File size: 12,296 Bytes
b29f3d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import os
from typing import Dict, Iterator, List
from xml.etree import ElementTree as ET
import datasets
from .bigbiohub import BigBioConfig, Tasks, kb_features
_LOCAL = False
_LANGUAGES = ["English"]
_PUBMED = True
_CITATION = """\
@article{bada2012concept,
title={Concept annotation in the CRAFT corpus},
author={Bada, Michael and Eckert, Miriam and Evans, Donald and Garcia, Kristin and Shipley, Krista and Sitnikov, \
Dmitry and Baumgartner, William A and Cohen, K Bretonnel and Verspoor, Karin and Blake, Judith A and others},
journal={BMC bioinformatics},
volume={13},
number={1},
pages={1--20},
year={2012},
publisher={BioMed Central}
}
"""
_DATASETNAME = "craft"
_DISPLAYNAME = "CRAFT"
_DESCRIPTION = """
This dataset contains the CRAFT corpus, a collection of 97 articles from the PubMed Central Open Access subset,
each of which has been annotated along a number of different axes spanning structural, coreference, and concept
annotation. Due to current limitations of the current schema, corefs are not included in this dataloader.
They will be implemented in a future version.
"""
_HOMEPAGE = "https://github.com/UCDenver-ccp/CRAFT"
_LICENSE = "CC_BY_3p0_US"
_URL = {
"source": "https://github.com/UCDenver-ccp/CRAFT/archive/refs/tags/v5.0.2.zip",
"bigbio_kb": "https://github.com/UCDenver-ccp/CRAFT/archive/refs/tags/v5.0.2.zip",
}
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION]
_SOURCE_VERSION = "5.0.2"
_BIGBIO_VERSION = "1.0.0"
_CONCEPT_ANNOTATIONS = {
"CHEBI": "Chemical Entities of Biological Interest ",
"CL": "Cell Ontology",
"GO_BP": "Gene Ontology Biological Process",
"GO_CC": "Gene Ontology Cellular Component",
"GO_MF": "Gene Ontology Molecular Function",
"MONDO": "MONDO Disease Ontology",
"MOP": "Molecular Process Ontology",
"NCBITaxon": "NCBI Taxonomy",
"PR": "Protein Ontology",
"SO": "Sequence Ontology",
"UBERON": "Uberon",
}
logger = datasets.utils.logging.get_logger(__name__)
class CraftDataset(datasets.GeneratorBasedBuilder):
"""
This dataset presents the concept annotations of the Colorado Richly Annotated Full-Text (CRAFT) Corpus, a
collection of 97 full-length, open-access biomedical journal articles that have been annotated both semantically
and syntactically to serve as a research resource for the biomedical natural-language-processing (NLP) community.
CRAFT identifies all mentions of nearly all concepts from nine prominent biomedical ontologies and terminologies:
- the Cell Type Ontology,
- the Chemical Entities of Biological Interest ontology,
- the NCBI Taxonomy, the Protein Ontology,
- the Sequence Ontology,
- the entries of the Entrez Gene database, and t
- he three subontologies of the Gene Ontology.
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
bigbio_schema_name = "kb"
BUILDER_CONFIGS = [
BigBioConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}",
),
BigBioConfig(
name=f"{_DATASETNAME}_bigbio_{bigbio_schema_name}",
version=BIGBIO_VERSION,
description=f"{_DATASETNAME} BigBio schema",
schema=f"bigbio_{bigbio_schema_name}",
subset_id=f"{_DATASETNAME}",
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"pmid": datasets.Value("string"),
"text": datasets.Value("string"),
"annotations": [
{
"offsets": datasets.Sequence([datasets.Value("int64")]),
"text": datasets.Sequence(datasets.Value("string")),
"db_name": datasets.Value("string"),
"db_id": datasets.Value("string"),
}
],
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
else:
raise NotImplementedError(f"Schema {self.config.schema} not supported")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URL[self.config.schema]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"data_dir": data_dir, "split": "train"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"data_dir": data_dir, "split": "validation"},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"data_dir": data_dir, "split": "test"},
),
]
def get_splits(self, data_dir: str) -> Dict:
"""Load `dict[split, list[pmid]]`"""
