bansalaman18 commited on
Commit
1fb6f40
·
verified ·
1 Parent(s): 56bac1f

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +245 -0
README.md ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ task_categories:
4
+ - text-regression
5
+ - text-classification
6
+ language:
7
+ - en
8
+ tags:
9
+ - psychology
10
+ - emotion
11
+ - distress
12
+ - misery
13
+ - sentiment-analysis
14
+ - regression
15
+ size_categories:
16
+ - 100<n<1K
17
+ ---
18
+
19
+ # Misery Index Dataset
20
+
21
+ ## Dataset Description
22
+
23
+ The Misery Index Dataset comprises 516 textual descriptions of real-world or imagined scenarios, each annotated with a corresponding misery score on a continuous scale from 0 (no misery) to 100 (extreme misery). These misery ratings represent subjective estimates of emotional distress associated with each event.
24
+
25
+ ## Dataset Summary
26
+
27
+ This dataset is designed for research in emotional AI, sentiment analysis, and psychological modeling. It enables researchers to develop and evaluate models that can predict human emotional responses to various life situations with fine-grained precision.
28
+
29
+ ### Key Features:
30
+ - **516 scenarios** with diverse emotional contexts
31
+ - **Continuous scale (0-100)** for precise misery measurement
32
+ - **Minimal preprocessing** to preserve emotional texture
33
+ - **Balanced distribution** across misery levels
34
+ - **Categorized events** for structured analysis
35
+
36
+ ## Dataset Structure
37
+
38
+ ### Data Fields
39
+
40
+ - `Ep #` (string): Source episode identifier (e.g., "1x01", "2x03")
41
+ - `Misery` (string): A short English-language description of a miserable situation
42
+ - `Score` (int): Numeric label indicating misery level (0-100 scale)
43
+ - `VNTO` (string): Content type flag (T=Text, V=Video, N=News, O=Other, P=Punishment)
44
+ - `Reward` (int): Reward value from original game show context (0-15000)
45
+ - `Win` (string): Win/loss indicator (y/n)
46
+ - `Comments` (string): Additional comments, notes, or source information
47
+ - `question_tag` (string): Question categorization tag
48
+ - `level` (string): Difficulty or context level
49
+
50
+ ### Data Splits
51
+
52
+ The dataset contains a single train split with 516 examples.
53
+
54
+ ```python
55
+ from datasets import load_dataset
56
+
57
+ dataset = load_dataset("path/to/misery-index")
58
+ print(dataset["train"][0])
59
+ # Output example:
60
+ # {
61
+ # 'Ep #': '1x01',
62
+ # 'Misery': 'You Send a Nude Selfie to HR by mistake',
63
+ # 'Score': 70,
64
+ # 'VNTO': 'T',
65
+ # 'Reward': 0,
66
+ # 'Win': '',
67
+ # 'Comments': '',
68
+ # 'question_tag': '1_base',
69
+ # 'level': ''
70
+ # }
71
+ ```
72
+
73
+ ## Dataset Statistics
74
+
75
+ - **Total examples**: 516
76
+ - **Mean misery score**: 56.45
77
+ - **Standard deviation**: 17.59
78
+ - **Score range**: 11-100
79
+ - **Percentiles**:
80
+ - 25th: 43
81
+ - 50th: 56
82
+ - 75th: 69
83
+
84
+ ### Category Distribution
85
+
86
+ 1. **Other/Miscellaneous**: 26.4%
87
+ 2. **Family or Relationship Issues**: 16.3%
88
+ 3. **Accidents or Mishaps**: 15.3%
89
+ 4. **Medical Emergencies**: ~10%
90
+ 5. **Embarrassment**: ~8%
91
+ 6. **Physical Injury**: ~7%
92
+ 7. **Animal-related Incidents**: ~6%
93
+ 8. **Crime or Legal Trouble**: <5%
94
+ 9. **Professional/Work-related**: <5%
95
+ 10. **Gross/Disgusting Events**: <5%
96
+
97
+ ## Data Sources
98
+
99
+ The data was aggregated from three primary sources:
100
+
101
+ 1. **Misery Index blog** curated by Bobby MGSK
102
+ 2. **Jericho Blog** consolidated dataset
103
+ 3. **Associated Google Spreadsheet** with structured entries
104
+
105
+ Original sources:
106
+ - [Bobby MGSK's Misery Index Blog](https://bobbymgsk.wordpress.com/category/the-misery-index/)
107
+ - [Jericho Blog Compilation](https://jericho.blog/2021/02/03/the-misery-index-data/)
108
+ - [Google Spreadsheet](https://docs.google.com/spreadsheets/d/151WjFwDdhIURf48subj6SDOdra0XVIEo0xulnBMMfRo/edit#gid=1169151367)
109
+
110
+ ## Usage Examples
111
+
112
+ ### Basic Loading and Exploration
113
+
114
+ ```python
115
+ from datasets import load_dataset
116
+ import pandas as pd
117
+
118
+ # Load the dataset
119
+ dataset = load_dataset("path/to/misery-index")
120
+
121
+ # Convert to pandas for analysis
122
+ df = dataset["train"].to_pandas()
123
+
124
+ # Basic statistics
125
+ print(f"Dataset size: {len(df)}")
126
+ print(f"Average misery score: {df['Score'].mean():.2f}")
127
