Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -62,32 +62,6 @@ dataset_info:
|
|
62 |
num_examples: 2
|
63 |
download_size: 531145
|
64 |
dataset_size: 1254322
|
65 |
-
- config_name: ETTh
|
66 |
-
features:
|
67 |
-
- name: id
|
68 |
-
dtype: string
|
69 |
-
- name: timestamp
|
70 |
-
sequence: timestamp[ns]
|
71 |
-
- name: HUFL
|
72 |
-
sequence: float64
|
73 |
-
- name: HULL
|
74 |
-
sequence: float64
|
75 |
-
- name: MUFL
|
76 |
-
sequence: float64
|
77 |
-
- name: MULL
|
78 |
-
sequence: float64
|
79 |
-
- name: LUFL
|
80 |
-
sequence: float64
|
81 |
-
- name: LULL
|
82 |
-
sequence: float64
|
83 |
-
- name: OT
|
84 |
-
sequence: float64
|
85 |
-
splits:
|
86 |
-
- name: train
|
87 |
-
num_bytes: 2229842
|
88 |
-
num_examples: 2
|
89 |
-
download_size: 569100
|
90 |
-
dataset_size: 2229842
|
91 |
- config_name: LOOP_SEATTLE_1D
|
92 |
features:
|
93 |
- name: target
|
@@ -4611,10 +4585,6 @@ configs:
|
|
4611 |
data_files:
|
4612 |
- split: train
|
4613 |
path: ETT/1H/train-*
|
4614 |
-
- config_name: ETTh
|
4615 |
-
data_files:
|
4616 |
-
- split: train
|
4617 |
-
path: ETTh/train-*
|
4618 |
- config_name: LOOP_SEATTLE_1D
|
4619 |
data_files:
|
4620 |
- split: train
|
@@ -5012,10 +4982,10 @@ Datasets can be loaded using the [🤗 `datasets`](https://huggingface.co/docs/d
|
|
5012 |
```python
|
5013 |
import datasets
|
5014 |
|
5015 |
-
ds = datasets.load_dataset("autogluon/fev_datasets", "
|
5016 |
ds.set_format("numpy") # sequences returned as numpy arrays
|
5017 |
```
|
5018 |
-
Example entry in the `
|
5019 |
```python
|
5020 |
>>> ds[0]
|
5021 |
{'id': 'DE',
|
@@ -5037,27 +5007,103 @@ For more details about the dataset format and usage, check out the [`fev` docume
|
|
5037 |
**Disclaimer:** These datasets have been converted into a unified format from external sources. Please refer to the original sources for licensing and citation terms. We do not claim any rights to the original data. Unless otherwise specified, the datasets are provided only for research purposes.
|
5038 |
|
5039 |
|
5040 |
-
| config
|
5041 |
-
|
5042 |
-
| `
|
5043 |
-
| `
|
5044 |
-
| `
|
5045 |
-
| `
|
5046 |
-
| `
|
5047 |
-
| `
|
5048 |
-
| `
|
5049 |
-
| `
|
5050 |
-
| `
|
5051 |
-
| `
|
5052 |
-
| `
|
5053 |
-
| `
|
5054 |
-
| `
|
5055 |
-
| `
|
5056 |
-
| `
|
5057 |
-
| `
|
5058 |
-
| `
|
5059 |
-
| `
|
5060 |
-
| `
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5061 |
|
5062 |
## Publications using these datasets
|
5063 |
|
|
|
62 |
num_examples: 2
|
63 |
download_size: 531145
|
64 |
dataset_size: 1254322
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
- config_name: LOOP_SEATTLE_1D
|
66 |
features:
|
67 |
- name: target
|
|
|
4585 |
data_files:
|
4586 |
- split: train
|
4587 |
path: ETT/1H/train-*
|
|
|
|
|
|
|
|
|
4588 |
- config_name: LOOP_SEATTLE_1D
|
4589 |
data_files:
|
4590 |
- split: train
|
|
|
4982 |
```python
|
4983 |
import datasets
|
4984 |
|
4985 |
+
ds = datasets.load_dataset("autogluon/fev_datasets", "epf_de", split="train")
|
4986 |
ds.set_format("numpy") # sequences returned as numpy arrays
|
4987 |
```
|
4988 |
+
Example entry in the `epf_de` dataset
|
4989 |
```python
|
4990 |
>>> ds[0]
|
4991 |
{'id': 'DE',
|
|
|
5007 |
**Disclaimer:** These datasets have been converted into a unified format from external sources. Please refer to the original sources for licensing and citation terms. We do not claim any rights to the original data. Unless otherwise specified, the datasets are provided only for research purposes.
