bansalaman18 commited on
Commit
5e17172
·
verified ·
1 Parent(s): dddf322

Upload load_dataset.py

Browse files
Files changed (1) hide show
  1. load_dataset.py +183 -0
load_dataset.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Simple script to load the Misery Index Dataset using pandas or datasets library.
3
+ """
4
+
5
+ import pandas as pd
6
+ from typing import Dict, List, Optional
7
+
8
+ def load_misery_dataset(file_path: str = "Misery_Data.csv") -> pd.DataFrame:
9
+ """
10
+ Load the Misery Index Dataset from CSV file.
11
+
12
+ Args:
13
+ file_path: Path to the CSV file (default: "Misery_Data.csv")
14
+
15
+ Returns:
16
+ pandas.DataFrame with cleaned column names and proper data types
17
+ """
18
+ df = pd.read_csv(file_path)
19
+
20
+ # Rename columns to be more user-friendly
21
+ column_mapping = {
22
+ "Ep #": "episode",
23
+ "Misery": "scenario",
24
+ "Score": "misery_score",
25
+ "VNTO": "vnto",
26
+ "Reward": "reward",
27
+ "Win": "win",
28
+ "Comments": "comments",
29
+ "question_tag": "question_tag",
30
+ "level": "level"
31
+ }
32
+
33
+ df = df.rename(columns=column_mapping)
34
+
35
+ # Convert misery_score to numeric
36
+ df["misery_score"] = pd.to_numeric(df["misery_score"], errors="coerce")
37
+
38
+ # Convert reward to numeric, handling empty values
39
+ df["reward"] = pd.to_numeric(df["reward"], errors="coerce").fillna(0).astype(int)
40
+
41
+ # Clean up string columns
42
+ string_columns = ["episode", "scenario", "vnto", "win", "comments", "question_tag", "level"]
43
+ for col in string_columns:
44
+ if col in df.columns:
45
+ df[col] = df[col].astype(str).str.strip()
46
+ df[col] = df[col].replace("nan", "")
47
+
48
+ return df
49
+
50
+ def get_dataset_statistics(df: pd.DataFrame) -> Dict:
51
+ """
52
+ Get basic statistics about the dataset.
53
+
54
+ Args:
55
+ df: DataFrame containing the dataset
56
+
57
+ Returns:
58
+ Dictionary with dataset statistics
59
+ """
60
+ stats = {
61
+ "total_samples": len(df),
62
+ "mean_misery": df["misery_score"].mean(),
63
+ "std_misery": df["misery_score"].std(),
64
+ "min_misery": df["misery_score"].min(),
65
+ "max_misery": df["misery_score"].max(),
66
+ "percentiles": {
67
+ "25th": df["misery_score"].quantile(0.25),
68
+ "50th": df["misery_score"].quantile(0.50),
69
+ "75th": df["misery_score"].quantile(0.75),
70
+ },
71
+ "vnto_types": df["vnto"].value_counts().to_dict() if "vnto" in df.columns else {},
72
+ "episodes": df["episode"].nunique(),
73
+ "question_tags": df["question_tag"].value_counts().to_dict() if "question_tag" in df.columns else {},
74
+ }
75
+ return stats
76
+
77
+ def filter_by_vnto(df: pd.DataFrame, vnto_type: str) -> pd.DataFrame:
78
+ """
79
+ Filter dataset by VNTO type.
80
+
81
+ Args:
82
+ df: DataFrame containing the dataset
83
+ vnto_type: VNTO type to filter by (T, V, N, O, P)
84
+
85
+ Returns:
86
+ Filtered DataFrame
87
+ """
88
+ return df[df["vnto"] == vnto_type].copy()
89
+
90
+ def filter_by_misery_range(df: pd.DataFrame, min_score: float = 0, max_score: float = 100) -> pd.DataFrame:
91
+ """
92
+ Filter dataset by misery score range.
