user commited on
Commit
62b9ba4
·
1 Parent(s): 8d9f1cb

deepseek-ai_DeepSeek-V3_86518964eaef84e3fdd98e9861759a1384f9c29d

Browse files
deepseek-ai_DeepSeek-V3_86518964eaef84e3fdd98e9861759a1384f9c29d.logits.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1993feb3897078d1269140657755c892fdf86e68cbc040c4997a4b73b78524f8
3
+ size 437566024
run_test.py CHANGED
@@ -1,43 +1,51 @@
1
  #!/usr/bin/env python3
2
  import os, sys
3
- import transformers, torch, tqdm
4
 
5
  model_id, revision = sys.argv[1:]
6
  user, model = model_id.split('/')
7
 
8
- dir = f'{user}_{model}_{revision}'
9
- os.makedirs(dir, exist_ok=True)
10
- os.chdir(dir)
11
 
12
- pipe = transformers.pipeline('text-generation', model_id, revision=revision, trust_remote_code=True, device_map='auto', torch_dtype='auto')
 
 
 
 
 
 
 
 
 
13
 
 
 
 
14
  def store_tensor(descr, tensor):
15
- shapestr = 'x'.join([str(i) for i in tensor.shape])
16
- dtypestr = str(tensor.dtype).rsplit('.',1)[-1]
17
- fn = f'{descr}.{shapestr}.{dtypestr}.mmap'
18
- mmap = torch.from_file(fn, shared=True, dtype=tensor.dtype, size=tensor.numel())
19
- mmap[:] = tensor.flatten()
20
- print(fn, end='\r', flush=True)
21
 
22
  IDX = 0
23
  module_names = {mod:name for name, mod in pipe.model.named_modules()}
 
24
  def hook(module, inputs, outputs):
25
  global IDX
26
  name = module_names[module]
27
  for idx, input in enumerate(inputs):
28
  if isinstance(input, torch.Tensor):
29
- store_tensor(f'{IDX:07d}.{name}.input.{idx}', input);
30
  if isinstance(outputs, torch.Tensor):
31
- store_tensor(f'{IDX:07d}.{name}.output', outputs);
32
  else:
33
  for idx, output in enumerate(outputs):
34
  if isinstance(output, torch.Tensor):
35
- store_tensor(f'{IDX:07d}.{name}.output.{idx}', output);
36
  IDX += 1
37
 
38
  for module in pipe.model.modules():
39
  module.register_forward_hook(hook)
40
 
41
- output = pipe('Once upon a time,', do_sample=False, max_new_tokens=1)
 
 
42
  print()
43
  print(output)
 
1
  #!/usr/bin/env python3
2
  import os, sys
3
+ import accelerate, safetensors.torch, transformers, torch, tqdm
4
 
5
  model_id, revision = sys.argv[1:]
6
  user, model = model_id.split('/')
7
 
8
+ fn = f'{user}_{model}_{revision}.logits.safetensors'
 
 
9
 
10
+ config = transformers.AutoConfig.from_pretrained(model_id, revision=revision, trust_remote_code=True)
11
+ tokenizer = transformers.AutoTokenizer.from_pretrained(model_id, revision=revision, trust_remote_code=True)
12
+ Model = transformers.AutoModelForCausalLM
13
+ if config.model_type == 'deepseek_v3':
14
+ #Model = transformers.DeepseekV3ForCausalLM
15
+ pass
16
+ model = Model.from_pretrained(model_id, trust_remote_code=True, torch_dtype='auto', device_map='cpu')
17
+ if config.model_type == 'deepseek_v3':
18
+ model._supports_cache_class = False
19
+ model = accelerate.cpu_offload(model, 'cuda:0', offload_buffers=True)
20
 
21
+ pipe = transformers.pipeline('text-generation', model=model, config=config, tokenizer=tokenizer)
22
+
23
+ tensors = {}
24
  def store_tensor(descr, tensor):
25
+ tensors[descr] = tensor.cpu().detach().contiguous()
 
 
 
 
 
26
 
27
  IDX = 0
28
  module_names = {mod:name for name, mod in pipe.model.named_modules()}
29
+ tensors = {}
30
  def hook(module, inputs, outputs):
31
  global IDX
32
  name = module_names[module]
33
  for idx, input in enumerate(inputs):
34
  if isinstance(input, torch.Tensor):
35
+ store_tensor(f'{name}.input.{idx}', input);
36
  if isinstance(outputs, torch.Tensor):
37
+ store_tensor(f'{name}.output', outputs);
38
  else:
39
  for idx, output in enumerate(outputs):
40
  if isinstance(output, torch.Tensor):
41
+ store_tensor(f'{name}.output.{idx}', output);
42
  IDX += 1
43
 
44
  for module in pipe.model.modules():
45
  module.register_forward_hook(hook)
46
 
47
+ prompt = 'Once upon a time,'
48
+ output = pipe(prompt, do_sample=False, max_new_tokens=1, temperature=1.0, top_p=1.0)
49
+ safetensors.torch.save_file(tensors, fn, dict(model_id=model_id, revision=revision, prompt=prompt))
50
  print()
51
  print(output)