Upload eduport_tts_mal.py with huggingface_hub
Browse files- eduport_tts_mal.py +22 -37
eduport_tts_mal.py
CHANGED
@@ -14,8 +14,7 @@ def compute_max_audio_length(audio_files, resampler, target_sampling_rate):
|
|
14 |
waveform, sample_rate = torchaudio.load(audio_path)
|
15 |
if sample_rate != target_sampling_rate:
|
16 |
waveform = resampler(waveform)
|
17 |
-
|
18 |
-
max_length = 1176240
|
19 |
return max_length
|
20 |
|
21 |
class SpeechDataset(Dataset):
|
@@ -35,45 +34,47 @@ class SpeechDataset(Dataset):
|
|
35 |
def __getitem__(self, idx):
|
36 |
audio_path = self.audio_files[idx]
|
37 |
transcript_path = self.transcript_files[idx]
|
38 |
-
|
39 |
# Load and process the audio
|
40 |
waveform, sample_rate = torchaudio.load(audio_path)
|
41 |
-
|
42 |
# If the audio sample rate is not 16kHz, resample it
|
43 |
if sample_rate != self.target_sampling_rate:
|
44 |
waveform = self.resampler(waveform)
|
45 |
-
|
46 |
# Pass the waveform to the Wav2Vec2 processor
|
47 |
input_values = self.processor(waveform, sampling_rate=self.target_sampling_rate, return_tensors="pt").input_values.squeeze(0)
|
48 |
-
|
49 |
# Pad or truncate the audio to ensure fixed length (the longest audio length)
|
50 |
if input_values.size(0) < self.max_audio_length:
|
51 |
padding_length = self.max_audio_length - input_values.size(0)
|
52 |
-
#
|
53 |
-
|
|
|
54 |
else:
|
55 |
input_values = input_values[:, :self.max_audio_length] # Truncate to max_audio_length
|
56 |
|
|
|
57 |
# Load and process the transcript
|
58 |
with open(transcript_path, 'r') as file:
|
59 |
transcript = file.read().strip()
|
60 |
-
|
61 |
# Encode the transcript using the GPT2 tokenizer
|
62 |
input_ids = self.tokenizer.encode(transcript, truncation=True, padding='longest', max_length=self.max_length, return_tensors="pt").squeeze(0)
|
63 |
|
64 |
return input_values, input_ids
|
65 |
-
|
66 |
def collate_fn(batch):
|
67 |
audio_inputs, text_inputs = zip(*batch)
|
68 |
-
|
69 |
# Pad audio inputs to the maximum length in the batch
|
70 |
max_audio_len = max([audio.size(1) for audio in audio_inputs])
|
71 |
audio_inputs_padded = torch.stack([torch.cat([audio, torch.zeros(1, max_audio_len - audio.size(1))], dim=1) if audio.size(1) < max_audio_len else audio[:, :max_audio_len] for audio in audio_inputs])
|
72 |
-
|
73 |
# Pad text inputs to the longest transcript length
|
74 |
max_text_len = max([text.size(0) for text in text_inputs])
|
75 |
text_inputs_padded = torch.stack([torch.cat([text, torch.tensor([0] * (max_text_len - text.size(0)))], dim=0) if text.size(0) < max_text_len else text[:max_text_len] for text in text_inputs])
|
76 |
-
|
77 |
return audio_inputs_padded, text_inputs_padded
|
78 |
|
79 |
# Tokenizer and processor
|
@@ -108,11 +109,8 @@ val_loader = DataLoader(val_dataset, batch_size=1, shuffle=False, collate_fn=col
|
|
108 |
|
109 |
# Model Architecture
|
110 |
encoder = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h')
|
111 |
-
|
112 |
-
decoder_config
|
113 |
-
vocab_size=len(tokenizer),
|
114 |
-
add_cross_attention=True # Add this line to enable cross-attention
|
115 |
-
)
|
116 |
decoder = GPT2LMHeadModel(config=decoder_config)
|
117 |
|
118 |
class SpeechRecognitionModel(torch.nn.Module):
|
@@ -122,24 +120,9 @@ class SpeechRecognitionModel(torch.nn.Module):
|
|
122 |
self.decoder = decoder
|
123 |
|
124 |
def forward(self, audio_input, text_input):
|
125 |
-
# Extract encoder hidden states
|
126 |
encoder_output = self.encoder(audio_input).last_hidden_state
|
127 |
-
|
128 |
-
|
129 |
-
encoder_attention_mask = torch.ones(
|
130 |
-
encoder_output.shape[:2],
|
131 |
-
dtype=torch.long,
|
132 |
-
device=encoder_output.device
|
133 |
-
)
|
134 |
-
|
135 |
-
# Forward pass through the decoder with cross-attention
|
136 |
-
outputs = self.decoder(
|
137 |
-
input_ids=text_input,
|
138 |
-
encoder_hidden_states=encoder_output,
|
139 |
-
encoder_attention_mask=encoder_attention_mask
|
140 |
-
)
|
141 |
-
|
142 |
-
return outputs
|
143 |
|
144 |
# Instantiate the model
|
145 |
model = SpeechRecognitionModel(encoder, decoder)
|
@@ -166,7 +149,7 @@ for epoch in range(num_epochs):
|
|
166 |
|
167 |
# Forward pass
|
168 |
output = model(audio_input, text_input)
|
169 |
-
|
170 |
# Compute loss
|
171 |
loss = torch.nn.CrossEntropyLoss()(output.logits.view(-1, output.logits.size(-1)), text_input.view(-1))
