Your Name
commited on
Commit
·
0b22441
1
Parent(s):
e7df8ec
untested run_test.py code, committing to try on another system
Browse files- .gitattributes +1 -0
- _safetensors.py +70 -0
- compare_safetensors.py +6 -1
- run_test.py +42 -13
.gitattributes
CHANGED
@@ -58,3 +58,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
58 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
59 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
60 |
*.logits.safetensors filter=lfs diff=lfs merge=lfs -text
|
|
|
|
58 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
59 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
60 |
*.logits.safetensors filter=lfs diff=lfs merge=lfs -text
|
61 |
+
*.logits-and-weights.safetensors filter=lfs diff=lfs merge=lfs -text
|
_safetensors.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ran into memory issues with safetensors. this code moves by them.
|
2 |
+
import contextlib, os
|
3 |
+
|
4 |
+
class WritingSafeTensors:
|
5 |
+
def __init__(self, filename, **metadata):
|
6 |
+
self.filename = filename
|
7 |
+
self.fd = os.open(self.filename, os.O_RDWR | os.O_CREAT)
|
8 |
+
self.size = 0
|
9 |
+
self.capacity = 0
|
10 |
+
self.mmapview = None
|
11 |
+
self.header = {'__metadata__': metadata}
|
12 |
+
def _reserve(self, length):
|
13 |
+
if self.size + length > self.capacity:
|
14 |
+
new_capacity = self.size * 2
|
15 |
+
if new_capacity < self.size + length:
|
16 |
+
new_capacity = (((self.size + length)*2 - 1) // mmap.PAGESIZE + 1) * mmap.PAGESIZE
|
17 |
+
os.truncate(self.fn, new_capacity)
|
18 |
+
self.mmapview = memoryview(mmap.mmap(self.fd, new_capacity))
|
19 |
+
self.capacity = new_capacity
|
20 |
+
def add(self, name, tensor):
|
21 |
+
print(name, '...')
|
22 |
+
length = tensor.numel() * tensor.dtype.itemsize
|
23 |
+
self._reserve(length)
|
24 |
+
torch.frombuffer(
|
25 |
+
self.mmapview[self.size:self.size+length],
|
26 |
+
dtype=tensor.dtype, count=tensor.numel,
|
27 |
+
).view(tensor.shape)[:] = tensor
|
28 |
+
end = self.size + length
|
29 |
+
self.header[descr] = {
|
30 |
+
'dtype':
|
31 |
+
str(tensor.dtype).rsplit('.',1)[-1]
|
32 |
+
.replace('float','F')
|
33 |
+
.replace('uint','U')
|
34 |
+
.replace('int','I')
|
35 |
+
.removesuffix('fn')
|
36 |
+
.upper(),
|
37 |
+
'shape':
|
38 |
+
list(tensor.shape),
|
39 |
+
'data_offsets':
|
40 |
+
[self.size, end],
|
41 |
+
}
|
42 |
+
self.size = end
|
43 |
+
def finalize(self):
|
44 |
+
print(self.filename, '...')
|
45 |
+
import pdb; pdb.set_trace()
|
46 |
+
header = json.dumps(self.header).encode()
|
47 |
+
insert = len(header) + 8
|
48 |
+
self._reserve(insert)
|
49 |
+
self.mmapview[insert:insert+self.size] = self.mmapview[:self.size]
|
50 |
+
self.size += insert
|
51 |
+
self[:8] = len(header).to_bytes(8, 'little')
|
52 |
+
self[8:insert] = header
|
53 |
+
del self.header
|
54 |
+
del self.mmapview
|
55 |
+
os.close(self.fd)
|
56 |
+
os.truncate(self.filename, self.size)
|
57 |
+
def delete(self):
|
58 |
+
print('deleting', self.filename, '...')