|
5008 |
|
5009 |
|
5010 |
+
| config | freq | # items | median length | # obs | # dynamic cols | # static cols | source | citation |
|
5011 |
+
|:---------------------------|:-------|:----------|:----------------|:------------|-----------------:|----------------:|:---------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------|
|
5012 |
+
| `ETT_15T` | 15min | 2 | 69,680 | 975,520 | 7 | 0 | https://github.com/zhouhaoyi/ETDataset | [[1]](https://arxiv.org/abs/2012.07436) |
|
5013 |
+
| `ETT_1H` | h | 2 | 17,420 | 243,880 | 7 | 0 | https://github.com/zhouhaoyi/ETDataset | [[1]](https://arxiv.org/abs/2012.07436) |
|
5014 |
+
| `LOOP_SEATTLE_1D` | D | 323 | 365 | 117,895 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[2]](https://arxiv.org/abs/2304.14343) |
|
5015 |
+
| `LOOP_SEATTLE_1H` | h | 323 | 8,760 | 2,829,480 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[2]](https://arxiv.org/abs/2304.14343) |
|
5016 |
+
| `LOOP_SEATTLE_5T` | 5min | 323 | 105,120 | 33,953,760 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[2]](https://arxiv.org/abs/2304.14343) |
|
5017 |
+
| `M_DENSE_1D` | D | 30 | 730 | 21,900 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[2]](https://arxiv.org/abs/2304.14343) |
|
5018 |
+
| `M_DENSE_1H` | h | 30 | 17,520 | 525,600 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[2]](https://arxiv.org/abs/2304.14343) |
|
5019 |
+
| `SZ_TAXI_15T` | 15min | 156 | 2,976 | 464,256 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[2]](https://arxiv.org/abs/2304.14343) |
|
5020 |
+
| `SZ_TAXI_1H` | h | 156 | 744 | 116,064 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[2]](https://arxiv.org/abs/2304.14343) |
|
5021 |
+
| `beijing_air_quality` | h | 12 | 35,064 | 4,628,448 | 11 | 0 | https://huggingface.co/datasets/Salesforce/lotsa_data | [[3]](https://arxiv.org/abs/2402.02592) |
|
5022 |
+
| `bizitobs_l2c` | h | 1 | 2,664 | 18,648 | 7 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[4]](https://arxiv.org/abs/2410.10393) |
|
5023 |
+
| `boomlet_1062` | 5min | 1 | 16,384 | 344,064 | 21 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
|
5024 |
+
| `boomlet_1209` | 5min | 1 | 16,384 | 868,352 | 53 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
|
5025 |
+
| `boomlet_1225` | min | 1 | 16,384 | 802,816 | 49 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
|
5026 |
+
| `boomlet_1230` | 5min | 1 | 16,384 | 376,832 | 23 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
|
5027 |
+
| `boomlet_1282` | min | 1 | 16,384 | 573,440 | 35 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
|
5028 |
+
| `boomlet_1487` | 5min | 1 | 16,384 | 884,736 | 54 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
|
5029 |
+
| `boomlet_1631` | 30min | 1 | 10,463 | 418,520 | 40 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
|
5030 |
+
| `boomlet_1676` | 30min | 1 | 10,463 | 1,046,300 | 100 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
|
5031 |
+
| `boomlet_1855` | h | 1 | 5,231 | 272,012 | 52 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
|
5032 |
+
| `boomlet_1975` | h | 1 | 5,231 | 392,325 | 75 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
|
5033 |
+
| `boomlet_2187` | h | 1 | 5,231 | 523,100 | 100 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
