)'
57
+
58
+ # Use ENTRYPOINT instead of CMD for better runtime control
59
+ ENTRYPOINT ["python3", "summary.py"]
README.md CHANGED
@@ -1,3 +1,135 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # NVIDIA Project
2
+
3
+ This project processes scraped data related to NVIDIA GPUs using a Dockerized Python environment. It runs scripts to scrape data (`webscraped.py`) and generate a summary report (`summary.py`).
4
+
5
+ ## Pushing to Hugging Face
6
+
7
+ To push the dataset to Hugging Face, follow these steps:
8
+
9
+ 1. **Install the Hugging Face Datasets library**:
10
+ ```bash
11
+ pip install datasets
12
+ ```
13
+
14
+ 2. **Prepare your dataset**: Ensure your dataset is in a compatible format (e.g., JSON, CSV).
15
+
16
+ 3. **Upload the dataset**:
17
+ Use the following command to upload your dataset:
18
+ ```bash
19
+ huggingface-cli dataset create --dataset_name bniladridas/nvidia-gpu-dataset --path <path_to_your_dataset>
20
+ ```
21
+
22
+ 4. **Add metadata**: Optionally, you can add a dataset card to describe your dataset.
23
+
24
+ 5. **Validate your dataset**: After uploading, check the Hugging Face website to ensure your dataset is correctly formatted and accessible.
25
+
26
+ For more detailed instructions, refer to the [Hugging Face documentation](https://huggingface.co/docs).
27
+
28
+ To push the dataset to Hugging Face, follow these steps:
29
+
30
+ 1. **Install the Hugging Face Datasets library**:
31
+ ```bash
32
+ pip install datasets
33
+ ```
34
+
35
+ 2. **Prepare your dataset**: Ensure your dataset is in a compatible format (e.g., JSON, CSV).
36
+
37
+ 3. **Upload the dataset**:
38
+ Use the following command to upload your dataset:
39
+ ```bash
40
+ huggingface-cli dataset create --dataset_name <your_dataset_name> --path <path_to_your_dataset>
41
+ ```
42
+
43
+ 4. **Add metadata**: Optionally, you can add a dataset card to describe your dataset.
44
+
45
+ 5. **Validate your dataset**: After uploading, check the Hugging Face website to ensure your dataset is correctly formatted and accessible.
46
+
47
+ For more detailed instructions, refer to the [Hugging Face documentation](https://huggingface.co/docs).
48
+
49
+
50
+ This project processes scraped data related to NVIDIA GPUs using a Dockerized Python environment. It runs scripts to scrape data (`webscraped.py`) and generate a summary report (`summary.py`), outputting results like `nvidia_gpu_summary_report.csv`.
51
+
52
+ ## Prerequisites
53
+
54
+ - [Docker](https://docs.docker.com/get-docker/) installed on your system.
55
+ - Basic familiarity with command-line tools.
56
+
57
+ ## Project Setup and Usage
58
+
59
+ ### Building the Docker Image
60
+
61
+ The entire environment, including dependencies, is managed by Docker—no need for virtual environments like `virtualenv` inside the container. Everything is defined in the `Dockerfile` and `requirements.txt`.
62
+
63
+ ### Directory Structure
64
+
65
+ ```
66
+ nvidia_project/
67
+ ├── Dockerfile
68
+ ├── requirements.txt
69
+ ├── webscraped.py
70
+ ├── summary.py
71
+ └── README.md
72
+ ```
73
+
74
+ ## Workflow
75
+
76
+ ### 1. Build the Docker Image
77
+
78
+ Build the container image with all dependencies:
79
+
80
+ ```bash
81
+ docker build -t nvidia_project .
82
+ ```
83
+
84
+ ### 2. Run the Container
85
+
86
+ Launch the container to execute the scripts (`webscraped.py` followed by `summary.py`):
87
+
88
+ ```bash
89
+ docker run --rm -it nvidia_project
90
+ ```
91
+
92
+ - `--rm`: Automatically removes the container after it stops, keeping your system clean.
93
+ - `-it`: Runs interactively with a terminal.
94
+
95
+ ### 3. Access the Output
96
+
97
+ Copy the generated report from the container to your local machine (adjust the path as needed):
98
+
99
+ ```bash
100
+ docker cp $(docker ps -l -q):/app/nvidia_gpu_summary_report.csv /path/to/your/local/folder
101
+ ```
102
+
103
+ Example:
104
+
105
+ ```bash
106
+ docker cp $(docker ps -l -q):/app/nvidia_gpu_summary_report.csv /Users/niladridas/Desktop/nvidia_doc
107
+ ```
108
+
109
+ ## Debugging
110
+
111
+ If something goes wrong, inspect the container:
112
+
113
+ 1. **Enter the container**:
114
+ ```bash
115
+ docker run -it nvidia_project /bin/sh
116
+ ```
117
+ Check files with:
118
+ ```bash
119
+ ls -l /app
120
+ ```
121
+
122
+ 2. **View logs**:
123
+ ```bash
124
+ docker logs $(docker ps -l -q)
125
+ ```
126
+
127
+ ## Key Lessons
128
+
129
+ - **Trust Docker**: No need to activate a virtual environment (e.g., `source .venv/bin/activate`) inside the container—Docker handles isolation.
130
+ - Keep workflows simple and let the container manage dependencies.
131
+
132
+ ## Notes
133
+
134
+ - Ensure your `Dockerfile` is configured to copy `webscraped.py` and `summary.py` into `/app` and set the entrypoint to run them.
135
+ - Update the local path in the `docker cp` command to match your system.
nvidia-gpu-dataset ADDED
@@ -0,0 +1 @@
 
 
1
+ Subproject commit c44ba136858c056951c2c79bec5ffcb1de739296
nvidia_gpu_summary_report.csv ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ model,gpu_name,architecture,boost_clock,memory_size,memory_type,memory_interface,tdp,cuda_cores,tensor_cores,rt_cores,process_node,transistor_count,price,release_date,url
2
+ 21,20,16,19,20,20,16,16,20,16,19,17,14,14,14,21
3
+ 7,7,2,5,5,3,2,5,11,3,4,2,1,1,1,7
4
+ GeForce RTX 4090,RTX 4090,N/A,Yes,24 GB,Standard Memory Config,N/A,N/A,8.9,N/A,Maximum Digital Resolution (1),Up to 2X performance and power efficiency,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4090/
5
+ 3,3,10,6,6,12,10,10,4,10,9,9,14,14,14,3
nvidia_gpus.arff ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ model,gpu_name,architecture,boost_clock,memory_size,memory_type,memory_interface,tdp,cuda_cores,tensor_cores,rt_cores,process_node,transistor_count,price,release_date,url
2
+ GeForce RTX 4090,RTX 4090,N/A,N/A,24 GB,Standard Memory Config,N/A,N/A,4090,N/A,Maximum Resolution & Refresh Rate (1),Up to 2X performance and power efficiency,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4090/
3
+ GeForce RTX 4080 Family,RTX 4080,Ada Lovelace,Yes,16 GB GDDR6X,16 GB GDDR6X,256-bit,320,8.9,4th Generation836 AI TOPS,,Up to 2X performance and power efficiency,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4080/
4
+ Game Over,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,Advertising Cookies,N/A,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4070-ti-super/
5
+ GeForce RTX 4070 Family,RTX 4070,Ada Lovelace,Yes,16 GB GDDR6X,16 GB GDDR6X,256-bit,285,8.9,4th Generation 706 AI TOPS,,Up to 2X performance and power efficiency,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4070/
6
+ GeForce RTX 3090 Family,RTX 3090,N/A,1.86 GHz,24 GB,Standard Memory Config,N/A,N/A,3090,N/A,Maximum Digital Resolution (1),N/A,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/
7
+ GeForce RTX 3080 Family,RTX 3080,N/A,1.67 GHz,12 GB,Standard Memory Config,N/A,N/A,3080,N/A,Maximum Digital Resolution (1),N/A,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3080-3080ti/
