asahi417 commited on
Commit
fdf5696
·
1 Parent(s): fe9e72f
experiment_speaker_verification.py CHANGED
@@ -17,7 +17,7 @@ from datasets import load_dataset
17
  from model_meta_voice import MetaVoiceSE
18
  from model_pyannote_embedding import PyannoteSE
19
  from model_w2v_bert import W2VBertSE
20
- from model_clap import ClapSE
21
 
22
 
23
  def get_embedding(model_class, model_name: str, dataset_name: str, data_split: str):
@@ -119,26 +119,31 @@ if __name__ == '__main__':
119
  get_embedding(PyannoteSE, "pyannote_se", "asahi417/voxceleb1-test-split", "test")
120
  get_embedding(W2VBertSE, "w2v_bert_se", "asahi417/voxceleb1-test-split", "test")
121
  get_embedding(ClapSE, "clap_se", "asahi417/voxceleb1-test-split", "test")
 
122
 
123
  get_embedding(MetaVoiceSE, "meta_voice_se", "ylacombe/expresso", "train")
124
  get_embedding(PyannoteSE, "pyannote_se", "ylacombe/expresso", "train")
125
  get_embedding(W2VBertSE, "w2v_bert_se", "ylacombe/expresso", "train")
126
  get_embedding(ClapSE, "clap_se", "ylacombe/expresso", "train")
 
127
 
128
  cluster_embedding("meta_voice_se", "asahi417/voxceleb1-test-split", "speaker_id")
129
  cluster_embedding("pyannote_se", "asahi417/voxceleb1-test-split", "speaker_id")
130
  cluster_embedding("w2v_bert_se", "asahi417/voxceleb1-test-split", "speaker_id")
131
  cluster_embedding("clap_se", "asahi417/voxceleb1-test-split", "speaker_id")
 
132
 
133
  cluster_embedding("meta_voice_se", "ylacombe/expresso", "speaker_id")
134
  cluster_embedding("pyannote_se", "ylacombe/expresso", "speaker_id")
135
  cluster_embedding("w2v_bert_se", "ylacombe/expresso", "speaker_id")
136
  cluster_embedding("clap_se", "ylacombe/expresso", "speaker_id")
 
137
 
138
  cluster_embedding("meta_voice_se", "ylacombe/expresso", "style")
139
  cluster_embedding("pyannote_se", "ylacombe/expresso", "style")
140
  cluster_embedding("w2v_bert_se", "ylacombe/expresso", "style")
141
  cluster_embedding("clap_se", "ylacombe/expresso", "style")
 
142
 
143
 
144
 
 
17
  from model_meta_voice import MetaVoiceSE
18
  from model_pyannote_embedding import PyannoteSE
19
  from model_w2v_bert import W2VBertSE
20
+ from model_clap import ClapSE, ClapGeneralSE
21
 
22
 
23
  def get_embedding(model_class, model_name: str, dataset_name: str, data_split: str):
 
119
  get_embedding(PyannoteSE, "pyannote_se", "asahi417/voxceleb1-test-split", "test")
120
  get_embedding(W2VBertSE, "w2v_bert_se", "asahi417/voxceleb1-test-split", "test")
121
  get_embedding(ClapSE, "clap_se", "asahi417/voxceleb1-test-split", "test")
122
+ get_embedding(ClapGeneralSE, "clap_general_se", "asahi417/voxceleb1-test-split", "test")
123
 
124
  get_embedding(MetaVoiceSE, "meta_voice_se", "ylacombe/expresso", "train")
125
  get_embedding(PyannoteSE, "pyannote_se", "ylacombe/expresso", "train")
126
  get_embedding(W2VBertSE, "w2v_bert_se", "ylacombe/expresso", "train")
127
  get_embedding(ClapSE, "clap_se", "ylacombe/expresso", "train")
128
+ get_embedding(ClapGeneralSE, "clap_general_se", "ylacombe/expresso", "train")
129
 
130
  cluster_embedding("meta_voice_se", "asahi417/voxceleb1-test-split", "speaker_id")
131
  cluster_embedding("pyannote_se", "asahi417/voxceleb1-test-split", "speaker_id")
132
  cluster_embedding("w2v_bert_se", "asahi417/voxceleb1-test-split", "speaker_id")
133
  cluster_embedding("clap_se", "asahi417/voxceleb1-test-split", "speaker_id")
134
+ cluster_embedding("clap_general_se", "asahi417/voxceleb1-test-split", "speaker_id")
135
 
136
  cluster_embedding("meta_voice_se", "ylacombe/expresso", "speaker_id")
137
  cluster_embedding("pyannote_se", "ylacombe/expresso", "speaker_id")
138
  cluster_embedding("w2v_bert_se", "ylacombe/expresso", "speaker_id")
139
  cluster_embedding("clap_se", "ylacombe/expresso", "speaker_id")
140
+ cluster_embedding("clap_general_se", "ylacombe/expresso", "speaker_id")
141
 
142
  cluster_embedding("meta_voice_se", "ylacombe/expresso", "style")
143
  cluster_embedding("pyannote_se", "ylacombe/expresso", "style")
144
  cluster_embedding("w2v_bert_se", "ylacombe/expresso", "style")
145
  cluster_embedding("clap_se", "ylacombe/expresso", "style")
146
+ cluster_embedding("clap_general_se", "ylacombe/expresso", "style")
147
 
148
 
149
 
model_clap.py CHANGED
@@ -11,12 +11,12 @@ from transformers import ClapModel, ClapProcessor
11
 
12
 
13
  class ClapSE:
14
- def __init__(self):
15
- self.model = ClapModel.from_pretrained("laion/larger_clap_music_and_speech")
16
  self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
17
  self.model.to(self.device)
18
  self.model.eval()
19
- self.processor = ClapProcessor.from_pretrained("laion/larger_clap_music_and_speech")
20
 
21
  def get_speaker_embedding(self, wav: np.ndarray, sampling_rate: Optional[int] = None) -> np.ndarray:
22
  if sampling_rate != self.processor.feature_extractor.sampling_rate:
@@ -27,3 +27,9 @@ class ClapSE:
27
  with torch.no_grad():
28
  outputs = self.model.get_audio_features(**{k: v.to(self.device) for k, v in inputs.items()})
29
  return outputs.cpu().numpy()[0]
 
 
 
 
 
 
 
11
 
12
 
13
  class ClapSE:
14
+ def __init__(self, ckpt: str = "laion/larger_clap_music_and_speech"):
15
+ self.model = ClapModel.from_pretrained(ckpt)
16
  self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
17
  self.model.to(self.device)
18
  self.model.eval()
19
+ self.processor = ClapProcessor.from_pretrained(ckpt)
20
 
21
  def get_speaker_embedding(self, wav: np.ndarray, sampling_rate: Optional[int] = None) -> np.ndarray:
22
  if sampling_rate != self.processor.feature_extractor.sampling_rate:
 
27
  with torch.no_grad():
28
  outputs = self.model.get_audio_features(**{k: v.to(self.device) for k, v in inputs.items()})
29
  return outputs.cpu().numpy()[0]
30
+
31
+
32
+ class ClapGeneralSE(ClapSE):
33
+
34
+ def __init__(self):
35
+ super().__init__(ckpt="laion/larger_clap_general")