93
+
94
+ Args:
95
+ df: DataFrame containing the dataset
96
+ min_score: Minimum misery score (inclusive)
97
+ max_score: Maximum misery score (inclusive)
98
+
99
+ Returns:
100
+ Filtered DataFrame
101
+ """
102
+ return df[(df["misery_score"] >= min_score) & (df["misery_score"] <= max_score)].copy()
103
+
104
+ def get_sample_scenarios(df: pd.DataFrame, vnto_type: Optional[str] = None, n: int = 5) -> List[Dict]:
105
+ """
106
+ Get sample scenarios from the dataset.
107
+
108
+ Args:
109
+ df: DataFrame containing the dataset
110
+ vnto_type: Optional VNTO type to filter by
111
+ n: Number of samples to return
112
+
113
+ Returns:
114
+ List of dictionaries with scenario information
115
+ """
116
+ if vnto_type:
117
+ df_filtered = filter_by_vnto(df, vnto_type)
118
+ else:
119
+ df_filtered = df
120
+
121
+ samples = df_filtered.sample(n=min(n, len(df_filtered)))
122
+
123
+ return [
124
+ {
125
+ "scenario": row["scenario"],
126
+ "misery_score": row["misery_score"],
127
+ "vnto": row["vnto"],
128
+ "episode": row["episode"]
129
+ }
130
+ for _, row in samples.iterrows()
131
+ ]
132
+
133
+ def main():
134
+ """Example usage of the dataset loading functions."""
135
+
136
+ # Load the dataset
137
+ print("Loading Misery Index Dataset...")
138
+ df = load_misery_dataset()
139
+
140
+ # Get basic statistics
141
+ stats = get_dataset_statistics(df)
142
+ print(f"\nDataset Statistics:")
143
+ print(f"Total samples: {stats['total_samples']}")
144
+ print(f"Mean misery score: {stats['mean_misery']:.2f}")
145
+ print(f"Standard deviation: {stats['std_misery']:.2f}")
146
+ print(f"Score range: {stats['min_misery']}-{stats['max_misery']}")
147
+ print(f"Number of episodes: {stats['episodes']}")
148
+
149
+ print(f"\nPercentiles:")
150
+ for p, value in stats['percentiles'].items():
151
+ print(f" {p}: {value:.2f}")
152
+
153
+ print(f"\nVNTO Types distribution:")
154
+ for vnto_type, count in stats['vnto_types'].items():
155
+ percentage = (count / stats['total_samples']) * 100
156
+ print(f" {vnto_type}: {count} ({percentage:.1f}%)")
157
+
158
+ print(f"\nTop Question Tags:")
159
+ for tag, count in list(stats['question_tags'].items())[:5]:
160
+ percentage = (count / stats['total_samples']) * 100
161
+ print(f" {tag}: {count} ({percentage:.1f}%)")
162
+
163
+ # Show some examples
164
+ print(f"\nSample low misery scenarios (< 30):")
165
+ low_misery = filter_by_misery_range(df, 0, 30)
166
+ samples = get_sample_scenarios(low_misery, n=3)
167
+ for sample in samples:
168
+ print(f" Score {sample['misery_score']}: {sample['scenario']}")
169
+
170
+ print(f"\nSample high misery scenarios (> 80):")
171
+ high_misery = filter_by_misery_range(df, 80, 100)
172
+ samples = get_sample_scenarios(high_misery, n=3)
173
+ for sample in samples:
174
+ print(f" Score {sample['misery_score']}: {sample['scenario']}")
175
+
176
+ print(f"\nSample Video scenarios (VNTO=V):")
177
+ video_scenarios = filter_by_vnto(df, "V")
178
+ samples = get_sample_scenarios(video_scenarios, n=3)
179
+ for sample in samples:
180
+ print(f" Score {sample['misery_score']}: {sample['scenario']}")
181
+
182
+ if __name__ == "__main__":
183
+ main()