|
59 |
+
del self.header
|
60 |
+
del self.mmapview
|
61 |
+
os.close(self.fd)
|
62 |
+
os.unlink(self.filename)
|
63 |
+
def __enter__(self):
|
64 |
+
return self
|
65 |
+
def __exit__(self, Exc, exc, tb):
|
66 |
+
if Exc is None:
|
67 |
+
self.finalize()
|
68 |
+
else:
|
69 |
+
self.delete()
|
70 |
+
|
compare_safetensors.py
CHANGED
@@ -11,6 +11,7 @@ def compare(*fns):
|
|
11 |
print('dtypes ...')
|
12 |
dtypes = {k: [files[0].get_slice(k)[0].dtype,files[1].get_slice(k)[0].dtype] for k in files[0].keys()}
|
13 |
dtypes = {k: [min(dts, key=lambda dt: dt.itemsize),max(dts, key=lambda dt: dt.itemsize)] for k, dts in dtypes.items()}
|
|
|
14 |
print('midpoints ...')
|
15 |
avgs = {k:((files[0].get_tensor(k) + files[1].get_tensor(k))/2).to(dtypes[k][0]) for k in files[0].keys()}
|
16 |
print('dists ...')
|
@@ -20,6 +21,7 @@ def compare(*fns):
|
|
20 |
mismatching_keys = [k for k, d in dists.items() if (d!=0).any()]
|
21 |
|
22 |
print(f'{len(mismatching_keys)/len(files[0].keys())*100:.2f}% keys mismatch')
|
|
|
23 |
|
24 |
#errs = {k:(dists[k] / avgs[k]).nan_to_num() for k in files[0].keys()}
|
25 |
|
@@ -45,7 +47,10 @@ def compare(*fns):
|
|
45 |
print('.. ', end='')
|
46 |
for idx in range_:
|
47 |
for token in range(head_tokens.values.shape[-2]):
|
48 |
-
|
|
|
|
|
|
|
49 |
print()
|
50 |
|
51 |
|
|
|
11 |
print('dtypes ...')
|
12 |
dtypes = {k: [files[0].get_slice(k)[0].dtype,files[1].get_slice(k)[0].dtype] for k in files[0].keys()}
|
13 |
dtypes = {k: [min(dts, key=lambda dt: dt.itemsize),max(dts, key=lambda dt: dt.itemsize)] for k, dts in dtypes.items()}
|
14 |
+
mismatching_dtypes = [k for k, dts in dtypes.items() if dts[0] is not dts[1]]
|
15 |
print('midpoints ...')
|
16 |
avgs = {k:((files[0].get_tensor(k) + files[1].get_tensor(k))/2).to(dtypes[k][0]) for k in files[0].keys()}
|
17 |
print('dists ...')
|
|
|
21 |
mismatching_keys = [k for k, d in dists.items() if (d!=0).any()]
|
22 |
|
23 |
print(f'{len(mismatching_keys)/len(files[0].keys())*100:.2f}% keys mismatch')
|
24 |
+
print(f'{len(mismatching_dtypes)/len(files[0].keys())*100:.2f}% dtypes mismatch')
|
25 |
|
26 |
#errs = {k:(dists[k] / avgs[k]).nan_to_num() for k in files[0].keys()}
|
27 |
|
|
|
47 |
print('.. ', end='')
|
48 |
for idx in range_:
|
49 |
for token in range(head_tokens.values.shape[-2]):
|
50 |
+
if range_idx == 0:
|
51 |
+
print(f'{head_tokens.indices[token][idx]}({head_tokens.values[token][idx]*100:.3f}%) ',end='')
|
52 |
+
else: # the % format changes from f to e to show smaller values
|
53 |
+
print(f'{head_tokens.indices[token][idx]}({head_tokens.values[token][idx]*100:.3e}%) ',end='')
|
54 |
print()
|
55 |
|
56 |
|
run_test.py
CHANGED
@@ -1,9 +1,13 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
-
import os, sys
|
3 |
|
4 |
STORE_WEIGHTS = False
|
|
|
|
|
|
|
5 |
model_id, revision = sys.argv[1:]
|
6 |
user, model = model_id.split('/')
|
|
|
7 |
