Datasets:

Languages:
English
ArXiv:
cyk1337 commited on
Commit
d1fcbf7
·
verified ·
1 Parent(s): a3df5ab

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -12
README.md CHANGED
@@ -1,27 +1,32 @@
1
  ---
2
  language:
3
  - en
 
 
 
 
4
  ---
5
 
 
 
6
  # Dataset Card for rendered_GLUE
7
 
8
  <!-- Provide a quick summary of the dataset. -->
 
9
 
10
- ## Dataset Summary
11
- This dataset is the rendered version of GLUE for fine-tuning pixel-based GPT models introduced by [paper](https://arxiv.org/pdf/2404.10710) and you can see [github](https://github.com/ernie-research/pixelgpt) for more details on how to use.
12
-
13
- ## Supported Tasks and Leaderboards
14
 
15
- ## Dataset Structure
16
 
17
- ## Data Instances
18
 
19
- # Citation Information
20
  ```
21
- @article{chai2024dual,
22
- title={Dual Modalities of Text: Visual and Textual Generative Pre-training},
23
- author={Chai, Yekun and Liu, Qingyi and Xiao, Jingwu and Wang, Shuohuan and Sun, Yu and Wu, Hua},
24
- journal={arXiv preprint arXiv:2404.10710},
25
- year={2024}
 
 
 
26
  }
27
  ```
 
 
1
  ---
2
  language:
3
  - en
4
+ - zh
5
+ - fr
6
+ - ja
7
+ - ar
8
  ---
9
 
10
+ <a href="https://2024.emnlp.org/" target="_blank"> <img alt="EMNLP 2024" src="https://img.shields.io/badge/Proceedings-EMNLP2024-red" /> </a>
11
+
12
  # Dataset Card for rendered_GLUE
13
 
14
  <!-- Provide a quick summary of the dataset. -->
15
+ This repository contains the rendered GLUE dataset evaluated in the paper [Autoregressive Pre-Training on Pixels and Texts (EMNLP 2024)](https://arxiv.org/pdf/2404.10710). For detailed instructions on how to use the model, please visit our [GitHub page](https://github.com/ernie-research/pixelgpt/).
16
 
 
 
 
 
17
 
 
18
 
 
19
 
20
+ ## Citation
21
  ```
22
+ @misc{chai2024autoregressivepretrainingpixelstexts,
23
+ title = {Autoregressive Pre-Training on Pixels and Texts},
24
+ author = {Chai, Yekun and Liu, Qingyi and Xiao, Jingwu and Wang, Shuohuan and Sun, Yu and Wu, Hua},
25
+ year = {2024},
26
+ eprint = {2404.10710},
27
+ archiveprefix = {arXiv},
28
+ primaryclass = {cs.CL},
29
+ url = {https://arxiv.org/abs/2404.10710},
30
  }
31
  ```
32
+