|
5034 |
+
| `boomlet_285` | min | 1 | 16,384 | 1,228,800 | 75 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
|
5035 |
+
| `boomlet_619` | min | 1 | 16,384 | 851,968 | 52 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
|
5036 |
+
| `boomlet_772` | min | 1 | 16,384 | 1,097,728 | 67 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
|
5037 |
+
| `boomlet_963` | min | 1 | 16,384 | 458,752 | 28 | 6 | https://huggingface.co/datasets/Datadog/BOOM | [[5]](https://arxiv.org/abs/2505.14766) |
|
5038 |
+
| `cdc_fluview_ilinet` | W-SUN | 75 | 680 | 319,515 | 5 | 0 | https://huggingface.co/datasets/Salesforce/lotsa_data | [[3]](https://arxiv.org/abs/2402.02592) |
|
5039 |
+
| `ecdc_ili` | W-SUN | 25 | 201 | 4,797 | 1 | 0 | https://github.com/EU-ECDC/Respiratory_viruses_weekly_data/blob/main/data/snapshots/2025-08-08_ILIARIRates.csv | |
|
5040 |
+
| `epf_be` | h | 1 | 52,416 | 157,248 | 3 | 0 | https://zenodo.org/records/4624805 | [[6]](https://doi.org/10.1016/j.apenergy.2021.116983) |
|
5041 |
+
| `epf_de` | h | 1 | 52,416 | 157,248 | 3 | 0 | https://zenodo.org/records/4624805 | [[6]](https://doi.org/10.1016/j.apenergy.2021.116983) |
|
5042 |
+
| `epf_fr` | h | 1 | 52,416 | 157,248 | 3 | 0 | https://zenodo.org/records/4624805 | [[6]](https://doi.org/10.1016/j.apenergy.2021.116983) |
|
5043 |
+
| `epf_np` | h | 1 | 52,416 | 157,248 | 3 | 0 | https://zenodo.org/records/4624805 | [[6]](https://doi.org/10.1016/j.apenergy.2021.116983) |
|
5044 |
+
| `epf_pjm` | h | 1 | 52,416 | 157,248 | 3 | 0 | https://zenodo.org/records/4624805 | [[6]](https://doi.org/10.1016/j.apenergy.2021.116983) |
|
5045 |
+
| `ercot_1D` | D | 8 | 6,452 | 51,616 | 1 | 0 | https://github.com/ourownstory/neuralprophet-data/tree/main/datasets_raw/energy | |
|
5046 |
+
| `ercot_1H` | h | 8 | 154,872 | 1,238,976 | 1 | 0 | https://github.com/ourownstory/neuralprophet-data/tree/main/datasets_raw/energy | |
|
5047 |
+
| `ercot_1M` | ME | 8 | 211 | 1,688 | 1 | 0 | https://github.com/ourownstory/neuralprophet-data/tree/main/datasets_raw/energy | |
|
5048 |
+
| `ercot_1W` | W-SUN | 8 | 921 | 7,368 | 1 | 0 | https://github.com/ourownstory/neuralprophet-data/tree/main/datasets_raw/energy | |
|
5049 |
+
| `favorita_stores_1D` | D | 1,579 | 1,688 | 10,661,408 | 4 | 6 | https://www.kaggle.com/competitions/store-sales-time-series-forecasting | [[7]](https://www.kaggle.com/competitions/store-sales-time-series-forecasting/overview/citation) |
|
5050 |
+
| `favorita_stores_1M` | ME | 1,579 | 54 | 255,798 | 3 | 6 | https://www.kaggle.com/competitions/store-sales-time-series-forecasting | [[7]](https://www.kaggle.com/competitions/store-sales-time-series-forecasting/overview/citation) |
|
5051 |
+
| `favorita_stores_1W` | W-SUN | 1,579 | 240 | 1,136,880 | 3 | 6 | https://www.kaggle.com/competitions/store-sales-time-series-forecasting | [[7]](https://www.kaggle.com/competitions/store-sales-time-series-forecasting/overview/citation) |
|
5052 |
+
| `favorita_transactions_1D` | D | 51 | 1,688 | 258,264 | 3 | 5 | https://www.kaggle.com/competitions/store-sales-time-series-forecasting | [[7]](https://www.kaggle.com/competitions/store-sales-time-series-forecasting/overview/citation) |
|
5053 |
+