8
+ GeForce RTX 3070 Family,RTX 3070,N/A,1.77 GHz,8 GB,Standard Memory Config,N/A,N/A,3070,N/A,Maximum Digital Resolution (1),N/A,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3070-3070ti/
nvidia_gpus.avro ADDED
Binary file (2.61 kB). View file
 
nvidia_gpus.csv ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ model,gpu_name,architecture,boost_clock,memory_size,memory_type,memory_interface,tdp,cuda_cores,tensor_cores,rt_cores,process_node,transistor_count,price,release_date,url
2
+ GeForce RTX 4090,RTX 4090,N/A,N/A,24 GB,Standard Memory Config,N/A,N/A,4090,N/A,Maximum Resolution & Refresh Rate (1),Up to 2X performance and power efficiency,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4090/
3
+ GeForce RTX 4080 Family,RTX 4080,Ada Lovelace,Yes,16 GB GDDR6X,16 GB GDDR6X,256-bit,320,8.9,4th Generation836 AI TOPS,,Up to 2X performance and power efficiency,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4080/
4
+ Game Over,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,Advertising Cookies,N/A,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4070-ti-super/
5
+ GeForce RTX 4070 Family,RTX 4070,Ada Lovelace,Yes,16 GB GDDR6X,16 GB GDDR6X,256-bit,285,8.9,4th Generation 706 AI TOPS,,Up to 2X performance and power efficiency,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4070/
6
+ GeForce RTX 3090 Family,RTX 3090,N/A,1.86 GHz,24 GB,Standard Memory Config,N/A,N/A,3090,N/A,Maximum Digital Resolution (1),N/A,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/
7
+ GeForce RTX 3080 Family,RTX 3080,N/A,1.67 GHz,12 GB,Standard Memory Config,N/A,N/A,3080,N/A,Maximum Digital Resolution (1),N/A,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3080-3080ti/
8
+ GeForce RTX 3070 Family,RTX 3070,N/A,1.77 GHz,8 GB,Standard Memory Config,N/A,N/A,3070,N/A,Maximum Digital Resolution (1),N/A,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3070-3070ti/
nvidia_gpus.db ADDED
Binary file (8.19 kB). View file
 
nvidia_gpus.dta ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ model,gpu_name,architecture,boost_clock,memory_size,memory_type,memory_interface,tdp,cuda_cores,tensor_cores,rt_cores,process_node,transistor_count,price,release_date,url
2
+ GeForce RTX 4090,RTX 4090,N/A,N/A,24 GB,Standard Memory Config,N/A,N/A,4090,N/A,Maximum Resolution & Refresh Rate (1),Up to 2X performance and power efficiency,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4090/
3
+ GeForce RTX 4080 Family,RTX 4080,Ada Lovelace,Yes,16 GB GDDR6X,16 GB GDDR6X,256-bit,320,8.9,4th Generation836 AI TOPS,,Up to 2X performance and power efficiency,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4080/
4
+ Game Over,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,Advertising Cookies,N/A,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4070-ti-super/
5
+ GeForce RTX 4070 Family,RTX 4070,Ada Lovelace,Yes,16 GB GDDR6X,16 GB GDDR6X,256-bit,285,8.9,4th Generation 706 AI TOPS,,Up to 2X performance and power efficiency,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4070/
6
+ GeForce RTX 3090 Family,RTX 3090,N/A,1.86 GHz,24 GB,Standard Memory Config,N/A,N/A,3090,N/A,Maximum Digital Resolution (1),N/A,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/
7
+ GeForce RTX 3080 Family,RTX 3080,N/A,1.67 GHz,12 GB,Standard Memory Config,N/A,N/A,3080,N/A,Maximum Digital Resolution (1),N/A,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3080-3080ti/
8
+ GeForce RTX 3070 Family,RTX 3070,N/A,1.77 GHz,8 GB,Standard Memory Config,N/A,N/A,3070,N/A,Maximum Digital Resolution (1),N/A,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3070-3070ti/
nvidia_gpus.json ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "architecture": "Ada Lovelace",
4
+ "boost_clock": "Yes",
5
+ "cuda_cores": "16",
6
+ "gpu_name": "RTX 4090",
7
+ "memory_interface": "384-bit",
8
+ "memory_size": "24 GB GDDR6X",
9
+ "memory_type": "GDDR6X",
10
+ "model": "GeForce RTX 4090",
11
+ "price": "N/A",
12
+ "process_node": "4nm",
13
+ "release_date": "September 2022",
14
+ "rt_cores": "3rd Generation",
15
+ "tdp": "450",
16
+ "tensor_cores": "4th Generation",
17
+ "transistor_count": "76.3 million",
18
+ "url": "https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4090/"
19
+ },
20
+ {
21
+ "architecture": "Ada Lovelace",
22
+ "boost_clock": "2.51 GHz",
23
+ "cuda_cores": "76",
24
+ "gpu_name": "RTX 4080",
25
+ "memory_interface": "256-bit",
26
+ "memory_size": "16 GB GDDR6X",
27
+ "memory_type": "GDDR6X",
28
+ "model": "GeForce RTX 4080",
29
+ "price": "N/A",
30
+ "process_node": "4nm",
31
+ "release_date": "September 2022",
32
+ "rt_cores": "3rd Generation",
33
+ "tdp": "320",
34
+ "tensor_cores": "4th Generation",
35
+ "transistor_count": "45.9 million",
36
+ "url": "https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4080/"
37
+ },
38
+ {
39
+ "architecture": "N/A",
40
+ "boost_clock": "N/A",
41
+ "cuda_cores": "N/A",
42
+ "gpu_name": "N/A",
43
+ "memory_interface": "N/A",
44
+ "memory_size": "N/A",
45
+ "memory_type": "N/A",
46
+ "model": "Game Over",
47
+ "price": "N/A",
48
+ "process_node": "N/A",
49
+ "release_date": "N/A",
50
+ "rt_cores": "N/A",
51
+ "tdp": "N/A",
52
+ "tensor_cores": "N/A",
53
+ "transistor_count": "N/A",
54
+ "url": "https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4070-ti-super/"
55
+ },
56
+ {
57
+ "architecture": "Ada Lovelace",
58
+ "boost_clock": "Yes",
59
+ "cuda_cores": "8.9",
60
+ "gpu_name": "RTX 4070",
61
+ "memory_interface": "256-bit",
62
+ "memory_size": "16 GB GDDR6X",
63
+ "memory_type": "16 GB GDDR6X",
64
+ "model": "GeForce RTX 4070 Family",
65
+ "price": "N/A",
66
+ "process_node": "Up to 2X performance and power efficiency",
67
+ "release_date": "N/A",
68
+ "rt_cores": "",
69
+ "tdp": "285",
70
+ "tensor_cores": "4th Generation 706 AI TOPS",
71
+ "transistor_count": "N/A",
72
+ "url": "https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4070/"
73
+ },
74
+ {
75
+ "architecture": "N/A",
76
+ "boost_clock": "1.86 GHz",
77
+ "cuda_cores": "3090",
78
+ "gpu_name": "RTX 3090",
79
+ "memory_interface": "N/A",
80
+ "memory_size": "24 GB",
81
+ "memory_type": "Standard Memory Config",
82
+ "model": "GeForce RTX 3090 Family",
83
+ "price": "N/A",
84
+ "process_node": "N/A",
85
+ "release_date": "N/A",
86
+ "rt_cores": "N/A",
87
+ "tdp": "N/A",
88
+ "tensor_cores": "N/A",
89
+ "transistor_count": "N/A",
90
+ "url": "https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/"
91
+ },
92
+ {
93
+ "architecture": "N/A",
94
+ "boost_clock": "1.67 GHz",
95
+ "cuda_cores": "3080",
96
+ "gpu_name": "RTX 3080",
97
+ "memory_interface": "N/A",
98
+ "memory_size": "12 GB",
99
+ "memory_type": "Standard Memory Config",
100
+ "model": "GeForce RTX 3080 Family",
101
+ "price": "N/A",
102
+ "process_node": "N/A",
103
+ "release_date": "N/A",
104
+ "rt_cores": "Maximum Digital Resolution (1)",
105
+ "tdp": "N/A",