+ print(f"Score range: {df['Score'].min()}-{df['Score'].max()}")
128
+
129
+ # Sample scenarios by misery level
130
+ print("\nLow misery scenarios:")
131
+ print(df[df['Score'] < 30]['Misery'].head())
132
+
133
+ print("\nHigh misery scenarios:")
134
+ print(df[df['Score'] > 80]['Misery'].head())
135
+ ```
136
+
137
+ ### Regression Task
138
+
139
+ ```python
140
+ from sklearn.model_selection import train_test_split
141
+ from sklearn.feature_extraction.text import TfidfVectorizer
142
+ from sklearn.linear_model import LinearRegression
143
+ from sklearn.metrics import mean_squared_error
144
+
145
+ # Prepare features and targets
146
+ X = df['Misery'].values
147
+ y = df['Score'].values
148
+
149
+ # Split the data
150
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
151
+
152
+ # Vectorize text
153
+ vectorizer = TfidfVectorizer(max_features=1000, stop_words='english')
154
+ X_train_vec = vectorizer.fit_transform(X_train)
155
+ X_test_vec = vectorizer.transform(X_test)
156
+
157
+ # Train model
158
+ model = LinearRegression()
159
+ model.fit(X_train_vec, y_train)
160
+
161
+ # Predict and evaluate
162
+ y_pred = model.predict(X_test_vec)
163
+ mse = mean_squared_error(y_test, y_pred)
164
+ print(f"Mean Squared Error: {mse:.2f}")
165
+ ```
166
+
167
+ ### Classification Task (Binned Misery Levels)
168
+
169
+ ```python
170
+ import numpy as np
171
+ from sklearn.ensemble import RandomForestClassifier
172
+
173
+ # Create misery level bins
174
+ def bin_misery(score):
175
+ if score < 33:
176
+ return "Low"
177
+ elif score < 67:
178
+ return "Medium"
179
+ else:
180
+ return "High"
181
+
182
+ df['misery_level'] = df['Score'].apply(bin_misery)
183
+
184
+ # Classification pipeline
185
+ X = df['Misery'].values
186
+ y = df['misery_level'].values
187
+
188
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
189
+ X_train_vec = vectorizer.fit_transform(X_train)
190
+ X_test_vec = vectorizer.transform(X_test)
191
+
192
+ clf = RandomForestClassifier(n_estimators=100, random_state=42)
193
+ clf.fit(X_train_vec, y_train)
194
+
195
+ accuracy = clf.score(X_test_vec, y_test)
196
+ print(f"Classification Accuracy: {accuracy:.2f}")
197
+ ```
198
+
199
+ ## Applications
200
+
201
+ This dataset is valuable for:
202
+
203
+ 1. **Emotion Recognition**: Developing models to predict emotional responses to textual scenarios
204
+ 2. **Psychological Research**: Understanding factors that contribute to human distress
205
+ 3. **Content Moderation**: Identifying potentially distressing content
206
+ 4. **Mental Health Applications**: Building tools for emotional support and intervention
207
+ 5. **Game Design**: Creating balanced difficulty curves in narrative games
208
+ 6. **Educational Tools**: Teaching empathy and emotional intelligence
209
+
210
+ ## Ethical Considerations
211
+
212
+ - **Content Warning**: Dataset contains descriptions of distressing scenarios including accidents, medical emergencies, and personal tragedies
213
+ - **Subjectivity**: Misery scores reflect subjective human judgments and may vary across cultures and individuals
214
+ - **Bias**: Original data sources may contain demographic or cultural biases
215
+ - **Use Responsibly**: Should not be used to cause distress or for malicious purposes
216
+
217
+ ## Limitations
218
+
219
+ 1. **Cultural Bias**: Ratings may reflect Western cultural perspectives on distress
220
+ 2. **Temporal Bias**: Scenarios reflect contemporary (2010s-2020s) life situations
221
+ 3. **Subjectivity**: Individual misery perceptions may vary significantly
222
+ 4. **Limited Scope**: May not cover all possible distressing scenarios
223
+ 5. **Language**: English-only content limits cross-cultural applicability
224
+
225
+ ## Citation
226
+
227
+ If you use this dataset in your research, please cite:
228
+
229
+ ```bibtex
230
+ @dataset{misery_index_2024,
231
+ title={Misery Index Dataset: Textual Scenarios with Emotional Distress Ratings},
232
+ author={[Author Names]},
233
+ year={2024},
234
+ url={https://huggingface.co/datasets/path/to/misery-index},
235
+ note={Dataset of 516 scenarios with misery ratings from 0-100}
236
+ }
237
+ ```
238
+
239
+ ## License
240
+
241
+ This dataset is released under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
242
+
243
+ ## Dataset Card Contact
244
+
245
+ For questions or issues regarding this dataset, please [open an issue](https://huggingface.co/datasets/path/to/misery-index/discussions) or contact the dataset maintainers.