| `favorita_transactions_1M` | ME | 51 | 54 | 5,508 | 2 | 5 | https://www.kaggle.com/competitions/store-sales-time-series-forecasting | [[7]](https://www.kaggle.com/competitions/store-sales-time-series-forecasting/overview/citation) |
|
5054 |
+
| `favorita_transactions_1W` | W-SUN | 51 | 240 | 24,480 | 2 | 5 | https://www.kaggle.com/competitions/store-sales-time-series-forecasting | [[7]](https://www.kaggle.com/competitions/store-sales-time-series-forecasting/overview/citation) |
|
5055 |
+
| `fred_md_2025` | MS | 1 | 798 | 100,548 | 126 | 0 | https://www.stlouisfed.org/research/economists/mccracken/fred-databases | [[8]](https://doi.org/10.20955/wp.2015.012) |
|
5056 |
+
| `fred_qd_2025` | QS-DEC | 1 | 266 | 65,170 | 245 | 0 | https://www.stlouisfed.org/research/economists/mccracken/fred-databases | [[9]](https://doi.org/10.20955/wp.2020.005) |
|
5057 |
+
| `gvar` | QS-OCT | 33 | 178 | 52,866 | 9 | 0 | https://data.mendeley.com/datasets/kfp5fhgkvf/1 | [[10]](https://doi.org/10.17863/CAM.104755) |
|
5058 |
+
| `hermes` | W-MON | 10,000 | 261 | 5,220,000 | 2 | 2 | https://github.com/etidav/HERMES | [[11]](https://arxiv.org/abs/2202.03224) |
|
5059 |
+
| `hierarchical_sales_1D` | D | 118 | 1,825 | 215,350 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[4]](https://arxiv.org/abs/2410.10393) |
|
5060 |
+
| `hierarchical_sales_1W` | W-WED | 118 | 260 | 30,680 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[4]](https://arxiv.org/abs/2410.10393) |
|
5061 |
+
| `hierarchical_tourism` | QE-DEC | 89 | 36 | 3,204 | 1 | 0 | https://robjhyndman.com/publications/hierarchical-tourism/ | [[12]](https://doi.org/10.1016/j.ijforecast.2008.07.004) |
|
5062 |
+
| `hospital_admissions_1D` | D | 8 | 1,731 | 13,846 | 1 | 0 | https://www.kaggle.com/datasets/datasetengineer/riyadh-hospital-admissions-dataset-20202024 | [[13]](https://doi.org/10.34740/kaggle/dsv/9992619) |
|
5063 |
+
| `hospital_admissions_1W` | W-SUN | 8 | 246 | 1,968 | 1 | 0 | https://www.kaggle.com/datasets/datasetengineer/riyadh-hospital-admissions-dataset-20202024 | [[13]](https://doi.org/10.34740/kaggle/dsv/9992619) |
|
5064 |
+
| `hospital` | ME | 767 | 84 | 64,428 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[4]](https://arxiv.org/abs/2410.10393) |
|
5065 |
+
| `jena_weather_10T` | 10min | 1 | 52,704 | 1,106,784 | 21 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[4]](https://arxiv.org/abs/2410.10393) |
|
5066 |
+
| `jena_weather_1D` | D | 1 | 366 | 7,686 | 21 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[4]](https://arxiv.org/abs/2410.10393) |
|
5067 |
+
| `jena_weather_1H` | h | 1 | 8,784 | 184,464 | 21 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[4]](https://arxiv.org/abs/2410.10393) |
|
5068 |
+
| `kdd_cup_2018_1D` | D | 270 | 455 | 122,791 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[4]](https://arxiv.org/abs/2410.10393) |
|
5069 |
+
| `kdd_cup_2018_1H` | h | 270 | 10,898 | 2,942,364 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[4]](https://arxiv.org/abs/2410.10393) |
|
5070 |
+
| `kdd_cup_2022_10T` | 10min | 134 | 35,279 | 47,273,860 | 10 | 0 | https://aistudio.baidu.com/competition/detail/152/0/task-definition | [[14]](https://arxiv.org/abs/2208.04360) |
|
5071 |
+