106
+ "tensor_cores": "N/A",
107
+ "transistor_count": "N/A",
108
+ "url": "https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3080-3080ti/"
109
+ },
110
+ {
111
+ "architecture": "N/A",
112
+ "boost_clock": "1.77 GHz",
113
+ "cuda_cores": "3070",
114
+ "gpu_name": "RTX 3070",
115
+ "memory_interface": "N/A",
116
+ "memory_size": "8 GB",
117
+ "memory_type": "Standard Memory Config",
118
+ "model": "GeForce RTX 3070 Family",
119
+ "price": "N/A",
120
+ "process_node": "N/A",
121
+ "release_date": "N/A",
122
+ "rt_cores": "Maximum Digital Resolution (1)",
123
+ "tdp": "N/A",
124
+ "tensor_cores": "N/A",
125
+ "transistor_count": "N/A",
126
+ "url": "https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3070-3070ti/"
127
+ }
128
+ ]
nvidia_gpus.mat ADDED
Binary file (10.2 kB). View file
 
nvidia_gpus.msgpack ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a49947159c09d323389dbd4c51435985fa411c105fb5984c45b69eef1dbe57f0
3
+ size 2781
nvidia_gpus.ndjson ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {"model":"GeForce RTX 4090","gpu_name":"RTX 4090","architecture":"N\/A","boost_clock":"N\/A","memory_size":"24 GB","memory_type":"Standard Memory Config","memory_interface":"N\/A","tdp":"N\/A","cuda_cores":"4090","tensor_cores":"N\/A","rt_cores":"Maximum Resolution & Refresh Rate (1)","process_node":"Up to 2X performance and power efficiency","transistor_count":"N\/A","price":"N\/A","release_date":"N\/A","url":"https:\/\/www.nvidia.com\/en-us\/geforce\/graphics-cards\/40-series\/rtx-4090\/"}
2
+ {"model":"GeForce RTX 4080 Family","gpu_name":"RTX 4080","architecture":"Ada Lovelace","boost_clock":"Yes","memory_size":"16 GB GDDR6X","memory_type":"16 GB GDDR6X","memory_interface":"256-bit","tdp":"320","cuda_cores":"8.9","tensor_cores":"4th Generation836 AI TOPS","rt_cores":"","process_node":"Up to 2X performance and power efficiency","transistor_count":"N\/A","price":"N\/A","release_date":"N\/A","url":"https:\/\/www.nvidia.com\/en-us\/geforce\/graphics-cards\/40-series\/rtx-4080\/"}
3
+ {"model":"Game Over","gpu_name":"N\/A","architecture":"N\/A","boost_clock":"N\/A","memory_size":"N\/A","memory_type":"N\/A","memory_interface":"N\/A","tdp":"N\/A","cuda_cores":"N\/A","tensor_cores":"N\/A","rt_cores":"Advertising Cookies","process_node":"N\/A","transistor_count":"N\/A","price":"N\/A","release_date":"N\/A","url":"https:\/\/www.nvidia.com\/en-us\/geforce\/graphics-cards\/40-series\/rtx-4070-ti-super\/"}
4
+ {"model":"GeForce RTX 4070 Family","gpu_name":"RTX 4070","architecture":"Ada Lovelace","boost_clock":"Yes","memory_size":"16 GB GDDR6X","memory_type":"16 GB GDDR6X","memory_interface":"256-bit","tdp":"285","cuda_cores":"8.9","tensor_cores":"4th Generation 706 AI TOPS","rt_cores":"","process_node":"Up to 2X performance and power efficiency","transistor_count":"N\/A","price":"N\/A","release_date":"N\/A","url":"https:\/\/www.nvidia.com\/en-us\/geforce\/graphics-cards\/40-series\/rtx-4070\/"}
5
+ {"model":"GeForce RTX 3090 Family","gpu_name":"RTX 3090","architecture":"N\/A","boost_clock":"1.86 GHz","memory_size":"24 GB","memory_type":"Standard Memory Config","memory_interface":"N\/A","tdp":"N\/A","cuda_cores":"3090","tensor_cores":"N\/A","rt_cores":"Maximum Digital Resolution (1)","process_node":"N\/A","transistor_count":"N\/A","price":"N\/A","release_date":"N\/A","url":"https:\/\/www.nvidia.com\/en-us\/geforce\/graphics-cards\/30-series\/rtx-3090-3090ti\/"}
6
+ {"model":"GeForce RTX 3080 Family","gpu_name":"RTX 3080","architecture":"N\/A","boost_clock":"1.67 GHz","memory_size":"12 GB","memory_type":"Standard Memory Config","memory_interface":"N\/A","tdp":"N\/A","cuda_cores":"3080","tensor_cores":"N\/A","rt_cores":"Maximum Digital Resolution (1)","process_node":"N\/A","transistor_count":"N\/A","price":"N\/A","release_date":"N\/A","url":"https:\/\/www.nvidia.com\/en-us\/geforce\/graphics-cards\/30-series\/rtx-3080-3080ti\/"}
7
+ {"model":"GeForce RTX 3070 Family","gpu_name":"RTX 3070","architecture":"N\/A","boost_clock":"1.77 GHz","memory_size":"8 GB","memory_type":"Standard Memory Config","memory_interface":"N\/A","tdp":"N\/A","cuda_cores":"3070","tensor_cores":"N\/A","rt_cores":"Maximum Digital Resolution (1)","process_node":"N\/A","transistor_count":"N\/A","price":"N\/A","release_date":"N\/A","url":"https:\/\/www.nvidia.com\/en-us\/geforce\/graphics-cards\/30-series\/rtx-3070-3070ti\/"}
nvidia_gpus.orc ADDED
Binary file (4.52 kB). View file
 
nvidia_gpus.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0a8b01c3b2366a2c8eece8e793a689e12ff8a820c3fb902245e1b216c5861fa
3
+ size 10409
nvidia_gpus.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5bac6c9c822cd7ba1f8a18ad0ad0894e858dcb2d69fea682f588007d42acae28
3
+ size 2367
nvidia_gpus.protobuf ADDED
Binary file (2.37 kB). View file
 
nvidia_gpus.sas ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ model,gpu_name,architecture,boost_clock,memory_size,memory_type,memory_interface,tdp,cuda_cores,tensor_cores,rt_cores,process_node,transistor_count,price,release_date,url
2
+ GeForce RTX 4090,RTX 4090,N/A,N/A,24 GB,Standard Memory Config,N/A,N/A,4090,N/A,Maximum Resolution & Refresh Rate (1),Up to 2X performance and power efficiency,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4090/
3
+ GeForce RTX 4080 Family,RTX 4080,Ada Lovelace,Yes,16 GB GDDR6X,16 GB GDDR6X,256-bit,320,8.9,4th Generation836 AI TOPS,,Up to 2X performance and power efficiency,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4080/
4
+ Game Over,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,Advertising Cookies,N/A,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4070-ti-super/
5
+ GeForce RTX 4070 Family,RTX 4070,Ada Lovelace,Yes,16 GB GDDR6X,16 GB GDDR6X,256-bit,285,8.9,4th Generation 706 AI TOPS,,Up to 2X performance and power efficiency,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4070/
6
+ GeForce RTX 3090 Family,RTX 3090,N/A,1.86 GHz,24 GB,Standard Memory Config,N/A,N/A,3090,N/A,Maximum Digital Resolution (1),N/A,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/
7
+ GeForce RTX 3080 Family,RTX 3080,N/A,1.67 GHz,12 GB,Standard Memory Config,N/A,N/A,3080,N/A,Maximum Digital Resolution (1),N/A,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3080-3080ti/
8
+ GeForce RTX 3070 Family,RTX 3070,N/A,1.77 GHz,8 GB,Standard Memory Config,N/A,N/A,3070,N/A,Maximum Digital Resolution (1),N/A,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3070-3070ti/
nvidia_gpus.spss ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ model,gpu_name,architecture,boost_clock,memory_size,memory_type,memory_interface,tdp,cuda_cores,tensor_cores,rt_cores,process_node,transistor_count,price,release_date,url
2
+ GeForce RTX 4090,RTX 4090,N/A,N/A,24 GB,Standard Memory Config,N/A,N/A,4090,N/A,Maximum Resolution & Refresh Rate (1),Up to 2X performance and power efficiency,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4090/
3
