#!/usr/bin/env python3 import safetensors.torch, torch # any tensor library would work def safe_open(filename, framework): if filename.endswith('.json'): class IndexFile: def __init__(self, filename, framework): import json with open(filename) as fh: index = json.load(fh) files = { file: safetensors.safe_open(file, framework=framework) for file in index['weight_map'].values() } self.weight_map = {k:files[v] for k,v in index['weight_map'].items()} def get_tensor(self, name): return self.weight_map[name].get_tensor(name) def get_slice(self, name): return self.weight_map[name].get_slice(name) def keys(self): return self.weight_map.keys() return IndexFile(filename, framework=framework) else: return safetensors.safe_open(filename, framework=framework) def compare(*fns): global files, mismatching_keys, avgs, dists, errs files = [safe_open(files, framework='pt') for files in fns] assert set(files[0].keys()) == set(files[1].keys()) print('dtypes ...') dtypes = {k: [safetensors.torch._TYPES[file.get_slice(k).get_dtype()] for file in files] for k in files[0].keys()} dtypes = {k: [min(dts, key=lambda dt: dt.itemsize),max(dts, key=lambda dt: dt.itemsize)] for k, dts in dtypes.items()} mismatching_dtypes = [k for k, dts in dtypes.items() if dts[0] is not dts[1]] cmp_dtypes = {k: torch.int8 if dts[0] is torch.bool else dts[0] for k, dts in dtypes.items()} print('midpoints ...') avgs = {k:((files[0].get_tensor(k) + files[1].get_tensor(k))/2).to(dtypes[k][0]) for k in files[0].keys()} print('dists ...') dists = {k:(files[0].get_tensor(k).to(cmp_dtypes[k]) - files[1].get_tensor(k).to(cmp_dtypes[k])).abs() for k in files[0].keys()} print('keys ...') mismatching_keys = [k for k, d in dists.items() if (d!=0).any()] print(f'{len(mismatching_keys)/len(files[0].keys())*100:.2f}% keys mismatch') print(f'{len(mismatching_dtypes)/len(files[0].keys())*100:.2f}% dtypes mismatch') #errs = {k:(dists[k] / avgs[k]).nan_to_num() for k in files[0].keys()} #print('greatest scalar error:', max([e.max().item() for e in errs.values()])*100, '%') #print('cumulative scalar error:', sum([e.sum().item() for e in errs.values()])*100, '%') #print('total error:', (sum([d.sum() for d in dists.values()]) / sum([a.sum() for a in avgs.values()])).item()*100, '%') #print('greatest scalar dist:'` embed_name = [x for x in ['model.embed_tokens'] if x + '.output' in dtypes][0] head_name = [x for x in ['lm_head'] if x + '.output' in dtypes][0] print('input embed dist:', dists[embed_name+'.output'].sum().item()) #print('input embed error sum:', errs[embed_name+'.output'].sum()) print('output head dist:', dists[head_name+'.output'].sum().item()) #print('output head error sum:', dists[head_name+'.output'].sum()) for idx in range(2): head_tokens = files[idx].get_tensor(head_name+'.output')[0].softmax(dim=-1).sort(dim=-1,descending=True) print('file',idx,'tokens: ', end='') for range_idx, range_ in enumerate([range(3), range(-3,0)]): if range_idx > 0: print('.. ', end='') for idx in range_: for token in range(head_tokens.values.shape[-2]): if range_idx == 0: print(f'{head_tokens.indices[token][idx]}({head_tokens.values[token][idx]*100:.3f}%) ',end='') else: # the % format changes from f to e to show smaller values print(f'{head_tokens.indices[token][idx]}({head_tokens.values[token][idx]*100:.3e}%) ',end='') print() if __name__ == '__main__': import sys assert len(sys.argv[1:]) == 2 compare(*sys.argv[1:])