llm_logits / run_test.py
3v324v23's picture
added a variable to set device map, placed model kws in another variable and passed as metadata
54fe972
raw
history blame
3.69 kB
#!/usr/bin/env python3
import os, sys
STORE_WEIGHTS = False
FAKE_H100 = False
TORCH_DTYPE = 'float64'
USE_GPU = False
DEVICE_MAP = 'auto'
model_id, revision = sys.argv[1:]
user, model = model_id.split('/')
prompt = 'Once upon a time,'
fn = f'{user}_{model}_{revision}.{"logits-and-weights" if STORE_WEIGHTS else "logits"}.safetensors'
import torch, numpy as np, random
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.benchmark = False
torch.use_deterministic_algorithms(True)
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:2'
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
torch.manual_seed(0)
random.seed(0)
np.random.seed(0)
if FAKE_H100:
torch.cuda.is_available = lambda: True
torch.cuda.get_device_capability = lambda: [9,0]
import accelerate, safetensors.torch, transformers, tqdm
from _safetensors import WritingSafeTensors
config = transformers.AutoConfig.from_pretrained(model_id, revision=revision, trust_remote_code=True)
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id, revision=revision, trust_remote_code=True)
Model = transformers.AutoModelForCausalLM
if config.model_type == 'deepseek_v3':
#Model = transformers.DeepseekV3ForCausalLM
pass
max_memory = accelerate.utils.get_max_memory()
if not USE_GPU:
max_memory = {'cpu': max_memory['cpu']}
max_memory['cpu'] //= 3
model_kwparams = dict(pretrained_model_name_or_path=model_id, revision=revision, trust_remote_code=True,
torch_dtype=getattr(torch, TORCH_DTYPE, TORCH_DTYPE), use_safetensors=True, low_cpu_mem_usage=True,
device_map=DEVICE_MAP, max_memory=max_memory, offload_state_dict=True, offload_buffers=True)
model = Model.from_pretrained(**model_kwparams)
if config.model_type == 'deepseek_v3':
model._supports_cache_class = False
pipe = transformers.pipeline('text-generation', model=model, config=config, tokenizer=tokenizer)
SafeTensors = WritingSafeTensors(
fn,
prompt = prompt,
store_weights = STORE_WEIGHTS,
use_gpu = USE_GPU,
**model_kwparams,
**{
f'{hw}:{idx}':
str(getattr(torch, hw).get_device_properties(idx))
for hw in ['npu','mlu','musa','xpu','cuda']
if hasattr(torch, hw)
for idx in range(getattr(torch,hw).device_count())
}
)
IDX = 0 # IDX is unused
module_names = {mod:name for name, mod in pipe.model.named_modules()}
tensors = {}
def hook(module, inputs, outputs):
global IDX
name = module_names[module]
HAS_HF_HOOK = hasattr(module, '_hf_hook')
if HAS_HF_HOOK:
inputs = module._hf_hook.pre_forward(module, *inputs)
for idx, input in enumerate(inputs):
if isinstance(input, torch.Tensor):
SafeTensors.add(f'{name}.input.{idx}', input);
if STORE_WEIGHTS and not list(module.children()):
for wtname, wt in list(module.named_parameters()) + list(module.named_buffers()):
SafeTensors.add(f'{name}.{wtname}', wt)
if HAS_HF_HOOK:
outputs = module._hf_hook.post_forward(module, outputs)
if isinstance(outputs, torch.Tensor):
SafeTensors.add(f'{name}.output', outputs);
else:
for idx, output in enumerate(outputs):
if isinstance(output, torch.Tensor):
SafeTensors.add(f'{name}.output.{idx}', output);
IDX += 1
for module in pipe.model.modules():
module.register_forward_hook(hook)
with SafeTensors:
output = pipe(prompt, do_sample=False, max_new_tokens=1, temperature=1.0, top_p=1.0)
print()
print(output)