File size: 3,237 Bytes
dd414b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

import os
import multiprocessing as mp
import numpy as np
import tiktoken
from datasets import load_dataset # pip install datasets
from tqdm import tqdm # pip install tqdm

# ------------------------------------------

fw = load_dataset("BAAI/IndustryCorpus_medicine",split="train")


local_dir = remote_name = "BAAI/IndustryCorpus_medicine"


shard_size = int(1e8) # 100M tokens per shard, total of 100 shards

# create the cache the local directory if it doesn't exist yet
DATA_CACHE_DIR = os.path.join(os.path.dirname(__file__), local_dir)
os.makedirs(DATA_CACHE_DIR, exist_ok=True)

from datasets import load_dataset

# init the tokenizer
enc = tiktoken.get_encoding("o200k_base")
eot = enc._special_tokens['<|endoftext|>'] # end of text token
def tokenize(doc):
    # tokenizes a single document and returns a numpy array of uint16 tokens
    tokens = [eot] # the special <|endoftext|> token delimits all documents
    tokens.extend(enc.encode_ordinary(doc["text"]))
    tokens_np = np.array(tokens)
    assert (0 <= tokens_np).all() and (tokens_np < 2**32).all(), "token dictionary too large for uint16"
    tokens_np_int32 = tokens_np.astype(np.int32)
    return tokens_np_int32

def write_datafile(filename, tokens_np):
    np.save(filename, tokens_np)

# tokenize all documents and write output shards, each of shard_size tokens (last shard has remainder)
nprocs = max(1, os.cpu_count()//2)
with mp.Pool(nprocs) as pool:
    shard_index = 0
    # preallocate buffer to hold current shard
    all_tokens_np = np.empty((shard_size,), dtype=np.uint16)
    token_count = 0
    progress_bar = None
    for tokens in pool.imap(tokenize, fw, chunksize=16):

        # is there enough space in the current shard for the new tokens?
        if token_count + len(tokens) < shard_size:
            # simply append tokens to current shard
            all_tokens_np[token_count:token_count+len(tokens)] = tokens
            token_count += len(tokens)
            # update progress bar
            if progress_bar is None:
                progress_bar = tqdm(total=shard_size, unit="tokens", desc=f"Shard {shard_index}")
            progress_bar.update(len(tokens))
        else:
            # write the current shard and start a new one
            split = "val" if shard_index == 0 else "train"
            filename = os.path.join(DATA_CACHE_DIR, f"BAAI_{split}_{shard_index:06d}")
            # split the document into whatever fits in this shard; the remainder goes to next one
            remainder = shard_size - token_count
            progress_bar.update(remainder)
            all_tokens_np[token_count:token_count+remainder] = tokens[:remainder]
            write_datafile(filename, all_tokens_np)
            shard_index += 1
            progress_bar = None
            # populate the next shard with the leftovers of the current doc
            all_tokens_np[0:len(tokens)-remainder] = tokens[remainder:]
            token_count = len(tokens)-remainder

    # write any remaining tokens as the last shard
    if token_count != 0:
        split = "val" if shard_index == 0 else "train"
        filename = os.path.join(DATA_CACHE_DIR, f"BAAI_{split}_{shard_index:06d}")
        write_datafile(filename, all_tokens_np[:token_count])