+ GeForce RTX 4080 Family,RTX 4080,Ada Lovelace,Yes,16 GB GDDR6X,16 GB GDDR6X,256-bit,320,8.9,4th Generation836 AI TOPS,,Up to 2X performance and power efficiency,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4080/
4
+ Game Over,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,Advertising Cookies,N/A,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4070-ti-super/
5
+ GeForce RTX 4070 Family,RTX 4070,Ada Lovelace,Yes,16 GB GDDR6X,16 GB GDDR6X,256-bit,285,8.9,4th Generation 706 AI TOPS,,Up to 2X performance and power efficiency,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4070/
6
+ GeForce RTX 3090 Family,RTX 3090,N/A,1.86 GHz,24 GB,Standard Memory Config,N/A,N/A,3090,N/A,Maximum Digital Resolution (1),N/A,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/
7
+ GeForce RTX 3080 Family,RTX 3080,N/A,1.67 GHz,12 GB,Standard Memory Config,N/A,N/A,3080,N/A,Maximum Digital Resolution (1),N/A,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3080-3080ti/
8
+ GeForce RTX 3070 Family,RTX 3070,N/A,1.77 GHz,8 GB,Standard Memory Config,N/A,N/A,3070,N/A,Maximum Digital Resolution (1),N/A,N/A,N/A,N/A,https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3070-3070ti/
nvidia_gpus.tsv ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ model gpu_name architecture boost_clock memory_size memory_type memory_interface tdp cuda_cores tensor_cores rt_cores process_node transistor_count price release_date url
2
+ GeForce RTX 4090 RTX 4090 N/A N/A 24 GB Standard Memory Config N/A N/A 4090 N/A Maximum Resolution & Refresh Rate (1) Up to 2X performance and power efficiency N/A N/A N/A https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4090/
3
+ GeForce RTX 4080 Family RTX 4080 Ada Lovelace Yes 16 GB GDDR6X 16 GB GDDR6X 256-bit 320 8.9 4th Generation836 AI TOPS Up to 2X performance and power efficiency N/A N/A N/A https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4080/
4
+ Game Over N/A N/A N/A N/A N/A N/A N/A N/A N/A Advertising Cookies N/A N/A N/A N/A https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4070-ti-super/
5
+ GeForce RTX 4070 Family RTX 4070 Ada Lovelace Yes 16 GB GDDR6X 16 GB GDDR6X 256-bit 285 8.9 4th Generation 706 AI TOPS Up to 2X performance and power efficiency N/A N/A N/A https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4070/
6
+ GeForce RTX 3090 Family RTX 3090 N/A 1.86 GHz 24 GB Standard Memory Config N/A N/A 3090 N/A Maximum Digital Resolution (1) N/A N/A N/A N/A https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/
7
+ GeForce RTX 3080 Family RTX 3080 N/A 1.67 GHz 12 GB Standard Memory Config N/A N/A 3080 N/A Maximum Digital Resolution (1) N/A N/A N/A N/A https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3080-3080ti/
8
+ GeForce RTX 3070 Family RTX 3070 N/A 1.77 GHz 8 GB Standard Memory Config N/A N/A 3070 N/A Maximum Digital Resolution (1) N/A N/A N/A N/A https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3070-3070ti/
nvidia_gpus.xlsx ADDED
Binary file (5.85 kB). View file
 
nvidia_gpus.xml ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version='1.0' encoding='utf-8'?>
2
+ <data>
3
+ <row>
4
+ <index>0</index>
5
+ <model>GeForce RTX 4090</model>
6
+ <gpu_name>RTX 4090</gpu_name>
7
+ <architecture>N/A</architecture>
8
+ <boost_clock>N/A</boost_clock>
9
+ <memory_size>24 GB</memory_size>
10
+ <memory_type>Standard Memory Config</memory_type>
11
+ <memory_interface>N/A</memory_interface>
12
+ <tdp>N/A</tdp>
13
+ <cuda_cores>4090</cuda_cores>
14
+ <tensor_cores>N/A</tensor_cores>
15
+ <rt_cores>Maximum Resolution &amp; Refresh Rate (1)</rt_cores>
16
+ <process_node>Up to 2X performance and power efficiency</process_node>
17
+ <transistor_count>N/A</transistor_count>
18
+ <price>N/A</price>
19
+ <release_date>N/A</release_date>
20
+ <url>https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4090/</url>
21
+ </row>
22
+ <row>
23
+ <index>1</index>
24
+ <model>GeForce RTX 4080 Family</model>
25
+ <gpu_name>RTX 4080</gpu_name>
26
+ <architecture>Ada Lovelace</architecture>
27
+ <boost_clock>Yes</boost_clock>
28
+ <memory_size>16 GB GDDR6X</memory_size>
29
+ <memory_type>16 GB GDDR6X</memory_type>
30
+ <memory_interface>256-bit</memory_interface>
31
+ <tdp>320</tdp>
32
+ <cuda_cores>8.9</cuda_cores>
33
+ <tensor_cores>4th Generation836 AI TOPS</tensor_cores>
34
+ <rt_cores/>
35
+ <process_node>Up to 2X performance and power efficiency</process_node>
36
+ <transistor_count>N/A</transistor_count>
37
+ <price>N/A</price>
38
+ <release_date>N/A</release_date>
39
+ <url>https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4080/</url>
40
+ </row>
41
+ <row>
42
+ <index>2</index>
43
+ <model>Game Over</model>
44
+ <gpu_name>N/A</gpu_name>
45
+ <architecture>N/A</architecture>
46
+ <boost_clock>N/A</boost_clock>
47
+ <memory_size>N/A</memory_size>
48
+ <memory_type>N/A</memory_type>
49
+ <memory_interface>N/A</memory_interface>
50
+ <tdp>N/A</tdp>
51
+ <cuda_cores>N/A</cuda_cores>
52
+ <tensor_cores>N/A</tensor_cores>
53
+ <rt_cores>Advertising Cookies</rt_cores>
54
+ <process_node>N/A</process_node>
55
+ <transistor_count>N/A</transistor_count>
56
+ <price>N/A</price>
57
+ <release_date>N/A</release_date>
58
+ <url>https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4070-ti-super/</url>
59
+ </row>
60
+ <row>
61
+ <index>3</index>
62
+ <model>GeForce RTX 4070 Family</model>
63
+ <gpu_name>RTX 4070</gpu_name>
64
+ <architecture>Ada Lovelace</architecture>
65
+ <boost_clock>Yes</boost_clock>
66
+ <memory_size>16 GB GDDR6X</memory_size>
67
+ <memory_type>16 GB GDDR6X</memory_type>
68
+ <memory_interface>256-bit</memory_interface>
69
+ <tdp>285</tdp>
70
+ <cuda_cores>8.9</cuda_cores>
71
+ <tensor_cores>4th Generation 706 AI TOPS</tensor_cores>
72
+ <rt_cores/>
73
+ <process_node>Up to 2X performance and power efficiency</process_node>
74
+ <transistor_count>N/A</transistor_count>
75
+ <price>N/A</price>
76
+ <release_date>N/A</release_date>
77
+ <url>https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4070/</url>
78
+ </row>
79
+ <row>
80
+ <index>4</index>
81
+ <model>GeForce RTX 3090 Family</model>
82
+ <gpu_name>RTX 3090</gpu_name>
83
+ <architecture>N/A</architecture>
84
+ <boost_clock>1.86 GHz</boost_clock>
85
+ <memory_size>24 GB</memory_size>
86
+ <memory_type>Standard Memory Config</memory_type>
87
+ <memory_interface>N/A</memory_interface>
88
+ <tdp>N/A</tdp>
89
+ <cuda_cores>3090</cuda_cores>
90
+ <tensor_cores>N/A</tensor_cores>
91
+ <rt_cores>Maximum Digital Resolution (1)</rt_cores>
92
+ <process_node>N/A</process_node>
93
+ <transistor_count>N/A</transistor_count>
94
+ <price>N/A</price>
95
+ <release_date>N/A</release_date>
96
+ <url>https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/</url>
97
+ </row>
98
+ <row>
99
+ <index>5</index>
100
+ <model>GeForce RTX 3080 Family</model>
101
+ <gpu_name>RTX 3080</gpu_name>
102
+ <architecture>N/A</architecture>
103
+ <boost_clock>1.67 GHz</boost_clock>
104
+ <memory_size>12 GB</memory_size>
105
+ <memory_type>Standard Memory Config</memory_type>
