#!/usr/bin/env python3 import os, sys STORE_WEIGHTS = False FAKE_H100 = False TORCH_DTYPE = 'float64' USE_GPU = False DEVICE_MAP = 'auto' model_id, revision = sys.argv[1:] user, model = model_id.split('/') prompt = 'Once upon a time,' fn = f'{user}_{model}_{revision}.{"logits-and-weights" if STORE_WEIGHTS else "logits"}.safetensors' import torch, numpy as np, random torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False torch.backends.cudnn.allow_tf32 = False torch.backends.cudnn.benchmark = False torch.use_deterministic_algorithms(True) os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:2' os.environ['CUDA_LAUNCH_BLOCKING'] = '1' torch.manual_seed(0) random.seed(0) np.random.seed(0) if FAKE_H100: torch.cuda.is_available = lambda: True torch.cuda.get_device_capability = lambda: [9,0] import accelerate, safetensors.torch, transformers, tqdm from _safetensors import WritingSafeTensors config = transformers.AutoConfig.from_pretrained(model_id, revision=revision, trust_remote_code=True) tokenizer = transformers.AutoTokenizer.from_pretrained(model_id, revision=revision, trust_remote_code=True) Model = transformers.AutoModelForCausalLM if config.model_type == 'deepseek_v3': #Model = transformers.DeepseekV3ForCausalLM pass max_memory = accelerate.utils.get_max_memory() if not USE_GPU: max_memory = {'cpu': max_memory['cpu']} max_memory['cpu'] //= 3 model_kwparams = dict(pretrained_model_name_or_path=model_id, revision=revision, trust_remote_code=True, torch_dtype=getattr(torch, TORCH_DTYPE, TORCH_DTYPE), use_safetensors=True, low_cpu_mem_usage=True, device_map=DEVICE_MAP, max_memory=max_memory, offload_state_dict=True, offload_buffers=True) model = Model.from_pretrained(**model_kwparams) if config.model_type == 'deepseek_v3': model._supports_cache_class = False pipe = transformers.pipeline('text-generation', model=model, config=config, tokenizer=tokenizer) SafeTensors = WritingSafeTensors( fn, prompt = prompt, store_weights = STORE_WEIGHTS, use_gpu = USE_GPU, **model_kwparams, **{ f'{hw}:{idx}': str(getattr(torch, hw).get_device_properties(idx)) for hw in ['npu','mlu','musa','xpu','cuda'] if hasattr(torch, hw) for idx in range(getattr(torch,hw).device_count()) } ) IDX = 0 # IDX is unused module_names = {mod:name for name, mod in pipe.model.named_modules()} tensors = {} def hook(module, inputs, outputs): global IDX name = module_names[module] HAS_HF_HOOK = hasattr(module, '_hf_hook') if HAS_HF_HOOK: inputs = module._hf_hook.pre_forward(module, *inputs) for idx, input in enumerate(inputs): if isinstance(input, torch.Tensor): SafeTensors.add(f'{name}.input.{idx}', input); if STORE_WEIGHTS and not list(module.children()): for wtname, wt in list(module.named_parameters()) + list(module.named_buffers()): SafeTensors.add(f'{name}.{wtname}', wt) if HAS_HF_HOOK: outputs = module._hf_hook.post_forward(module, outputs) if isinstance(outputs, torch.Tensor): SafeTensors.add(f'{name}.output', outputs); else: for idx, output in enumerate(outputs): if isinstance(output, torch.Tensor): SafeTensors.add(f'{name}.output.{idx}', output); IDX += 1 for module in pipe.model.modules(): module.register_forward_hook(hook) with SafeTensors: output = pipe(prompt, do_sample=False, max_new_tokens=1, temperature=1.0, top_p=1.0) print() print(output)