""" Simple script to load the Misery Index Dataset using pandas or datasets library. """ import pandas as pd from typing import Dict, List, Optional def load_misery_dataset(file_path: str = "Misery_Data.csv") -> pd.DataFrame: """ Load the Misery Index Dataset from CSV file. Args: file_path: Path to the CSV file (default: "Misery_Data.csv") Returns: pandas.DataFrame with cleaned column names and proper data types """ df = pd.read_csv(file_path) # Rename columns to be more user-friendly column_mapping = { "Ep #": "episode", "Misery": "scenario", "Score": "misery_score", "VNTO": "vnto", "Reward": "reward", "Win": "win", "Comments": "comments", "question_tag": "question_tag", "level": "level" } df = df.rename(columns=column_mapping) # Convert misery_score to numeric df["misery_score"] = pd.to_numeric(df["misery_score"], errors="coerce") # Convert reward to numeric, handling empty values df["reward"] = pd.to_numeric(df["reward"], errors="coerce").fillna(0).astype(int) # Clean up string columns string_columns = ["episode", "scenario", "vnto", "win", "comments", "question_tag", "level"] for col in string_columns: if col in df.columns: df[col] = df[col].astype(str).str.strip() df[col] = df[col].replace("nan", "") return df def get_dataset_statistics(df: pd.DataFrame) -> Dict: """ Get basic statistics about the dataset. Args: df: DataFrame containing the dataset Returns: Dictionary with dataset statistics """ stats = { "total_samples": len(df), "mean_misery": df["misery_score"].mean(), "std_misery": df["misery_score"].std(), "min_misery": df["misery_score"].min(), "max_misery": df["misery_score"].max(), "percentiles": { "25th": df["misery_score"].quantile(0.25), "50th": df["misery_score"].quantile(0.50), "75th": df["misery_score"].quantile(0.75), }, "vnto_types": df["vnto"].value_counts().to_dict() if "vnto" in df.columns else {}, "episodes": df["episode"].nunique(), "question_tags": df["question_tag"].value_counts().to_dict() if "question_tag" in df.columns else {}, } return stats def filter_by_vnto(df: pd.DataFrame, vnto_type: str) -> pd.DataFrame: """ Filter dataset by VNTO type. Args: df: DataFrame containing the dataset vnto_type: VNTO type to filter by (T, V, N, O, P) Returns: Filtered DataFrame """ return df[df["vnto"] == vnto_type].copy() def filter_by_misery_range(df: pd.DataFrame, min_score: float = 0, max_score: float = 100) -> pd.DataFrame: """ Filter dataset by misery score range. Args: df: DataFrame containing the dataset min_score: Minimum misery score (inclusive) max_score: Maximum misery score (inclusive) Returns: Filtered DataFrame """ return df[(df["misery_score"] >= min_score) & (df["misery_score"] <= max_score)].copy() def get_sample_scenarios(df: pd.DataFrame, vnto_type: Optional[str] = None, n: int = 5) -> List[Dict]: """ Get sample scenarios from the dataset. Args: df: DataFrame containing the dataset vnto_type: Optional VNTO type to filter by n: Number of samples to return Returns: List of dictionaries with scenario information """ if vnto_type: df_filtered = filter_by_vnto(df, vnto_type) else: df_filtered = df samples = df_filtered.sample(n=min(n, len(df_filtered))) return [ { "scenario": row["scenario"], "misery_score": row["misery_score"], "vnto": row["vnto"], "episode": row["episode"] } for _, row in samples.iterrows() ] def main(): """Example usage of the dataset loading functions.""" # Load the dataset print("Loading Misery Index Dataset...") df = load_misery_dataset() # Get basic statistics stats = get_dataset_statistics(df) print(f"\nDataset Statistics:") print(f"Total samples: {stats['total_samples']}") print(f"Mean misery score: {stats['mean_misery']:.2f}") print(f"Standard deviation: {stats['std_misery']:.2f}") print(f"Score range: {stats['min_misery']}-{stats['max_misery']}") print(f"Number of episodes: {stats['episodes']}") print(f"\nPercentiles:") for p, value in stats['percentiles'].items(): print(f" {p}: {value:.2f}") print(f"\nVNTO Types distribution:") for vnto_type, count in stats['vnto_types'].items(): percentage = (count / stats['total_samples']) * 100 print(f" {vnto_type}: {count} ({percentage:.1f}%)") print(f"\nTop Question Tags:") for tag, count in list(stats['question_tags'].items())[:5]: percentage = (count / stats['total_samples']) * 100 print(f" {tag}: {count} ({percentage:.1f}%)") # Show some examples print(f"\nSample low misery scenarios (< 30):") low_misery = filter_by_misery_range(df, 0, 30) samples = get_sample_scenarios(low_misery, n=3) for sample in samples: print(f" Score {sample['misery_score']}: {sample['scenario']}") print(f"\nSample high misery scenarios (> 80):") high_misery = filter_by_misery_range(df, 80, 100) samples = get_sample_scenarios(high_misery, n=3) for sample in samples: print(f" Score {sample['misery_score']}: {sample['scenario']}") print(f"\nSample Video scenarios (VNTO=V):") video_scenarios = filter_by_vnto(df, "V") samples = get_sample_scenarios(video_scenarios, n=3) for sample in samples: print(f" Score {sample['misery_score']}: {sample['scenario']}") if __name__ == "__main__": main()