Datasets:
switch to parquet version of dataset
Browse files- loc_beyond_words.py +0 -136
loc_beyond_words.py
DELETED
|
@@ -1,136 +0,0 @@
|
|
| 1 |
-
# Copyright 2022 Daniel van Strien
|
| 2 |
-
#
|
| 3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
-
# you may not use this file except in compliance with the License.
|
| 5 |
-
# You may obtain a copy of the License at
|
| 6 |
-
#
|
| 7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
-
#
|
| 9 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
-
# See the License for the specific language governing permissions and
|
| 13 |
-
# limitations under the License.
|
| 14 |
-
"""Beyond Words"""
|
| 15 |
-
|
| 16 |
-
import collections
|
| 17 |
-
import json
|
| 18 |
-
import os
|
| 19 |
-
from typing import Any, Dict, List
|
| 20 |
-
import datasets
|
| 21 |
-
from pathlib import Path
|
| 22 |
-
|
| 23 |
-
_CITATION = "TODO"
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
_DESCRIPTION = "TODO"
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
_HOMEPAGE = "TODO"
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
_LICENSE = "Public Domain Mark 1.0"
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
class BeyondWords(datasets.GeneratorBasedBuilder):
|
| 36 |
-
"""Beyond Words Dataset"""
|
| 37 |
-
|
| 38 |
-
def _info(self):
|
| 39 |
-
features = datasets.Features(
|
| 40 |
-
{
|
| 41 |
-
"image_id": datasets.Value("int64"),
|
| 42 |
-
"image": datasets.Image(),
|
| 43 |
-
"width": datasets.Value("int32"),
|
| 44 |
-
"height": datasets.Value("int32"),
|
| 45 |
-
}
|
| 46 |
-
)
|
| 47 |
-
|
| 48 |
-
object_dict = {
|
| 49 |
-
"bw_id": datasets.Value("string"),
|
| 50 |
-
"category_id": datasets.ClassLabel(
|
| 51 |
-
names=[
|
| 52 |
-
"Photograph",
|
| 53 |
-
"Illustration",
|
| 54 |
-
"Map",
|
| 55 |
-
"Comics/Cartoon",
|
| 56 |
-
"Editorial Cartoon",
|
| 57 |
-
"Headline",
|
| 58 |
-
"Advertisement",
|
| 59 |
-
]
|
| 60 |
-
),
|
| 61 |
-
"image_id": datasets.Value("string"),
|
| 62 |
-
"id": datasets.Value("int64"),
|
| 63 |
-
"area": datasets.Value("int64"),
|
| 64 |
-
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
|
| 65 |
-
"iscrowd": datasets.Value(
|
| 66 |
-
"bool"
|
| 67 |
-
), # always False for stuff segmentation task
|
| 68 |
-
}
|
| 69 |
-
features["objects"] = [object_dict]
|
| 70 |
-
|
| 71 |
-
return datasets.DatasetInfo(
|
| 72 |
-
description=_DESCRIPTION,
|
| 73 |
-
features=features,
|
| 74 |
-
homepage=_HOMEPAGE,
|
| 75 |
-
license=_LICENSE,
|
| 76 |
-
citation=_CITATION,
|
| 77 |
-
)
|
| 78 |
-
|
| 79 |
-
def _split_generators(self, dl_manager):
|
| 80 |
-
images = dl_manager.download_and_extract("data/images.zip")
|
| 81 |
-
training = dl_manager.download("data/train_80_percent.json")
|
| 82 |
-
validation = dl_manager.download("data/val_20_percent.json")
|
| 83 |
-
return [
|
| 84 |
-
datasets.SplitGenerator(
|
| 85 |
-
name=datasets.Split.TRAIN,
|
| 86 |
-
gen_kwargs={
|
| 87 |
-
"annotations_file": Path(training),
|
| 88 |
-
"image_dir": Path(images),
|
| 89 |
-
},
|
| 90 |
-
),
|
| 91 |
-
datasets.SplitGenerator(
|
| 92 |
-
name=datasets.Split.VALIDATION,
|
| 93 |
-
gen_kwargs={
|
| 94 |
-
"annotations_file": Path(validation),
|
| 95 |
-
"image_dir": Path(images),
|
| 96 |
-
},
|
| 97 |
-
),
|
| 98 |
-
]
|
| 99 |
-
|
| 100 |
-
def _get_image_id_to_annotations_mapping(
|
| 101 |
-
self, annotations: List[Dict]
|
| 102 |
-
) -> Dict[int, List[Dict[Any, Any]]]:
|
| 103 |
-
"""
|
| 104 |
-
A helper function to build a mapping from image ids to annotations.
|
| 105 |
-
"""
|
| 106 |
-
image_id_to_annotations = collections.defaultdict(list)
|
| 107 |
-
for annotation in annotations:
|
| 108 |
-
image_id_to_annotations[annotation["image_id"]].append(annotation)
|
| 109 |
-
return image_id_to_annotations
|
| 110 |
-
|
| 111 |
-
def _generate_examples(self, annotations_file, image_dir):
|
| 112 |
-
def _image_info_to_example(image_info, image_dir):
|
| 113 |
-
image = image_info["file_name"]
|
| 114 |
-
return {
|
| 115 |
-
"image_id": image_info["id"],
|
| 116 |
-
"image": os.path.join(image_dir, "images", image),
|
| 117 |
-
"width": image_info["width"],
|
| 118 |
-
"height": image_info["height"],
|
| 119 |
-
}
|
| 120 |
-
|
| 121 |
-
with open(annotations_file, encoding="utf8") as f:
|
| 122 |
-
annotation_data = json.load(f)
|
| 123 |
-
images = annotation_data["images"]
|
| 124 |
-
annotations = annotation_data["annotations"]
|
| 125 |
-
image_id_to_annotations = self._get_image_id_to_annotations_mapping(
|
| 126 |
-
annotations
|
| 127 |
-
)
|
| 128 |
-
for idx, image_info in enumerate(images):
|
| 129 |
-
example = _image_info_to_example(image_info, image_dir)
|
| 130 |
-
|
| 131 |
-
annotations = image_id_to_annotations[image_info["id"]]
|
| 132 |
-
objects = []
|
| 133 |
-
for annotation in annotations:
|
| 134 |
-
objects.append(annotation)
|
| 135 |
-
example["objects"] = objects
|
| 136 |
-
yield (idx, example)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|