106
+ <memory_interface>N/A</memory_interface>
107
+ <tdp>N/A</tdp>
108
+ <cuda_cores>3080</cuda_cores>
109
+ <tensor_cores>N/A</tensor_cores>
110
+ <rt_cores>Maximum Digital Resolution (1)</rt_cores>
111
+ <process_node>N/A</process_node>
112
+ <transistor_count>N/A</transistor_count>
113
+ <price>N/A</price>
114
+ <release_date>N/A</release_date>
115
+ <url>https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3080-3080ti/</url>
116
+ </row>
117
+ <row>
118
+ <index>6</index>
119
+ <model>GeForce RTX 3070 Family</model>
120
+ <gpu_name>RTX 3070</gpu_name>
121
+ <architecture>N/A</architecture>
122
+ <boost_clock>1.77 GHz</boost_clock>
123
+ <memory_size>8 GB</memory_size>
124
+ <memory_type>Standard Memory Config</memory_type>
125
+ <memory_interface>N/A</memory_interface>
126
+ <tdp>N/A</tdp>
127
+ <cuda_cores>3070</cuda_cores>
128
+ <tensor_cores>N/A</tensor_cores>
129
+ <rt_cores>Maximum Digital Resolution (1)</rt_cores>
130
+ <process_node>N/A</process_node>
131
+ <transistor_count>N/A</transistor_count>
132
+ <price>N/A</price>
133
+ <release_date>N/A</release_date>
134
+ <url>https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3070-3070ti/</url>
135
+ </row>
136
+ </data>
nvidia_gpus.yaml ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ - architecture: Ada Lovelace
2
+ boost_clock: 'Yes'
3
+ cuda_cores: '16'
4
+ gpu_name: RTX 4090
5
+ memory_interface: 384-bit
6
+ memory_size: 24 GB GDDR6X
7
+ memory_type: GDDR6X
8
+ model: GeForce RTX 4090
9
+ price: N/A
10
+ process_node: 4nm
11
+ release_date: September 2022
12
+ rt_cores: 3rd Generation
13
+ tdp: '450'
14
+ tensor_cores: 4th Generation
15
+ transistor_count: 76.3 million
16
+ url: https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4090/
17
+ - architecture: Ada Lovelace
18
+ boost_clock: '2.51 GHz'
19
+ cuda_cores: '76'
20
+ gpu_name: RTX 4080
21
+ memory_interface: 256-bit
22
+ memory_size: 16 GB GDDR6X
23
+ memory_type: GDDR6X
24
+ model: GeForce RTX 4080
25
+ price: N/A
26
+ process_node: 4nm
27
+ release_date: September 2022
28
+ rt_cores: 3rd Generation
29
+ tdp: '320'
30
+ tensor_cores: 4th Generation
31
+ transistor_count: 45.9 million
32
+ url: https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4080/
33
+ - architecture: N/A
34
+ boost_clock: N/A
35
+ cuda_cores: N/A
36
+ gpu_name: N/A
37
+ memory_interface: N/A
38
+ memory_size: N/A
39
+ memory_type: N/A
40
+ model: Game Over
41
+ price: N/A
42
+ process_node: N/A
43
+ release_date: N/A
44
+ rt_cores: Advertising Cookies
45
+ tdp: N/A
46
+ tensor_cores: N/A
47
+ transistor_count: N/A
48
+ url: https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4070-ti-super/
49
+ - architecture: Ada Lovelace
50
+ boost_clock: 'Yes'
51
+ cuda_cores: '8.9'
52
+ gpu_name: RTX 4070
53
+ memory_interface: 256-bit
54
+ memory_size: 16 GB GDDR6X
55
+ memory_type: 16 GB GDDR6X
56
+ model: GeForce RTX 4070 Family
57
+ price: N/A
58
+ process_node: Up to 2X performance and power efficiency
59
+ release_date: N/A
60
+ rt_cores: ''
61
+ tdp: '285'
62
+ tensor_cores: 4th Generation 706 AI TOPS
63
+ transistor_count: N/A
64
+ url: https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4070/
65
+ - architecture: N/A
66
+ boost_clock: 1.86 GHz
67
+ cuda_cores: '3090'
68
+ gpu_name: RTX 3090
69
+ memory_interface: N/A
70
+ memory_size: 24 GB
71
+ memory_type: Standard Memory Config
72
+ model: GeForce RTX 3090 Family
73
+ price: N/A
74
+ process_node: N/A
75
+ release_date: N/A
76
+ rt_cores: Maximum Digital Resolution (1)
77
+ tdp: N/A
78
+ tensor_cores: N/A
79
+ transistor_count: N/A
80
+ url: https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/
81
+ - architecture: N/A
82
+ boost_clock: 1.67 GHz
83
+ cuda_cores: '3080'
84
+ gpu_name: RTX 3080
85
+ memory_interface: N/A
86
+ memory_size: 12 GB
87
+ memory_type: Standard Memory Config
88
+ model: GeForce RTX 3080 Family
89
+ price: N/A
90
+ process_node: N/A
91
+ release_date: N/A
92
+ rt_cores: Maximum Digital Resolution (1)
93
+ tdp: N/A
94
+ tensor_cores: N/A
95
+ transistor_count: N/A
96
+ url: https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3080-3080ti/
97
+ - architecture: N/A
98
+ boost_clock: 1.77 GHz
99
+ cuda_cores: '3070'
100
+ gpu_name: RTX 3070
101
+ memory_interface: N/A
102
+ memory_size: 8 GB
103
+ memory_type: Standard Memory Config
104
+ model: GeForce RTX 3070 Family
105
+ price: N/A
106
+ process_node: N/A
107
+ release_date: N/A
108
+ rt_cores: Maximum Digital Resolution (1)
109
+ tdp: N/A
110
+ tensor_cores: N/A
111
+ transistor_count: N/A
112
+ url: https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3070-3070ti/
push_nvidia_gpu_dataset.sh ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ # Check if Git LFS is installed
4
+ if ! command -v git-lfs &> /dev/null
5
+ then
6
+ echo "Git LFS is not installed. Installing..."
7
+ brew install git-lfs
8
+ git lfs install
9
+ fi
10
+
11
+ # Check if the repository already exists
12
+ if [ -d "nvidia-gpu-dataset" ]; then
13
+ echo "Removing existing nvidia-gpu-dataset directory..."
14
+ rm -rf nvidia-gpu-dataset
15
+ fi
16
+
17
+ # Clone the Hugging Face dataset repository
18
+ git clone https://huggingface.co/datasets/bniladridas/nvidia-gpu-dataset
19
+
20
+ # Check if the clone was successful
21
+ if [ ! -d "nvidia-gpu-dataset" ]; then
22
+ echo "Failed to clone the repository."
23
+ exit 1
24
+ fi
25
+
26
+ # Copy dataset files into the cloned repository
27
+ cp -r /Users/niladridas/Desktop/nvidia_doc/* nvidia-gpu-dataset/
28
+
29
+ # Change directory to the cloned repository
30
+ cd nvidia-gpu-dataset/
31
+
32
+ # Log in to Hugging Face
33
+ huggingface-cli login
34
+
35
+ # Add files to git
36
+ git add .
37
+
38
+ # Commit the changes
39
+ git commit -m "Add NVIDIA GPU dataset files"
40
+
41
+ # Push the changes to Hugging Face
42
+ git push
requirements.txt ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ requests
2
+ beautifulsoup4
3
+ pandas
4
+ selenium
5
+ webdriver-manager
6
+ pyarrow
7
+ fastavro
8
+ h5py
9
+ lxml
10
+ pyyaml
11
+ scipy
12
+ msgpack
13
+ openpyxl
14
+ fastavro
15
+ msgpack
16
+ pyarrow
17
+ h5py
18
+ scipy
19
+ openpyxl
20
+ pandas
summary.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import json
3
+ import os
4
+ from datasets import Dataset, DatasetDict
5
+
6
+ # Function to read CSV file
7
+ def read_csv(file_path):
8
+ if not os.path.exists(file_path):
9
+ raise FileNotFoundError(f"The file {file_path} does not exist.")
10
+ return pd.read_csv(file_path)
11
+
12
+ # Function to read JSON file
13
+ def read_json(file_path):
14
+ if not os.path.exists(file_path):
15
+ raise FileNotFoundError(f"The file {file_path} does not exist.")
16
+ with open(file_path, 'r') as file:
17
+ return [json.loads(line) for line in file]
18
+
19
+ # Function to read NDJSON file
20
+ def read_ndjson(file_path):
21
+ if not os.path.exists(file_path):
22
+ raise FileNotFoundError(f"The file {file_path} does not exist.")
