{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "id": "iUlUv-HLD9cn" }, "outputs": [], "source": [ "import pandas as pd\n", "df = pd.read_csv('/content/electricity.csv')" ] }, { "cell_type": "code", "source": [ "df.head()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 226 }, "id": "XfYIxRQUELcV", "outputId": "9cf18efb-67c3-47e9-c6b8-f2b9cb9622f2" }, "execution_count": 2, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " date day period nswprice nswdemand vicprice vicdemand transfer \\\n", "0 0.0 b'2' 0.000000 0.056443 0.439155 0.003467 0.422915 0.414912 \n", "1 0.0 b'2' 0.021277 0.051699 0.415055 0.003467 0.422915 0.414912 \n", "2 0.0 b'2' 0.042553 0.051489 0.385004 0.003467 0.422915 0.414912 \n", "3 0.0 b'2' 0.063830 0.045485 0.314639 0.003467 0.422915 0.414912 \n", "4 0.0 b'2' 0.085106 0.042482 0.251116 0.003467 0.422915 0.414912 \n", "\n", " class \n", "0 b'UP' \n", "1 b'UP' \n", "2 b'UP' \n", "3 b'UP' \n", "4 b'DOWN' " ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datedayperiodnswpricenswdemandvicpricevicdemandtransferclass
00.0b'2'0.0000000.0564430.4391550.0034670.4229150.414912b'UP'
10.0b'2'0.0212770.0516990.4150550.0034670.4229150.414912b'UP'
20.0b'2'0.0425530.0514890.3850040.0034670.4229150.414912b'UP'
30.0b'2'0.0638300.0454850.3146390.0034670.4229150.414912b'UP'
40.0b'2'0.0851060.0424820.2511160.0034670.4229150.414912b'DOWN'
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "variable_name": "df", "summary": "{\n \"name\": \"df\",\n \"rows\": 45312,\n \"fields\": [\n {\n \"column\": \"date\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.34030772179030583,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 933,\n \"samples\": [\n 0.89881,\n 0.009247,\n 0.868192\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"day\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 7,\n \"samples\": [\n \"b'2'\",\n \"b'3'\",\n \"b'7'\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"period\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2947563828038936,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 48,\n \"samples\": [\n 0.574468,\n 0.851064,\n 0.553191\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"nswprice\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.039990768954021906,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 4089,\n \"samples\": [\n 0.092801,\n 0.11838,\n 0.11832\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"nswdemand\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.1633227141782043,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 5266,\n \"samples\": [\n 0.677626,\n 0.778637,\n 0.196519\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"vicprice\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.010213038212794925,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 3798,\n \"samples\": [\n 0.004614,\n 0.003874,\n 0.002987\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"vicdemand\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.12096534549179237,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 2846,\n \"samples\": [\n 0.719834,\n 0.225531,\n 0.493268\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"transfer\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.1533733911366238,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 1878,\n \"samples\": [\n 0.820614,\n 0.239035,\n 0.832456\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"class\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"b'DOWN'\",\n \"b'UP'\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" } }, "metadata": {}, "execution_count": 2 } ] }, { "cell_type": "code", "source": [ "df.info()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "fEnQSpcUENgi", "outputId": "018013d1-274f-47a9-8c1c-1b2dfbe58d2d" }, "execution_count": 3, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\n", "RangeIndex: 45312 entries, 0 to 45311\n", "Data columns (total 9 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 date 45312 non-null float64\n", " 1 day 45312 non-null object \n", " 2 period 45312 non-null float64\n", " 3 nswprice 45312 non-null float64\n", " 4 nswdemand 45312 non-null float64\n", " 5 vicprice 45312 non-null float64\n", " 6 vicdemand 45312 non-null float64\n", " 7 transfer 45312 non-null float64\n", " 8 class 45312 non-null object \n", "dtypes: float64(7), object(2)\n", "memory usage: 3.1+ MB\n" ] } ] }, { "cell_type": "code", "source": [ "df.describe()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 320 }, "id": "U_kqvcdpEPCe", "outputId": "db63b846-ea80-4924-8298-14e8fb5c7178" }, "execution_count": 4, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " date period nswprice nswdemand vicprice \\\n", "count 45312.000000 45312.000000 45312.000000 45312.000000 45312.000000 \n", "mean 0.499080 0.500000 0.057868 0.425418 0.003467 \n", "std 0.340308 0.294756 0.039991 0.163323 0.010213 \n", "min 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "25% 0.031934 0.250000 0.035127 0.309134 0.002277 \n", "50% 0.456329 0.500000 0.048652 0.443693 0.003467 \n", "75% 0.880547 0.750000 0.074336 0.536001 0.003467 \n", "max 1.000000 1.000000 1.000000 1.000000 1.000000 \n", "\n", " vicdemand transfer \n", "count 45312.000000 45312.000000 \n", "mean 0.422915 0.500526 \n", "std 0.120965 0.153373 \n", "min 0.000000 0.000000 \n", "25% 0.372346 0.414912 \n", "50% 0.422915 0.414912 \n", "75% 0.469252 0.605702 \n", "max 1.000000 1.000000 " ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
dateperiodnswpricenswdemandvicpricevicdemandtransfer
count45312.00000045312.00000045312.00000045312.00000045312.00000045312.00000045312.000000
mean0.4990800.5000000.0578680.4254180.0034670.4229150.500526
std0.3403080.2947560.0399910.1633230.0102130.1209650.153373
min0.0000000.0000000.0000000.0000000.0000000.0000000.000000
25%0.0319340.2500000.0351270.3091340.0022770.3723460.414912
50%0.4563290.5000000.0486520.4436930.0034670.4229150.414912
75%0.8805470.7500000.0743360.5360010.0034670.4692520.605702
max1.0000001.0000001.0000001.0000001.0000001.0000001.000000
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "summary": "{\n \"name\": \"df\",\n \"rows\": 8,\n \"fields\": [\n {\n \"column\": \"date\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 16020.049200037409,\n \"min\": 0.0,\n \"max\": 45312.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 0.4990795572033898,\n 0.456329,\n 45312.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"period\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 16020.04482718291,\n \"min\": 0.0,\n \"max\": 45312.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 45312.0,\n 0.5,\n 0.75\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"nswprice\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 16020.147801808478,\n \"min\": 0.0,\n \"max\": 45312.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 0.057868310138594635,\n 0.048652,\n 45312.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"nswdemand\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 16020.06589812015,\n \"min\": 0.0,\n \"max\": 45312.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 0.42541789525953394,\n 0.44369250000000005,\n 45312.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"vicprice\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 16020.159574554327,\n \"min\": 0.0,\n \"max\": 45312.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 45312.0,\n 0.003467033898305085,\n 0.003467\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"vicdemand\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 16020.069391982126,\n \"min\": 0.0,\n \"max\": 45312.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 0.4229150757194562,\n 0.422915,\n 45312.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"transfer\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 16020.055197768741,\n \"min\": 0.0,\n \"max\": 45312.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 45312.0,\n 0.5005263909118999,\n 0.605702\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" } }, "metadata": {}, "execution_count": 4 } ] } ] }