fn = f'{user}_{model}_{revision}.{"logits-and-weights" if STORE_WEIGHTS else "logits"}.safetensors'
|
8 |
|
9 |
import torch, numpy as np, random
|
@@ -17,7 +21,11 @@ os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
|
17 |
torch.manual_seed(0)
|
18 |
random.seed(0)
|
19 |
np.random.seed(0)
|
|
|
|
|
|
|
20 |
import accelerate, safetensors.torch, transformers, tqdm
|
|
|
21 |
|
22 |
config = transformers.AutoConfig.from_pretrained(model_id, revision=revision, trust_remote_code=True)
|
23 |
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id, revision=revision, trust_remote_code=True)
|
@@ -26,18 +34,35 @@ if config.model_type == 'deepseek_v3':
|
|
26 |
#Model = transformers.DeepseekV3ForCausalLM
|
27 |
pass
|
28 |
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
if config.model_type == 'deepseek_v3':
|
33 |
model._supports_cache_class = False
|
34 |
-
#model = accelerate.cpu_offload(model, 'cuda:0', offload_buffers=True)
|
35 |
|
36 |
pipe = transformers.pipeline('text-generation', model=model, config=config, tokenizer=tokenizer)
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
IDX = 0 # IDX is unused
|
43 |
module_names = {mod:name for name, mod in pipe.model.named_modules()}
|
@@ -45,25 +70,29 @@ tensors = {}
|
|
45 |
def hook(module, inputs, outputs):
|
46 |
global IDX
|
47 |
name = module_names[module]
|
|
|
|
|
|
|
48 |
for idx, input in enumerate(inputs):
|
49 |
if isinstance(input, torch.Tensor):
|
50 |
store_tensor(f'{name}.input.{idx}', input);
|
|
|
|
|
|
|
|
|
|
|
51 |
if isinstance(outputs, torch.Tensor):
|
52 |
store_tensor(f'{name}.output', outputs);
|
53 |
else:
|
54 |
for idx, output in enumerate(outputs):
|
55 |
if isinstance(output, torch.Tensor):
|
56 |
store_tensor(f'{name}.output.{idx}', output);
|
57 |
-
if STORE_WEIGHTS and not list(module.children()):
|
58 |
-
for wtname, wt in list(module.named_parameters()) + list(module.named_buffers()):
|
59 |
-
store_tensor(f'{name}.{wtname}', wt)
|
60 |
IDX += 1
|
61 |
|
62 |
for module in pipe.model.modules():
|
63 |
module.register_forward_hook(hook)
|
64 |
|
65 |
-
|
66 |
-
output = pipe(prompt, do_sample=False, max_new_tokens=1, temperature=1.0, top_p=1.0)
|
67 |
-
safetensors.torch.save_file(tensors, fn, dict(prompt=prompt))
|
68 |
print()
|
69 |
print(output)
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
+
import mmap, os, sys
|
3 |
|
4 |
STORE_WEIGHTS = False
|
5 |
+
FAKE_H100 = False
|
6 |
+
TORCH_DTYPE = 'float64'
|
7 |
+
USE_GPU = False
|
8 |
model_id, revision = sys.argv[1:]
|
9 |
user, model = model_id.split('/')
|
10 |
+
prompt = 'Once upon a time,'
|
11 |
fn = f'{user}_{model}_{revision}.{"logits-and-weights" if STORE_WEIGHTS else "logits"}.safetensors'
|
12 |
|
13 |
import torch, numpy as np, random
|
|
|
21 |
torch.manual_seed(0)
|
22 |
random.seed(0)
|
23 |
np.random.seed(0)
|
24 |
+
if FAKE_H100:
|
25 |
+
torch.cuda.is_available = lambda: True
|
26 |
+
torch.cuda.get_device_capability = lambda: [9,0]