23
+ with open(file_path, 'r') as file:
24
+ return [json.loads(line) for line in file]
25
+
26
+ # Consolidate data from different formats
27
+ def consolidate_data():
28
+ csv_data = read_csv('nvidia_gpus.csv')
29
+ json_data = read_json('nvidia_gpus.json')
30
+ ndjson_data = read_ndjson('nvidia_gpus.ndjson')
31
+
32
+ # Combine all data into a single DataFrame
33
+ combined_data = pd.concat([csv_data, pd.DataFrame(json_data), pd.DataFrame(ndjson_data)], ignore_index=True)
34
+ return combined_data
35
+
36
+ # Generate summary report
37
+ def generate_summary():
38
+ output_file = 'nvidia_gpu_summary_report.csv'
39
+ data = consolidate_data()
40
+ summary = data.describe(include='all')
41
+ summary.to_csv(output_file, index=False)
42
+ print(f"Summary report generated: {output_file}")
43
+ print("Summary report generated: nvidia_gpu_summary_report.csv")
44
+
45
+ if __name__ == "__main__":
46
+ generate_summary()
webscraped.py ADDED
@@ -0,0 +1,580 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
2
+ from bs4 import BeautifulSoup
3
+ import pandas as pd
4
+ import time
5
+ import json
6
+ import re
7
+ import logging
8
+ from urllib.parse import urlparse
9
+ import fastavro
10
+ import msgpack
11
+ import os
12
+ from datasets import Dataset
13
+
14
+ # Function to scrape data and return as a Hugging Face Dataset
15
+ def scrape_data(url):
16
+ response = requests.get(url)
17
+ soup = BeautifulSoup(response.text, 'html.parser')
18
+
19
+ # Example scraping logic (to be customized)
20
+ data = []
21
+ for item in soup.find_all('div', class_='gpu-item'):
22
+ gpu_info = {
23
+ 'gpu_name': item.find('h2').text,
24
+ 'architecture': item.find('span', class_='architecture').text,
25
+ 'memory_size': item.find('span', class_='memory-size').text,
26
+ # Add more fields as necessary
27
+ }
28
+ data.append(gpu_info)
29
+
30
+ # Convert to Hugging Face Dataset
31
+ return Dataset.from_list(data)
32
+
33
+ # Import additional libraries for new formats
34
+ import pyarrow as pa
35
+ import pyarrow.parquet as pq
36
+ import fastavro
37
+ import h5py
38
+ import sqlite3
39
+ import xml.etree.ElementTree as ET
40
+ import yaml
41
+ import pickle
42
+ from scipy.io import savemat
43
+
44
+ # Set up logging
45
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
46
+ logger = logging.getLogger(__name__)
47
+
48
+ # Try to import Selenium components - they'll be used if available
49
+ try:
50
+ from selenium import webdriver
51
+ from selenium.webdriver.chrome.options import Options
52
+ from selenium.webdriver.chrome.service import Service
53
+ from selenium.webdriver.common.by import By
54
+ from selenium.webdriver.support.ui import WebDriverWait
55
+ from selenium.webdriver.support import expected_conditions as EC
56
+ from webdriver_manager.chrome import ChromeDriverManager
57
+ SELENIUM_AVAILABLE = True
58
+ logger.info("Selenium is available and will be used for JavaScript-heavy sites")
59
+ except ImportError:
60
+ SELENIUM_AVAILABLE = False
61
+ logger.warning("Selenium not available. Install with: pip install selenium webdriver-manager")
62
+
63
+ class NvidiaGpuScraper:
64
+ def __init__(self, use_selenium=True):
65
+ self.use_selenium = use_selenium and SELENIUM_AVAILABLE
66
+ self.driver = self._setup_driver() if self.use_selenium else None
67
+
68
+ def _setup_driver(self):
69
+ """Set up and return a Selenium WebDriver if available"""
70
+ if not SELENIUM_AVAILABLE:
71
+ return None
72
+
73
+ try:
74
+ options = Options()
75
+ options.add_argument('--headless')
76
+ options.add_argument('--no-sandbox')
77
+ options.add_argument('--disable-dev-shm-usage')
78
+ options.add_argument('--disable-gpu')
79
+ options.add_argument("--window-size=1920,1080")
80
+ options.add_argument("--user-agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.102 Safari/537.36")
81
+
82
+ service = Service(ChromeDriverManager().install())
83
+ driver = webdriver.Chrome(service=service, options=options)
84
+ return driver
85
+ except Exception as e:
86
+ logger.error(f"Failed to initialize Selenium: {e}")
87
+ return None
88
+
89
+ def _fetch_with_selenium(self, url):
90
+ """Fetch page content using Selenium for JavaScript-heavy sites"""
91
+ if self.driver is None:
92
+ return None
93
+
94
+ try:
95
+ logger.info(f"Fetching with Selenium: {url}")
96
+ self.driver.get(url)
97
+ # Wait for the page to load completely
98
+ WebDriverWait(self.driver, 20).until(
99
+ EC.presence_of_element_located((By.TAG_NAME, "body"))
100
+ )
101
+
102
+ # Scroll down to load lazy content
103
+ self.driver.execute_script("window.scrollTo(0, document.body.scrollHeight/2);")
104
+ time.sleep(1)
105
+ self.driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
106
+ time.sleep(2) # Additional wait for dynamic content
107
+
108
+ # Expand any "See more specifications" buttons if they exist
109
+ try:
110
+ see_more_buttons = self.driver.find_elements(By.XPATH,
111
+ "//button[contains(text(), 'See more') or contains(text(), 'specifications') or contains(text(), 'specs')]")
112
+ for button in see_more_buttons:
113
+ self.driver.execute_script("arguments[0].click();", button)
114
+ time.sleep(1)
115
+ except Exception as e:
116
+ logger.warning(f"Could not expand specification sections: {e}")
117
+
118
+ # Get the page source after JavaScript execution
119
+ page_source = self.driver.page_source
120
+ return BeautifulSoup(page_source, 'html.parser')
121
+ except Exception as e:
122
+ logger.error(f"Selenium error for {url}: {e}")
123
+ return None
124
+
125
+ def _fetch_with_requests(self, url):
126
+ """Fetch page content using requests library"""
127
+ headers = {
128
+ 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.102 Safari/537.36',
129
+ 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
130
+ 'Accept-Language': 'en-US,en;q=0.5',
131
+ 'Referer': 'https://www.google.com/',
132
+ 'DNT': '1',
133
+ 'Connection': 'keep-alive',
134
+ 'Upgrade-Insecure-Requests': '1',
135
+ 'Cache-Control': 'max-age=0',
136
+ }
137
+
138
+ for attempt in range(3):
139
+ try:
140
+ logger.info(f"Fetching with requests: {url}")
141
+ response = requests.get(url, timeout=30, headers=headers)
142
+ response.raise_for_status()
143
+ return BeautifulSoup(response.content, 'html.parser')
144
+ except requests.exceptions.RequestException as e:
145
+ wait_time = 2 ** attempt
146
+ logger.warning(f"Request error for {url}: {e}. Retrying in {wait_time} seconds...")
147
+ time.sleep(wait_time)
148
+
149
+ return None
150
+
151
+ def fetch_page(self, url):
152
+ if not url:
153
+ raise ValueError("The URL provided is empty.")
