#!/usr/bin/env python3 import contextlib, os, sys STORE_WEIGHTS = False DEDUPLICATE_SAFETENSORS = True SAVE_ON_CRASH = False FAKE_H100 = False # notes transformers 4.49.0: # - a model with unexpected weights must not have 'disk' anywhere in device_map # - a model with dtypes unsupported by numpy must have offload_state_dict = False # - dtype=float64 can overflow, no dtype specified at transformers/modeling_attn_mask_utils.py(158)_make_causal_mask() defaulted to float32 TORCH_DTYPE = 'float64' USE_GPU = False DEVICE_MAP = 'auto' model_id, revision = sys.argv[1:] user, model = model_id.split('/') prompt = 'Once upon a time,' fn = f'{user}_{model}_{revision}.{"logits-and-weights" if STORE_WEIGHTS else "logits"}.{"DEDUPLICATED.safetensors" if DEDUPLICATE_SAFETENSORS else "safetensors"}' ## Increase determinism, from torch docs import torch, numpy as np, random torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False torch.backends.cudnn.allow_tf32 = False torch.backends.cudnn.benchmark = False torch.use_deterministic_algorithms(True) os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:2' os.environ['CUDA_LAUNCH_BLOCKING'] = '1' torch.manual_seed(0) random.seed(0) np.random.seed(0) if FAKE_H100: torch.cuda.is_available = lambda: True torch.cuda.get_device_capability = lambda *params: [9,0] import accelerate, safetensors.torch, transformers, tqdm from _safetensors import WritingSafeTensors ## Show progress for slow internal functions (model layer enumerations) import builtins builtin_range = range def range_progress(*params): return tqdm.tqdm(builtin_range(*params), leave=False, desc=range_progress.desc + ' range('+','.join([repr(p)for p in params])+')') @contextlib.contextmanager def range_progress_description(str): range_progress.desc = str try: yield finally: range_progress.desc = '' range_progress.desc = '' builtins.range = range_progress tqdm.std.range = builtin_range import sre_parse; sre_parse.range = builtin_range config = transformers.AutoConfig.from_pretrained(model_id, revision=revision, trust_remote_code=True) tokenizer = transformers.AutoTokenizer.from_pretrained(model_id, revision=revision, trust_remote_code=True) Model = transformers.AutoModelForCausalLM if config.model_type == 'deepseek_v3': #Model = transformers.DeepseekV3ForCausalLM pass max_memory = accelerate.utils.get_max_memory() if not USE_GPU: max_memory = {'cpu': max_memory['cpu']} #max_memory['cpu'] //= 3 model_kwparams = dict(pretrained_model_name_or_path=model_id, revision=revision, trust_remote_code=True, torch_dtype=getattr(torch, TORCH_DTYPE, TORCH_DTYPE), use_safetensors=True, low_cpu_mem_usage=True, device_map=DEVICE_MAP, max_memory=max_memory, offload_state_dict=True, offload_buffers=True) with range_progress_description('constructing model'): model = Model.from_pretrained(**model_kwparams) if config.model_type == 'deepseek_v3': model._supports_cache_class = False with range_progress_description('constructing pipeline'): pipe = transformers.pipeline('text-generation', model=model, config=config, tokenizer=tokenizer) SafeTensors = WritingSafeTensors( fn, deduplicate = DEDUPLICATE_SAFETENSORS, save_on_crash = SAVE_ON_CRASH, prompt = prompt, store_weights = STORE_WEIGHTS, use_gpu = USE_GPU, **model_kwparams, **{ f'{hw}:{idx}': str(getattr(torch, hw).get_device_properties(idx)) for hw in ['npu','mlu','musa','xpu','cuda'] if hasattr(torch, hw) for idx in range(getattr(torch,hw).device_count()) } ) IDX = 0 # IDX is unused module_prefixes = {mod : name + '.' if name else '' for name, mod in pipe.model.named_modules()} tensors = {} def add_if_tensor(name, tensor): if not isinstance(tensor, torch.Tensor): try: tensor = torch.tensor(tensor) except: try: for idx, subtensor in enumerate(tensor): add_if_tensor(f'{name}.{idx}', subtensor) except: pass return SafeTensors.add(name, tensor); def hook(module, inputs, kwinputs, outputs): global IDX prefix = module_prefixes[module] HAS_HF_HOOK = hasattr(module, '_hf_hook') if HAS_HF_HOOK: inputs, kwinputs = module._hf_hook.pre_forward(module, *inputs, **kwinputs) for idx, input in enumerate(inputs): add_if_tensor(f'{prefix}input.{idx}', input); for key, input in kwinputs.items(): add_if_tensor(f'{prefix}input.{key}', input); if STORE_WEIGHTS: for wtname, wt in module.named_buffers(recurse=False): add_if_tensor(f'{prefix}{wtname}', wt) for wtname, wt in module.named_parameters(recurse=False): add_if_tensor(f'{prefix}{wtname}', wt) if HAS_HF_HOOK: outputs = module._hf_hook.post_forward(module, outputs) if isinstance(outputs, torch.Tensor): add_if_tensor(f'{prefix}output', outputs); elif isinstance(outputs, dict): for key, output in outputs.items(): add_if_tensor(f'{prefix}output.{key}', output); else: for idx, output in enumerate(outputs): add_if_tensor(f'{prefix}output.{idx}', output); IDX += 1 for module in pipe.model.modules(): module.register_forward_hook(hook, with_kwargs=True) with SafeTensors: output = pipe(prompt, do_sample=False, max_new_tokens=1, temperature=1.0, top_p=1.0) print() print(output)