|
27 |
import accelerate, safetensors.torch, transformers, tqdm
|
28 |
+
from _safetensors import WritingSafeTensors
|
29 |
|
30 |
config = transformers.AutoConfig.from_pretrained(model_id, revision=revision, trust_remote_code=True)
|
31 |
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id, revision=revision, trust_remote_code=True)
|
|
|
34 |
#Model = transformers.DeepseekV3ForCausalLM
|
35 |
pass
|
36 |
|
37 |
+
max_memory = accelerate.utils.get_max_memory()
|
38 |
+
if not USE_GPU:
|
39 |
+
max_memory = {'cpu': max_memory['cpu']}
|
40 |
+
max_memory['cpu'] //= 3
|
41 |
+
model = Model.from_pretrained(model_id, revision=revision, trust_remote_code=True,
|
42 |
+
torch_dtype=getattr(torch, TORCH_DTYPE, TORCH_DTYPE), use_safetensors=True, low_cpu_mem_usage=True,
|
43 |
+
device_map='auto', max_memory=max_memory, offload_state_dict=True, offload_buffers=True)
|
44 |
|
45 |
if config.model_type == 'deepseek_v3':
|
46 |
model._supports_cache_class = False
|
|
|
47 |
|
48 |
pipe = transformers.pipeline('text-generation', model=model, config=config, tokenizer=tokenizer)
|
49 |
|
50 |
+
SafeTensors = WritingSafeTensors(
|
51 |
+
fn,
|
52 |
+
prompt = prompt,
|
53 |
+
model_id = model_id,
|
54 |
+
revision = revision,
|
55 |
+
weights = STORE_WEIGHTS,
|
56 |
+
torch_dtype = TORCH_DTYPE,
|
57 |
+
gpu = USE_GPU,
|
58 |
+
**{
|
59 |
+
f'{hw}:{idx}':
|
60 |
+
str(getattr(torch, hw).get_device_properties(idx))
|
61 |
+
for hw in ['npu','mlu','musa','xpu','cuda']
|
62 |
+
if hasattr(torch, hw)
|
63 |
+
for idx in range(getattr(torch,hw).device_count())
|
64 |
+
}
|
65 |
+
)
|
66 |
|
67 |
IDX = 0 # IDX is unused
|
68 |
module_names = {mod:name for name, mod in pipe.model.named_modules()}
|
|
|
70 |
def hook(module, inputs, outputs):
|
71 |
global IDX
|
72 |
name = module_names[module]
|
73 |
+
HAS_HF_HOOK = hasattr(module, '_hf_hook')
|
74 |
+
if HAS_HF_HOOK:
|
75 |
+
inputs = module._hf_hook.pre_forward(module, *inputs)
|
76 |
for idx, input in enumerate(inputs):
|
77 |
if isinstance(input, torch.Tensor):
|
78 |
store_tensor(f'{name}.input.{idx}', input);
|
79 |
+
if STORE_WEIGHTS and not list(module.children()):
|
80 |
+
for wtname, wt in list(module.named_parameters()) + list(module.named_buffers()):
|
81 |
+
store_tensor(f'{name}.{wtname}', wt)
|
82 |
+
if HAS_HF_HOOK:
|
83 |
+
outputs = module._hf_hook.post_forward(module, outputs)
|
84 |
if isinstance(outputs, torch.Tensor):
|
85 |
store_tensor(f'{name}.output', outputs);
|
86 |
else:
|
87 |
for idx, output in enumerate(outputs):
|
88 |
if isinstance(output, torch.Tensor):
|
89 |
store_tensor(f'{name}.output.{idx}', output);
|
|
|
|
|
|
|
90 |
IDX += 1
|
91 |
|
92 |
for module in pipe.model.modules():
|
93 |
module.register_forward_hook(hook)
|
94 |
|
95 |
+
with SafeTensors:
|
96 |
+
output = pipe(prompt, do_sample=False, max_new_tokens=1, temperature=1.0, top_p=1.0)
|
|
|
97 |
print()
|
98 |
print(output)
|