| `kdd_cup_2022_1D` | D | 134 | 243 | 325,620 | 10 | 0 | https://aistudio.baidu.com/competition/detail/152/0/task-definition | [[14]](https://arxiv.org/abs/2208.04360) |
|
5072 |
+
| `kdd_cup_2022_30T` | 30min | 134 | 11,758 | 15,755,720 | 10 | 0 | https://aistudio.baidu.com/competition/detail/152/0/task-definition | [[14]](https://arxiv.org/abs/2208.04360) |
|
5073 |
+
| `m5_1D` | D | 30,490 | 1,810 | 428,849,460 | 9 | 5 | https://www.kaggle.com/competitions/m5-forecasting-accuracy | [[15]](https://doi.org/10.1016/j.ijforecast.2021.11.013) |
|
5074 |
+
| `m5_1M` | ME | 30,490 | 58 | 13,805,685 | 9 | 5 | https://www.kaggle.com/competitions/m5-forecasting-accuracy | [[15]](https://doi.org/10.1016/j.ijforecast.2021.11.013) |
|
5075 |
+
| `m5_1W` | W-SUN | 30,490 | 257 | 60,857,703 | 9 | 5 | https://www.kaggle.com/competitions/m5-forecasting-accuracy | [[15]](https://doi.org/10.1016/j.ijforecast.2021.11.013) |
|
5076 |
+
| `proenfo_bull` | h | 41 | 17,544 | 2,877,216 | 4 | 0 | https://github.com/Leo-VK/EnFoAV | [[16]](https://doi.org/10.48550/arXiv.2307.07191) |
|
5077 |
+
| `proenfo_cockatoo` | h | 1 | 17,544 | 105,264 | 6 | 0 | https://github.com/Leo-VK/EnFoAV | [[16]](https://doi.org/10.48550/arXiv.2307.07191) |
|
5078 |
+
| `proenfo_gfc12` | h | 11 | 39,414 | 867,108 | 2 | 0 | https://github.com/Leo-VK/EnFoAV | [[16]](https://doi.org/10.48550/arXiv.2307.07191) |
|
5079 |
+
| `proenfo_gfc14` | h | 1 | 17,520 | 35,040 | 2 | 0 | https://github.com/Leo-VK/EnFoAV | [[16]](https://doi.org/10.48550/arXiv.2307.07191) |
|
5080 |
+
| `proenfo_gfc17` | h | 8 | 17,544 | 280,704 | 2 | 0 | https://github.com/Leo-VK/EnFoAV | [[16]](https://doi.org/10.48550/arXiv.2307.07191) |
|
5081 |
+
| `proenfo_hog` | h | 24 | 17,544 | 2,526,336 | 6 | 0 | https://github.com/Leo-VK/EnFoAV | [[16]](https://doi.org/10.48550/arXiv.2307.07191) |
|
5082 |
+
| `proenfo_pdb` | h | 1 | 17,520 | 35,040 | 2 | 0 | https://github.com/Leo-VK/EnFoAV | [[16]](https://doi.org/10.48550/arXiv.2307.07191) |
|
5083 |
+
| `redset_15T` | 15min | 126 | 8,640 | 1,052,371 | 1 | 1 | https://github.com/amazon-science/redset/ | [[17]](https://www.amazon.science/publications/why-tpc-is-not-enough-an-analysis-of-the-amazon-redshift-fleet) |
|
5084 |
+
| `redset_1H` | h | 138 | 2,160 | 283,070 | 1 | 1 | https://github.com/amazon-science/redset/ | [[17]](https://www.amazon.science/publications/why-tpc-is-not-enough-an-analysis-of-the-amazon-redshift-fleet) |
|
5085 |
+
| `redset_5T` | 5min | 118 | 25,920 | 2,960,408 | 1 | 1 | https://github.com/amazon-science/redset/ | [[17]](https://www.amazon.science/publications/why-tpc-is-not-enough-an-analysis-of-the-amazon-redshift-fleet) |
|
5086 |
+
| `restaurant` | D | 817 | 296 | 294,568 | 1 | 4 | https://www.kaggle.com/c/recruit-restaurant-visitor-forecasting | [[18]](www.kaggle.com/competitions/recruit-restaurant-visitor-forecasting/overview/citation) |
|
5087 |
+
| `rossmann_1D` | D | 1,115 | 942 | 7,352,310 | 7 | 10 | https://www.kaggle.com/competitions/rossmann-store-sales | [[19]](www.kaggle.com/competitions/rossmann-store-sales/overview/citation) |
|
5088 |
+
| `rossmann_1W` | W-SUN | 1,115 | 133 | 889,770 | 6 | 10 | https://www.kaggle.com/competitions/rossmann-store-sales | [[19]](www.kaggle.com/competitions/rossmann-store-sales/overview/citation) |
|
5089 |
