import os from .base import BaseModel from ..smp import * from ..dataset import DATASET_TYPE from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig import torch import json os.environ["TOKENIZERS_PARALLELISM"] = "false" def load_model_tokenizer(checkpoint_path): tokenizer = AutoTokenizer.from_pretrained( checkpoint_path, trust_remote_code=True, ) device_map = 'auto' model = AutoModelForCausalLM.from_pretrained( checkpoint_path, device_map=device_map, trust_remote_code=True, torch_dtype=torch.bfloat16, ) return model, tokenizer class Baichuan(BaseModel): INSTALL_REQ = False INTERLEAVE = False def __init__(self, sft=True, model_path=None): assert model_path is not None self.device = "cuda" self.model_path = model_path self.model, self.tokenizer = load_model_tokenizer(model_path) self.model.bind_processor(self.tokenizer, training=False) torch.cuda.empty_cache() self.use_reserve_qa_prompt = sft self.reserve_qa_start_prompt = "" self.reserve_qa_end_prompt = "" self.task_prompt="" self.options_system_prompt = ('Carefully read the following question and select the letter corresponding ' 'to the correct answer. Highlight the applicable choices without giving ' 'explanations. ') self.wo_options_system_prompt = 'Carefully read the following question Answer the question directly. ' self.detail_system_prompt = 'Answer this question in detail and step by step. ' self.vqa_prompt = 'Answer the question using a single word or phrase. ' def generate_inner(self, message, dataset=None): image_str, question = '', '' for s in message: if s['type'] == 'image': if len(s["value"].split(".")[-1]) > 2: image_dict = {"local": s["value"]} else: image_dict = {"base64": s["value"]} image_str += f"{json.dumps(image_dict)}\n" elif s['type'] == 'text': question += s['value'] # sft version: ... if self.use_reserve_qa_prompt: prompt = "{}{}{}{}{}".format(self.reserve_qa_start_prompt, image_str, question, self.task_prompt, self.reserve_qa_end_prompt) else: prompt = "{}{}{}".format(image_str, question, self.task_prompt) print("****************************** prompt ******************************") print(prompt) print("********************************************************************") with torch.inference_mode(): ret = self.model.processor(prompt) input_ids = ret.input_ids try: ret = self.model.generate( inputs=torch.LongTensor([input_ids]).cuda(), images=[torch.tensor(img, dtype=torch.float32).cuda() for img in images] if ret.images is not None else None, patch_nums=ret.patch_nums, images_grid=ret.images_grid, max_new_tokens=1024, do_sample=False, top_k=5, top_p=0.85, temperature=0, num_return_sequences=1, repetition_penalty=1.05, use_cache=False ) ret = self.tokenizer.batch_decode(ret[:, torch.LongTensor([input_ids]).to(self.device).shape[1]:], skip_special_tokens=True)[0].strip() except Exception as e: print(e) ret = "" response = ret print("=========================================== response ===========================================") print(f"\033[32m{response}\033[0m") print("================================================================================================") return response def use_custom_prompt(self, dataset): if dataset is not None and listinstr(['M3GIA'], dataset): return False if listinstr(['MCQ', 'VQA'], DATASET_TYPE(dataset)): return True elif dataset is not None and listinstr(['HallusionBench'], dataset): return True return False def build_prompt(self, line, dataset=None): if isinstance(line, int): line = self.data.iloc[line] tgt_path = self.dump_image(line, dataset) system_prompt = '' question = line['question'] if DATASET_TYPE(dataset) == 'MCQ': options = { cand: line[cand] for cand in string.ascii_uppercase if cand in line and not pd.isna(line[cand]) } options_prompt = 'Options:\n' for key, item in options.items(): options_prompt += f'{key}. {item}\n' hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None prompt = '' if hint is not None: prompt += f'Hint: {hint}\n' prompt += f'Question: {question}\n' if len(options): prompt += options_prompt if 'MMBench' in dataset: prompt += 'Please select the correct answer from the options above. \n' else: system_prompt = self.options_system_prompt + '\nPlease just indicate your choice.' else: system_prompt = self.wo_options_system_prompt if 'MMMU' in dataset: # Corner Case prompt = system_prompt + '\n' + prompt system_prompt = '' elif dataset is not None and listinstr(['HallusionBench'], dataset): question = line['question'] + ' Yes or No?' prompt = question elif dataset is not None and listinstr(['MME'], dataset): question = line['question'] + ' Yes or No?' prompt = question elif dataset is not None and listinstr(['OCRBench'], dataset): system_prompt = self.vqa_prompt question = line['question'] prompt = question elif DATASET_TYPE(dataset) == 'VQA': if listinstr(['LLaVABench', 'MMLongBench_DOC'], dataset): system_prompt = '' prompt = question elif listinstr(['MMVet'], dataset): system_prompt = self.detail_system_prompt prompt = question elif listinstr(['ChartQA'], dataset): system_prompt = 'Please answer the question using a single word. ' prompt = question else: system_prompt = self.vqa_prompt prompt = question msgs = [] if system_prompt: msgs.append(dict(type='text', value=system_prompt)) if isinstance(tgt_path, list): msgs.extend([dict(type='image', value=p) for p in tgt_path]) else: msgs = [dict(type='image', value=tgt_path)] msgs.append(dict(type='text', value=prompt)) return msgs