aoxo commited on
Commit
0639013
·
verified ·
1 Parent(s): 00c46fa

Update eduport_tts_mal.py

Browse files
Files changed (1) hide show
  1. eduport_tts_mal.py +2 -19
eduport_tts_mal.py CHANGED
@@ -10,7 +10,6 @@ from torchaudio.transforms import Resample
10
  from torch.amp import GradScaler, autocast
11
  from tqdm import tqdm
12
  from jiwer import wer
13
- from torchaudio.transforms import TimeStretch, PitchShift
14
  from safetensors.torch import save_file
15
 
16
  # Compute max audio length from the training dataset
@@ -69,22 +68,6 @@ class SpeechDataset(Dataset):
69
  input_ids = self.tokenizer.encode(transcript, truncation=True, padding='longest', max_length=self.max_length, return_tensors="pt").squeeze(0)
70
 
71
  return input_values, input_ids
72
-
73
- class AugmentedSpeechDataset(SpeechDataset):
74
- def __getitem__(self, idx):
75
- input_values, input_ids = super().__getitem__(idx)
76
-
77
- # Random time stretching
78
- if torch.rand(1).item() < 0.3:
79
- time_stretch = TimeStretch(factor=torch.uniform(0.8, 1.2))
80
- input_values = time_stretch(input_values)
81
-
82
- # Random pitch shift
83
- if torch.rand(1).item() < 0.3:
84
- pitch_shift = PitchShift(sample_rate=self.target_sampling_rate, n_steps=torch.randint(-2, 2, (1,)))
85
- input_values = pitch_shift(input_values)
86
-
87
- return input_values, input_ids
88
 
89
  def collate_fn(batch):
90
  audio_inputs, text_inputs = zip(*batch)
@@ -122,8 +105,8 @@ print(max_audio_length)
122
  train_audios, val_audios, train_transcripts, val_transcripts = train_test_split(audio_files, transcript_files, test_size=0.05, random_state=42)
123
 
124
  # Define your dataset and dataloaders
125
- train_dataset = AugmentedSpeechDataset(train_audios, train_transcripts, tokenizer, processor, max_audio_length=max_audio_length)
126
- val_dataset = AugmentedSpeechDataset(val_audios, val_transcripts, tokenizer, processor, max_audio_length=max_audio_length)
127
 
128
  # Update your DataLoader to use the custom collate_fn
129
  train_loader = DataLoader(train_dataset, batch_size=1, shuffle=True, collate_fn=collate_fn)
 
10
  from torch.amp import GradScaler, autocast
11
  from tqdm import tqdm
12
  from jiwer import wer
 
13
  from safetensors.torch import save_file
14
 
15
  # Compute max audio length from the training dataset
 
68
  input_ids = self.tokenizer.encode(transcript, truncation=True, padding='longest', max_length=self.max_length, return_tensors="pt").squeeze(0)
69
 
70
  return input_values, input_ids
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
 
72
  def collate_fn(batch):
73
  audio_inputs, text_inputs = zip(*batch)
 
105
  train_audios, val_audios, train_transcripts, val_transcripts = train_test_split(audio_files, transcript_files, test_size=0.05, random_state=42)
106
 
107
  # Define your dataset and dataloaders
108
+ train_dataset = SpeechDataset(train_audios, train_transcripts, tokenizer, processor, max_audio_length=max_audio_length)
109
+ val_dataset = SpeechDataset(val_audios, val_transcripts, tokenizer, processor, max_audio_length=max_audio_length)
110
 
111
  # Update your DataLoader to use the custom collate_fn
112
  train_loader = DataLoader(train_dataset, batch_size=1, shuffle=True, collate_fn=collate_fn)