+
| `solar_10T` | 10min | 137 | 52,560 | 7,200,720 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[4]](https://arxiv.org/abs/2410.10393) |
|
5090 |
+
| `solar_1D` | D | 137 | 365 | 50,005 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[4]](https://arxiv.org/abs/2410.10393) |
|
5091 |
+
| `solar_1H` | h | 137 | 8,760 | 1,200,120 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[4]](https://arxiv.org/abs/2410.10393) |
|
5092 |
+
| `solar_1W` | W-FRI | 137 | 52 | 7,124 | 1 | 0 | https://huggingface.co/datasets/Salesforce/GiftEval | [[4]](https://arxiv.org/abs/2410.10393) |
|
5093 |
+
| `solar_with_weather_15T` | 15min | 1 | 198,600 | 1,986,000 | 10 | 0 | https://www.kaggle.com/datasets/samanemami/renewable-energy-and-weather-conditions | |
|
5094 |
+
| `solar_with_weather_1H` | h | 1 | 49,648 | 496,480 | 10 | 0 | https://www.kaggle.com/datasets/samanemami/renewable-energy-and-weather-conditions | |
|
5095 |
+
| `uci_air_quality` | h | 1 | 9,357 | 121,641 | 13 | 0 | https://archive.ics.uci.edu/dataset/360/air+quality | [[20]](https://doi.org/10.24432/C59K5F) |
|
5096 |
+
| `uk_covid_nation_1D` | D | 4 | 729 | 41,216 | 14 | 0 | https://www.kaggle.com/datasets/happyadam73/uk-covid19-dashboard-data-sqlite-compressed | |
|
5097 |
+
| `uk_covid_nation_1W` | W-SUN | 4 | 105 | 5,936 | 14 | 0 | https://www.kaggle.com/datasets/happyadam73/uk-covid19-dashboard-data-sqlite-compressed | |
|
5098 |
+
| `uk_covid_utla_1D` | D | 214 | 721 | 308,786 | 2 | 0 | https://www.kaggle.com/datasets/happyadam73/uk-covid19-dashboard-data-sqlite-compressed | |
|
5099 |
+
| `uk_covid_utla_1W` | W-SUN | 214 | 104 | 44,448 | 2 | 0 | https://www.kaggle.com/datasets/happyadam73/uk-covid19-dashboard-data-sqlite-compressed | |
|
5100 |
+
| `us_consumption_1M` | MS | 31 | 792 | 24,552 | 1 | 0 | https://apps.bea.gov/iTable/?reqid=19&step=3&isuri=1&nipa_table_list=2017&categories=underlying | [[21]](https://doi.org/10.1016/j.ijforecast.2016.04.005) |
|
5101 |
+
| `us_consumption_1Q` | QE-DEC | 31 | 262 | 8,122 | 1 | 0 | https://apps.bea.gov/iTable/?reqid=19&step=3&isuri=1&nipa_table_list=2017&categories=underlying | [[21]](https://doi.org/10.1016/j.ijforecast.2016.04.005) |
|
5102 |
+
| `us_consumption_1Y` | YE-DEC | 31 | 64 | 1,984 | 1 | 0 | https://apps.bea.gov/iTable/?reqid=19&step=3&isuri=1&nipa_table_list=2017&categories=underlying | [[21]](https://doi.org/10.1016/j.ijforecast.2016.04.005) |
|
5103 |
+
| `walmart` | W-FRI | 2,936 | 143 | 4,609,143 | 11 | 4 | https://www.kaggle.com/competitions/walmart-recruiting-store-sales-forecasting | [[22]](www.kaggle.com/competitions/walmart-recruiting-store-sales-forecasting/overview/citation) |
|
5104 |
+
| `world_co2_emissions` | YE-DEC | 191 | 60 | 11,460 | 1 | 0 | https://www.kaggle.com/datasets/ulrikthygepedersen/co2-emissions-by-country | |
|
5105 |
+
| `world_life_expectancy` | YE-DEC | 237 | 74 | 17,538 | 1 | 0 | https://www.kaggle.com/datasets/nafayunnoor/global-life-expectancy-data-1950-2023 | [[23]](https://ourworldindata.org/life-expectancy#article-citation) |
|
5106 |
+
| `world_tourism` | YE-DEC | 178 | 21 | 3,738 | 1 | 0 | https://www.kaggle.com/datasets/bushraqurban/tourism-and-economic-impact | |
|
5107 |
|
5108 |
## Publications using these datasets
|
5109 |
|