import os import json import pickle import faiss import numpy as np import torch from src.indicies.index_utils import convert_pkl_to_jsonl, get_passage_pos_ids os.environ["TOKENIZERS_PARALLELISM"] = "true" device = "cuda" if torch.cuda.is_available() else "cpu" class FlatIndexer(object): def __init__( self, index_path, meta_file, passage_dir=None, pos_map_save_path=None, ): self.index_path = index_path # path to store the final index self.meta_file = meta_file # path to save the index id to db id map self.passage_dir = passage_dir self.pos_map_save_path = pos_map_save_path self.cuda = False if os.path.exists(index_path) and os.path.exists(self.meta_file): print("Loading index...") self.index = faiss.read_index(index_path) self.index_id_to_db_id = self.load_index_id_to_db_id() else: raise NotImplementedError if self.pos_map_save_path is not None: self.psg_pos_id_map = self.load_psg_pos_id_map() def load_index_id_to_db_id( self, ): with open(self.meta_file, "rb") as reader: index_id_to_db_id = pickle.load(reader) return index_id_to_db_id def build_passage_pos_id_map( self, ): convert_pkl_to_jsonl(self.passage_dir) passage_pos_ids = get_passage_pos_ids(self.passage_dir, self.pos_map_save_path) return passage_pos_ids def load_psg_pos_id_map( self, ): if os.path.exists(self.pos_map_save_path): with open(self.pos_map_save_path, "rb") as f: psg_pos_id_map = pickle.load(f) else: psg_pos_id_map = self.build_passage_pos_id_map() return psg_pos_id_map def _id2psg(self, shard_id, chunk_id): filename, position = self.psg_pos_id_map[shard_id][chunk_id] with open(filename, "r") as file: file.seek(position) line = file.readline() return json.loads(line) def _get_passage(self, index_id): try: shard_id, chunk_id = self.index_id_to_db_id[index_id] except: shard_id, chunk_id = 0, self.index_id_to_db_id[index_id] return self._id2psg(shard_id, chunk_id) def get_retrieved_passages(self, all_indices): passages, db_ids = [], [] for query_indices in all_indices: passages_per_query = [ self._get_passage(int(index_id))["text"] for index_id in query_indices ] db_ids_per_query = [ self.index_id_to_db_id[int(index_id)] for index_id in query_indices ] passages.append(passages_per_query) db_ids.append(db_ids_per_query) return passages, db_ids def search(self, query_embs, k=4096): all_scores, all_indices = self.index.search(query_embs.astype(np.float32), k) all_passages, db_ids = self.get_retrieved_passages(all_indices) return all_scores.tolist(), all_passages, db_ids