|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""A Dataset loading script for the QA-Discourse dataset (Pyatkin et. al., ACL 2020).""" |
|
|
|
|
|
import datasets |
|
from pathlib import Path |
|
from typing import List |
|
import pandas as pd |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{pyatkin2020qadiscourse, |
|
title={QADiscourse-Discourse Relations as QA Pairs: Representation, Crowdsourcing and Baselines}, |
|
author={Pyatkin, Valentina and Klein, Ayal and Tsarfaty, Reut and Dagan, Ido}, |
|
booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)}, |
|
pages={2804--2819}, |
|
year={2020} |
|
}""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
The dataset contains question-answer pairs to model discourse relations. |
|
While answers roughly correspond to spans of the sentence, these spans could have been freely adjusted by annotators to grammaticaly fit the question; |
|
Therefore, answers are given just as text and not as identified spans of the original sentence. |
|
See the paper for details: QADiscourse - Discourse Relations as QA Pairs: Representation, Crowdsourcing and Baselines, Pyatkin et. al., 2020 |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/ValentinaPy/QADiscourse" |
|
|
|
_LICENSE = """Resources on this page are licensed CC-BY 4.0, a Creative Commons license requiring Attribution (https://creativecommons.org/licenses/by/4.0/).""" |
|
|
|
|
|
_URLs = { |
|
"wikinews.train": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikinews_train.tsv", |
|
"wikinews.dev": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikinews_dev.tsv", |
|
"wikinews.test": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikinews_test.tsv", |
|
"wikipedia.train": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikipedia_train.tsv", |
|
"wikipedia.dev": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikipedia_dev.tsv", |
|
"wikipedia.test": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikipedia_test.tsv", |
|
} |
|
|
|
|
|
class QaDiscourse(datasets.GeneratorBasedBuilder): |
|
"""QA-Discourse: Discourse Relations as Question-Answer Pairs. """ |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="plain_text", version=VERSION, description="This provides the QA-Discourse dataset" |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = ( |
|
"plain_text" |
|
) |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"sentence": datasets.Value("string"), |
|
"sent_id": datasets.Value("string"), |
|
"question": datasets.Sequence(datasets.Value("string")), |
|
"answers": datasets.Sequence(datasets.Value("string")), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.utils.download_manager.DownloadManager): |
|
"""Returns SplitGenerators.""" |
|
|
|
|
|
corpora = {section: Path(dl_manager.download_and_extract(_URLs[section])) |
|
for section in _URLs} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepaths": [corpora["wikinews.train"], |
|
corpora["wikipedia.train"]], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={ |
|
"filepaths": [corpora["wikinews.dev"], |
|
corpora["wikipedia.dev"]], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"filepaths": [corpora["wikinews.test"], |
|
corpora["wikipedia.test"]], |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepaths: List[str]): |
|
|
|
""" Yields QA-Discourse examples from a tsv file.""" |
|
|
|
|
|
df = pd.concat([pd.read_csv(fn, separator='\t') for fn in filepaths]).reset_index() |
|
for counter, row in df.iterrows(): |
|
|
|
question = [row.question_start, row.question_aux, row.question_body.str.rstrip('?'), '?'] |
|
|
|
yield counter, { |
|
"sentence": row.sentence, |
|
"sent_id": row.qasrl_id, |
|
"question": question, |
|
"answers": [row.answer], |
|
} |
|
|