|
|
|
import os, sys |
|
import accelerate, safetensors.torch, transformers, torch, tqdm |
|
|
|
model_id, revision = sys.argv[1:] |
|
user, model = model_id.split('/') |
|
|
|
fn = f'{user}_{model}_{revision}.logits.safetensors' |
|
|
|
config = transformers.AutoConfig.from_pretrained(model_id, revision=revision, trust_remote_code=True) |
|
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id, revision=revision, trust_remote_code=True) |
|
Model = transformers.AutoModelForCausalLM |
|
if config.model_type == 'deepseek_v3': |
|
|
|
pass |
|
model = Model.from_pretrained(model_id, revision=revision, trust_remote_code=True, torch_dtype='auto', device_map='cpu') |
|
if config.model_type == 'deepseek_v3': |
|
model._supports_cache_class = False |
|
model = accelerate.cpu_offload(model, 'cuda:0', offload_buffers=True) |
|
|
|
pipe = transformers.pipeline('text-generation', model=model, config=config, tokenizer=tokenizer) |
|
|
|
tensors = {} |
|
def store_tensor(descr, tensor): |
|
tensors[descr] = tensor.cpu().detach().contiguous() |
|
|
|
IDX = 0 |
|
module_names = {mod:name for name, mod in pipe.model.named_modules()} |
|
tensors = {} |
|
def hook(module, inputs, outputs): |
|
global IDX |
|
name = module_names[module] |
|
for idx, input in enumerate(inputs): |
|
if isinstance(input, torch.Tensor): |
|
store_tensor(f'{name}.input.{idx}', input); |
|
if isinstance(outputs, torch.Tensor): |
|
store_tensor(f'{name}.output', outputs); |
|
else: |
|
for idx, output in enumerate(outputs): |
|
if isinstance(output, torch.Tensor): |
|
store_tensor(f'{name}.output.{idx}', output); |
|
IDX += 1 |
|
|
|
for module in pipe.model.modules(): |
|
module.register_forward_hook(hook) |
|
|
|
prompt = 'Once upon a time,' |
|
output = pipe(prompt, do_sample=False, max_new_tokens=1, temperature=1.0, top_p=1.0) |
|
safetensors.torch.save_file(tensors, fn, dict(prompt=prompt)) |
|
print() |
|
print(output) |
|
|