|
172 |
loss.backward()
|
@@ -188,4 +171,6 @@ for epoch in range(num_epochs):
|
|
188 |
# Update scheduler
|
189 |
scheduler.step(val_loss)
|
190 |
|
191 |
-
print(f'Epoch {epoch}: Train Loss: {train_loss / len(train_loader)}, Val Loss: {val_loss / len(val_loader)}')
|
|
|
|
|
|
14 |
waveform, sample_rate = torchaudio.load(audio_path)
|
15 |
if sample_rate != target_sampling_rate:
|
16 |
waveform = resampler(waveform)
|
17 |
+
max_length = max(max_length, waveform.size(1)) # Max length based on time dimension
|
|
|
18 |
return max_length
|
19 |
|
20 |
class SpeechDataset(Dataset):
|
|
|
34 |
def __getitem__(self, idx):
|
35 |
audio_path = self.audio_files[idx]
|
36 |
transcript_path = self.transcript_files[idx]
|
37 |
+
|
38 |
# Load and process the audio
|
39 |
waveform, sample_rate = torchaudio.load(audio_path)
|
40 |
+
|
41 |
# If the audio sample rate is not 16kHz, resample it
|
42 |
if sample_rate != self.target_sampling_rate:
|
43 |
waveform = self.resampler(waveform)
|
44 |
+
|
45 |
# Pass the waveform to the Wav2Vec2 processor
|
46 |
input_values = self.processor(waveform, sampling_rate=self.target_sampling_rate, return_tensors="pt").input_values.squeeze(0)
|
47 |
+
|
48 |
# Pad or truncate the audio to ensure fixed length (the longest audio length)
|
49 |
if input_values.size(0) < self.max_audio_length:
|
50 |
padding_length = self.max_audio_length - input_values.size(0)
|
51 |
+
# Create a zero tensor with the same batch size (1) and the padding length along dimension 1
|
52 |
+
padding = torch.zeros(1, padding_length)
|
53 |
+
input_values = torch.cat([input_values, padding], dim=1)
|
54 |
else:
|
55 |
input_values = input_values[:, :self.max_audio_length] # Truncate to max_audio_length
|
56 |
|
57 |
+
|
58 |
# Load and process the transcript
|
59 |
with open(transcript_path, 'r') as file:
|
60 |
transcript = file.read().strip()
|
61 |
+
|
62 |
# Encode the transcript using the GPT2 tokenizer
|
63 |
input_ids = self.tokenizer.encode(transcript, truncation=True, padding='longest', max_length=self.max_length, return_tensors="pt").squeeze(0)
|
64 |
|
65 |
return input_values, input_ids
|
66 |
+
|
67 |
def collate_fn(batch):
|
68 |
audio_inputs, text_inputs = zip(*batch)
|
69 |
+
|
70 |
# Pad audio inputs to the maximum length in the batch
|
71 |
max_audio_len = max([audio.size(1) for audio in audio_inputs])
|
72 |
audio_inputs_padded = torch.stack([torch.cat([audio, torch.zeros(1, max_audio_len - audio.size(1))], dim=1) if audio.size(1) < max_audio_len else audio[:, :max_audio_len] for audio in audio_inputs])
|
73 |
+
|
74 |
# Pad text inputs to the longest transcript length
|
75 |
max_text_len = max([text.size(0) for text in text_inputs])
|
76 |
text_inputs_padded = torch.stack([torch.cat([text, torch.tensor([0] * (max_text_len - text.size(0)))], dim=0) if text.size(0) < max_text_len else text[:max_text_len] for text in text_inputs])
|
77 |
+
|
78 |
return audio_inputs_padded, text_inputs_padded
|
79 |
|
80 |
# Tokenizer and processor
|
|
|
109 |
|
110 |
# Model Architecture
|
111 |
encoder = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h')
|
112 |
+
decoder_config = GPT2Config(vocab_size=len(tokenizer))
|
113 |
+
decoder_config.add_cross_attention=True
|
|
|
|
|
|
|
114 |
decoder = GPT2LMHeadModel(config=decoder_config)
|
115 |
|
116 |
class SpeechRecognitionModel(torch.nn.Module):
|
|
|
120 |
self.decoder = decoder
|
121 |
|
122 |
def forward(self, audio_input, text_input):
|
|
|
123 |
encoder_output = self.encoder(audio_input).last_hidden_state
|
124 |
+
decoder_output = self.decoder(text_input, encoder_hidden_states=encoder_output)
|
125 |
+
return decoder_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
# Instantiate the model
|
128 |
model = SpeechRecognitionModel(encoder, decoder)
|
|
|
149 |
|
150 |
# Forward pass
|
151 |
output = model(audio_input, text_input)
|
152 |
+
|
153 |
# Compute loss
|
154 |
loss = torch.nn.CrossEntropyLoss()(output.logits.view(-1, output.logits.size(-1)), text_input.view(-1))
|
155 |
loss.backward()
|
|
|
171 |
# Update scheduler
|
172 |
scheduler.step(val_loss)
|
173 |
|
174 |
+
print(f'Epoch {epoch}: Train Loss: {train_loss / len(train_loader)}, Val Loss: {val_loss / len(val_loader)}')
|
175 |
+
|
176 |
+
# Inference (use the same process as the training loop to handle inference)
|