#!/usr/bin/env python3 import os, sys import accelerate, safetensors.torch, transformers, torch, tqdm model_id, revision = sys.argv[1:] user, model = model_id.split('/') fn = f'{user}_{model}_{revision}.logits.safetensors' config = transformers.AutoConfig.from_pretrained(model_id, revision=revision, trust_remote_code=True) tokenizer = transformers.AutoTokenizer.from_pretrained(model_id, revision=revision, trust_remote_code=True) Model = transformers.AutoModelForCausalLM if config.model_type == 'deepseek_v3': #Model = transformers.DeepseekV3ForCausalLM pass model = Model.from_pretrained(model_id, revision=revision, trust_remote_code=True, torch_dtype='auto', device_map='cpu') if config.model_type == 'deepseek_v3': model._supports_cache_class = False model = accelerate.cpu_offload(model, 'cuda:0', offload_buffers=True) pipe = transformers.pipeline('text-generation', model=model, config=config, tokenizer=tokenizer) tensors = {} def store_tensor(descr, tensor): tensors[descr] = tensor.cpu().detach().contiguous() IDX = 0 module_names = {mod:name for name, mod in pipe.model.named_modules()} tensors = {} def hook(module, inputs, outputs): global IDX name = module_names[module] for idx, input in enumerate(inputs): if isinstance(input, torch.Tensor): store_tensor(f'{name}.input.{idx}', input); if isinstance(outputs, torch.Tensor): store_tensor(f'{name}.output', outputs); else: for idx, output in enumerate(outputs): if isinstance(output, torch.Tensor): store_tensor(f'{name}.output.{idx}', output); IDX += 1 for module in pipe.model.modules(): module.register_forward_hook(hook) prompt = 'Once upon a time,' output = pipe(prompt, do_sample=False, max_new_tokens=1, temperature=1.0, top_p=1.0) safetensors.torch.save_file(tensors, fn, dict(prompt=prompt)) print() print(output)