154
+ """Fetch page content, trying Selenium first if available"""
155
+ if self.use_selenium:
156
+ soup = self._fetch_with_selenium(url)
157
+ if soup:
158
+ return soup
159
+
160
+ # Fall back to requests if Selenium failed or isn't available
161
+ return self._fetch_with_requests(url)
162
+
163
+ def extract_gpu_specs(self, soup, url):
164
+ """Extract GPU specifications from NVIDIA product pages"""
165
+ specs = {
166
+ 'model': 'N/A',
167
+ 'gpu_name': 'N/A',
168
+ 'architecture': 'N/A',
169
+ 'boost_clock': 'N/A',
170
+ 'memory_size': 'N/A',
171
+ 'memory_type': 'N/A',
172
+ 'memory_interface': 'N/A',
173
+ 'tdp': 'N/A',
174
+ 'cuda_cores': 'N/A',
175
+ 'tensor_cores': 'N/A',
176
+ 'rt_cores': 'N/A',
177
+ 'process_node': 'N/A',
178
+ 'transistor_count': 'N/A',
179
+ 'price': 'N/A',
180
+ 'release_date': 'N/A',
181
+ 'url': url,
182
+ }
183
+
184
+ try:
185
+ # Extract model name
186
+ for selector in ['h1', '.product-title', '.product-name', '.prod-title']:
187
+ title_element = soup.select_one(selector)
188
+ if title_element and title_element.text.strip():
189
+ specs['model'] = title_element.text.strip()
190
+ # Try to extract GPU name (e.g., RTX 4090)
191
+ gpu_match = re.search(r'(GTX|RTX|RTX\s+SUPER|GTX\s+SUPER)\s+(\d{4}\s*(?:Ti|SUPER)?)',
192
+ specs['model'], re.IGNORECASE)
193
+ if gpu_match:
194
+ specs['gpu_name'] = f"{gpu_match.group(1)} {gpu_match.group(2)}".strip()
195
+ break
196
+
197
+ # Field mapping dictionary - different ways NVIDIA might label each spec
198
+ field_mappings = {
199
+ 'architecture': ['gpu architecture', 'architecture', 'nvidia architecture'],
200
+ 'boost_clock': ['boost clock', 'gpu boost clock', 'clock speed', 'boost'],
201
+ 'memory_size': ['memory size', 'standard memory config', 'memory configuration', 'video memory'],
202
+ 'memory_type': ['memory type', 'memory spec', 'standard memory'],
203
+ 'memory_interface': ['memory interface', 'memory bus', 'interface width', 'bit width'],
204
+ 'tdp': ['graphics card power', 'tdp', 'total graphics power', 'power consumption', 'tgp', 'maximum power'],
205
+ 'cuda_cores': ['cuda cores', 'cuda', 'nvidia cuda cores'],
206
+ 'tensor_cores': ['tensor cores', 'tensor', 'ai cores'],
207
+ 'rt_cores': ['rt cores', 'ray tracing cores', 'rt'],
208
+ 'process_node': ['process', 'fabrication process', 'manufacturing process', 'fab'],
209
+ 'transistor_count': ['transistor', 'transistor count', 'number of transistors'],
210
+ 'price': ['price', 'msrp', 'suggested price', 'starting at'],
211
+ 'release_date': ['release date', 'availability', 'launch date', 'available']
212
+ }
213
+
214
+ # Look for various specs sections
215
+ spec_sections = soup.select('.specs-section, .tech-specs, .product-specs, .specs, .spec-table, .spec, [class*="spec"]')
216
+
217
+ # If no dedicated sections found, look through the entire page
218
+ if not spec_sections:
219
+ spec_sections = [soup]
220
+
221
+ for section in spec_sections:
222
+ # Method 1: Look for labeled pairs or tables
223
+ self._extract_from_tables_and_pairs(section, specs, field_mappings)
224
+
225
+ # Method 2: Look for text patterns throughout the page
226
+ self._extract_from_text_patterns(section, specs)
227
+
228
+ # Extract from specification headings and adjacent elements
229
+ self._extract_from_spec_headings(soup, specs, field_mappings)
230
+
231
+ # Try to find any JSON-LD or structured data with specs
232
+ self._extract_from_json_ld(soup, specs)
233
+
234
+ # Clean and standardize specs
235
+ self._clean_specs(specs)
236
+
237
+ logger.info(f"Extracted NVIDIA GPU specs: {specs}")
238
+ return specs
239
+
240
+ except Exception as e:
241
+ logger.error(f"Error extracting GPU specs: {e}")
242
+ return specs
243
+
244
+ def _extract_from_tables_and_pairs(self, section, specs, field_mappings):
245
+ """Extract specs from table-like structures or label-value pairs"""
246
+ # Check for table rows
247
+ rows = section.select('tr, .spec-row, .specs-row, [class*="row"]')
248
+ for row in rows:
249
+ cells = row.select('th, td, .spec-label, .spec-value, .specs-label, .specs-value')
250
+ if len(cells) >= 2:
251
+ header = cells[0].text.strip().lower()
252
+ value = cells[1].text.strip()
253
+
254
+ # Match header to our fields
255
+ for field, possible_headers in field_mappings.items():
256
+ if any(h in header for h in possible_headers):
257
+ specs[field] = value
258
+
259
+ # Check for definition lists
260
+ terms = section.select('dt, .term, .specs-term')
261
+ for term in terms:
262
+ header = term.text.strip().lower()
263
+ value_el = term.find_next_sibling(['dd', '.definition', '.specs-definition'])
264
+ if value_el:
265
+ value = value_el.text.strip()
266
+
267
+ # Match header to our fields
268
+ for field, possible_headers in field_mappings.items():
269
+ if any(h in header for h in possible_headers):
270
+ specs[field] = value
271
+
272
+ # Check for labeled pairs (common in NVIDIA's newer layout)
273
+ labels = section.select('.specs-label, .spec-label, .specs-name, .label, [class*="label"]')
274
+ for label in labels:
275
+ header = label.text.strip().lower()
276
+ # Try to find the adjacent value element
277
+ value_el = label.find_next_sibling('.specs-value, .spec-value, .specs-data, .value, [class*="value"]')
278
+ if value_el:
279
+ value = value_el.text.strip()
280
+
281
+ # Match header to our fields
282
+ for field, possible_headers in field_mappings.items():
283
+ if any(h in header for h in possible_headers):
284
+ specs[field] = value
285
+
286
+ def _extract_from_text_patterns(self, section, specs):
287
+ """Extract specs using regex patterns in the page text"""
288
+ text = section.get_text(' ', strip=True)
289
+
290
+ # Extract CUDA cores
291
+ cuda_matches = re.search(r'(\d[\d,]+)\s*(?:nvidia)?\s*cuda\s*cores', text, re.IGNORECASE)
292
+ if cuda_matches and specs['cuda_cores'] == 'N/A':
293
+ specs['cuda_cores'] = cuda_matches.group(1)
294
+
295
+ # Extract Tensor cores
296
+ tensor_matches = re.search(r'(\d+)\s*(?:nvidia)?\s*tensor\s*cores', text, re.IGNORECASE)
297
+ if tensor_matches and specs['tensor_cores'] == 'N/A':
298
+ specs['tensor_cores'] = tensor_matches.group(1)
299
+
300
+ # Extract RT cores
301
+ rt_matches = re.search(r'(\d+)\s*(?:nvidia)?\s*rt\s*cores', text, re.IGNORECASE)
302
+ if rt_matches and specs['rt_cores'] == 'N/A':
303
+ specs['rt_cores'] = rt_matches.group(1)
304
+
305
+ # Extract memory size
306
+ mem_matches = re.search(r'(\d+)\s*GB\s*(?:G?DDR\d+[X]?)', text, re.IGNORECASE)
307
+ if mem_matches and specs['memory_size'] == 'N/A':
308
+ specs['memory_size'] = f"{mem_matches.group(1)} GB"
309
+ if specs['memory_type'] == 'N/A':
310
+ specs['memory_type'] = mem_matches.group(2)
311
+
312
+ # Extract boost clock
313
+ clock_matches = re.search(r'boost\s*clock\s*(?:up\s*to)?\s*:?\s*([\d.]+)\s*(?:MHz|GHz)', text, re.IGNORECASE)
314
+ if clock_matches and specs['boost_clock'] == 'N/A':
315
+ value = clock_matches.group(1)
316
+ unit = 'GHz' if float(value) < 100 else 'MHz' # Infer unit if not in match
317
+ specs['boost_clock'] = f"{value} {unit}"
318
+
319
+ # Extract memory interface
320
+ interface_matches = re.search(r'(\d+)[\s-]*bit(?:\s*memory)?\s*(?:interface|bus)', text, re.IGNORECASE)
321
+ if interface_matches and specs['memory_interface'] == 'N/A':
322
+ specs['memory_interface'] = f"{interface_matches.group(1)}-bit"
323
+
324
+ def _extract_from_spec_headings(self, soup, specs, field_mappings):
325
+ """Extract specs from headings and their adjacent content"""
326
+ for field, terms in field_mappings.items():
327
+ if specs[field] != 'N/A': # Skip if already found
328
+ continue
329
+
330
+ for term in terms:
331
+ # Look for headings containing the term
332
+ headers = soup.select(f'h1:contains("{term}"), h2:contains("{term}"), h3:contains("{term}"), h4:contains("{term}"), h5:contains("{term}")')
333
+
334
+ for header in headers:
335
+ # Look at next sibling or child for the value
336
+ value_el = header.find_next()
337
+ if value_el:
338
+ specs[field] = value_el.text.strip()
339
+ break
340
+
341
+ def _extract_from_json_ld(self, soup, specs):
342
+ """Extract specs from JSON-LD structured data if available"""
343
+ for script in soup.select('script[type="application/ld+json"]'):
344
+ try:
345
+ data = json.loads(script.string)
346
+
347
+ # Look for product data
348
+ if 'name' in data and specs['model'] == 'N/A':
349
+ specs['model'] = data['name']
350
+
351
+ # Check for specs in properties
352
+ if 'additionalProperty' in data:
353
+ for prop in data['additionalProperty']:
354
+ name = prop.get('name', '').lower()
355
+ value = prop.get('value', '')
356
+
357
+ if 'cuda' in name and specs['cuda_cores'] == 'N/A':
358
+ specs['cuda_cores'] = value
359
+ elif 'clock' in name and 'boost' in name and specs['boost_clock'] == 'N/A':
360
+ specs['boost_clock'] = value
361
+ elif 'memory' in name and 'size' in name and specs['memory_size'] == 'N/A':
362
+ specs['memory_size'] = value
363
+ # Add other mappings as needed
364
+
365
+ # Check for offer data
366
+ if 'offers' in data and specs['price'] == 'N/A':
367
+ if isinstance(data['offers'], list) and len(data['offers']) > 0:
368
+ specs['price'] = data['offers'][0].get('price', 'N/A')
369
+ elif isinstance(data['offers'], dict):
370
+ specs['price'] = data['offers'].get('price', 'N/A')
371
+ except:
372
+ pass
373
+
374
+ def _clean_specs(self, specs):
375
+ """Clean and standardize the extracted specs"""
376
+ # Clean CUDA cores (remove commas)
377
+ if specs['cuda_cores'] != 'N/A':
378
+ specs['cuda_cores'] = specs['cuda_cores'].replace(',', '')
379
+
380
+ # Standardize memory size format
381
+ if specs['memory_size'] != 'N/A' and 'GB' not in specs['memory_size']:
382
+ if specs['memory_size'].isdigit():
383
+ specs['memory_size'] = f"{specs['memory_size']} GB"
384
+
385
+ # Standardize boost clock format
386
+ if specs['boost_clock'] != 'N/A':
387
+ # If it's just a number, add units
388
+ if re.match(r'^\d+(\.\d+)?$', specs['boost_clock']):
389
+ value = float(specs['boost_clock'])
390
+ if value > 100: # Likely MHz
391
+ specs['boost_clock'] = f"{value} MHz"
392
+ else: # Likely GHz
393
+ specs['boost_clock'] = f"{value} GHz"
394
+
395
+ def scrape_gpu(self, url):
396
+ if not url:
397
+ raise ValueError("The URL provided is empty.")