splits_dir = os.path.join(data_dir, f"CRAFT-{_SOURCE_VERSION}", "articles", "ids")
splits = {}
for split in ["train", "dev", "test"]:
with open(os.path.join(splits_dir, f"craft-ids-{split}.txt")) as fp:
split_name = "validation" if split == "dev" else split
splits[split_name] = [line.strip() for line in fp.readlines()]
return splits
def get_texts(self, data_dir: str) -> Dict:
"""Load dict[pmid,text]"""
texts_dir = os.path.join(data_dir, f"CRAFT-{_SOURCE_VERSION}", "articles", "txt")
documents = {}
for file in os.listdir(texts_dir):
if not file.endswith(".txt"):
continue
pmid = file.replace(".txt", "")
with open(os.path.join(texts_dir, file)) as fp:
documents[pmid] = fp.read()
return documents
def _extract_mondo_annotations(self, path: str) -> Iterator[Dict]:
"""Extract MONDO annotations"""
root = ET.parse(path)
for a in root.findall("document/annotation"):
span = a.find("span")
assert span is not None
start = span.attrib["start"]
end = span.attrib["end"]
ea = {
"offsets": [[start, end]],
"text": [span.text],
}
normalization = a.find("class")
if normalization is not None:
mondo_id = normalization.attrib["id"].replace("http://purl.obolibrary.org/obo/", "")
mondo_id = mondo_id.replace("_", ":")
ea["db_id"] = mondo_id
yield ea
def _extract_other_annotations(self, path: str) -> Iterator[Dict]:
"""Extract all other annotations (CHEBI, UBERON, ...)"""
# NOTE: handle knowtator normalization format
# <annotation>
# <mention id="UBERON_Instance_30000" />
# </annotation>
# <classMention id="UBERON_Instance_30166">
# <mentionClass id="UBERON:0002435">striatum</mentionClass>
# </classMention>
root = ET.parse(path)
instance_to_db_id = {
e.attrib["id"]: e.find("mentionClass").attrib["id"]
for e in root.findall("classMention")
if e.find("mentionClass") is not None
}
for a in root.findall("annotation"):
span = a.find("span")
assert span is not None
offsets = [[span.attrib["start"], span.attrib["end"]] for span in a.findall("span")]
text = a.find("spannedText").text.split(" ... ")
ea = {"offsets": offsets, "text": text}
mention = a.find("mention")
db_id = None
if mention is not None:
instance = mention.attrib["id"]
db_id = instance_to_db_id.get(instance)
ea["db_id"] = db_id
yield ea
def get_annotations(self, data_dir: str) -> Dict:
"""Load dict[pmid,annotations]"""
annotations_dir = os.path.join(data_dir, f"CRAFT-{_SOURCE_VERSION}", "concept-annotation")
annotations: Dict = {}
for concept in _CONCEPT_ANNOTATIONS:
if concept == "MONDO":
folder = os.path.join(
annotations_dir,
"MONDO",
"MONDO_without_genotype_annotations",
"knowtator-2",
)
else:
folder = os.path.join(
annotations_dir,
concept,
concept,
"knowtator",
)
for file in sorted(os.listdir(folder)):
pmid = file.replace(".xml", "").replace(".txt", "").replace(".knowtator", "")
path = os.path.join(folder, file)
if pmid not in annotations:
annotations[pmid] = []
annotations_generator = (
self._extract_mondo_annotations(path)
if concept == "MONDO"
else self._extract_other_annotations(path)
)
for a in annotations_generator:
a["db_name"] = concept
annotations[pmid].append(a)
return annotations
def _generate_examples(self, data_dir: str, split: str):
"""Yields examples as (key, example) tuples."""
splits = self.get_splits(data_dir=data_dir)
texts = self.get_texts(data_dir=data_dir)
annotations = self.get_annotations(data_dir=data_dir)
if self.config.schema == "source":
for pmid in splits[split]:
example = {
"pmid": pmid,
"text": texts[pmid],
"annotations": annotations[pmid],
}
yield pmid, example
elif self.config.schema == "bigbio_kb":
uid = map(str, itertools.count(start=0, step=1))
for pmid in splits[split]:
example = {
"id": next(uid),
"document_id": pmid,
"passages": [
{
"id": next(uid),
"type": "text",
"text": [texts[pmid]],
"offsets": [[0, len(texts[pmid])]],
}
],
"entities": [
{
"id": next(uid),
"offsets": a["offsets"],
"text": a["text"],
"type": a["db_name"],
"normalized": [{"db_name": a["db_name"], "db_id": a["db_id"]}],
}
for a in annotations[pmid]
],
"events": [],
"coreferences": [],
"relations": [],
}
yield next(uid), example
|