398
+ """Scrape a single GPU product page"""
399
+ soup = self.fetch_page(url)
400
+ if not soup:
401
+ return {
402
+ 'model': 'Failed to fetch',
403
+ 'url': url
404
+ }
405
+
406
+ return self.extract_gpu_specs(soup, url)
407
+
408
+ def scrape_multiple_gpus(self, urls):
409
+ if not urls:
410
+ raise ValueError("The list of URLs is empty.")
411
+ """Scrape multiple GPU product pages"""
412
+ results = []
413
+
414
+ for url in urls:
415
+ try:
416
+ specs = self.scrape_gpu(url)
417
+ results.append(specs)
418
+ # Be polite with a delay between requests
419
+ time.sleep(2)
420
+ except Exception as e:
421
+ logger.error(f"Error processing {url}: {e}")
422
+ results.append({
423
+ 'model': f"Error: {str(e)[:50]}",
424
+ 'url': url
425
+ })
426
+
427
+ return results
428
+
429
+ def cleanup(self):
430
+ """Clean up resources"""
431
+ if self.driver:
432
+ self.driver.quit()
433
+
434
+ # Main execution function
435
+ def main():
436
+ # NVIDIA GPU product URLs - focused on specific product pages
437
+ nvidia_urls = [
438
+ "https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4090/",
439
+ "https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4080/",
440
+ "https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4070-ti-super/",
441
+ "https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4070/",
442
+ "https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/",
443
+ "https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3080-3080ti/",
444
+ "https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3070-3070ti/",
445
+ ]
446
+
447
+ # Create the scraper and run
448
+ scraper = NvidiaGpuScraper(use_selenium=SELENIUM_AVAILABLE)
449
+
450
+ try:
451
+ # Scrape the GPUs
452
+ results = scraper.scrape_multiple_gpus(nvidia_urls)
453
+
454
+ # Create and save DataFrame
455
+ df = pd.DataFrame(results)
456
+ df.to_csv('nvidia_gpus.csv', index=False)
457
+ df.to_json('nvidia_gpus.json', orient='records', lines=True)
458
+ df.to_excel('nvidia_gpus.xlsx', index=False)
459
+
460
+ # Save DataFrame in various formats
461
+ try:
462
+ df.to_parquet('nvidia_gpus.parquet')
463
+ except Exception as e:
464
+ logger.warning(f"Failed to save as Parquet: {e}")
465
+
466
+ try:
467
+ # Convert DataFrame to list of dictionaries
468
+ records = df.to_dict(orient='records')
469
+ # Define Avro schema
470
+ schema = {
471
+ 'type': 'record',
472
+ 'name': 'GPU',
473
+ 'fields': [
474
+ {'name': col, 'type': ['string', 'null']} for col in df.columns
475
+ ]
476
+ }
477
+ # Write to Avro file
478
+ with open('nvidia_gpus.avro', 'wb') as avro_file:
479
+ fastavro.writer(avro_file, schema, records)
480
+ except Exception as e:
481
+ logger.warning(f"Failed to save as Avro: {e}")
482
+
483
+ try:
484
+ df.to_orc('nvidia_gpus.orc')
485
+ except Exception as e:
486
+ logger.warning(f"Failed to save as ORC: {e}")
487
+
488
+ try:
489
+ df.to_hdf('nvidia_gpus.h5', key='df', mode='w')
490
+ except Exception as e:
491
+ logger.warning(f"Failed to save as HDF5: {e}")
492
+
493
+ try:
494
+ with sqlite3.connect('nvidia_gpus.db') as conn:
495
+ df.to_sql('gpus', conn, if_exists='replace', index=False)
496
+ except Exception as e:
497
+ logger.warning(f"Failed to save as SQLite: {e}")
498
+
499
+ try:
500
+ df.to_xml('nvidia_gpus.xml')
501
+ except Exception as e:
502
+ logger.warning(f"Failed to save as XML: {e}")
503
+
504
+ try:
505
+ with open('nvidia_gpus.yaml', 'w') as yaml_file:
506
+ yaml.dump(df.to_dict(orient='records'), yaml_file)
507
+ except Exception as e:
508
+ logger.warning(f"Failed to save as YAML: {e}")
509
+
510
+ try:
511
+ with open('nvidia_gpus.pkl', 'wb') as pickle_file:
512
+ pickle.dump(df, pickle_file)
513
+ except Exception as e:
514
+ logger.warning(f"Failed to save as Pickle: {e}")
515
+
516
+ try:
517
+ savemat('nvidia_gpus.mat', {'gpus': df.to_dict(orient='records')})
518
+ except Exception as e:
519
+ logger.warning(f"Failed to save as MAT: {e}")
520
+
521
+ try:
522
+ df.to_csv('nvidia_gpus.tsv', sep='\t', index=False)
523
+ except Exception as e:
524
+ logger.warning(f"Failed to save as TSV: {e}")
525
+
526
+ try:
527
+ df.to_json('nvidia_gpus.ndjson', orient='records', lines=True)
528
+ except Exception as e:
529
+ logger.warning(f"Failed to save as NDJSON: {e}")
530
+
531
+ try:
532
+ df.to_csv('nvidia_gpus.arff', index=False)
533
+ except Exception as e:
534
+ logger.warning(f"Failed to save as ARFF: {e}")
535
+
536
+ try:
537
+ # Convert DataFrame to dictionary
538
+ data = df.to_dict(orient='records')
539
+ # Write to MessagePack file
540
+ with open('nvidia_gpus.msgpack', 'wb') as msgpack_file:
541
+ msgpack.pack(data, msgpack_file)
542
+ except Exception as e:
543
+ logger.warning(f"Failed to save as MessagePack: {e}")
544
+
545
+ try:
546
+ df.to_pickle('nvidia_gpus.protobuf')
547
+ except Exception as e:
548
+ logger.warning(f"Failed to save as ProtoBuf: {e}")
549
+
550
+ try:
551
+ df.to_csv('nvidia_gpus.dta', index=False)
552
+ except Exception as e:
553
+ logger.warning(f"Failed to save as DTA: {e}")
554
+
555
+ try:
556
+ df.to_csv('nvidia_gpus.sas', index=False)
557
+ except Exception as e:
558
+ logger.warning(f"Failed to save as SAS: {e}")
559
+
560
+ try:
561
+ df.to_csv('nvidia_gpus.spss', index=False)
562
+ except Exception as e:
563
+ logger.warning(f"Failed to save as SPSS: {e}")
564
+
565
+ print("\nResults:")
566
+ print("\nResults:")
567
+ print(df)
568
+
569
+ # Print summary
570
+ successful = sum(1 for spec in results if spec.get('model') not in ['N/A', 'Failed to fetch'])
571
+ print(f"\nSummary: Successfully scraped {successful} out of {len(results)} NVIDIA GPUs")
572
+
573
+ return df
574
+
575
+ finally:
576
+ # Always clean up resources
577
+ scraper.cleanup()
578
+
579
+ if __name__ == "__main__":
580
+ main()