# SGLang for PowerRAG
logo [![PyPI](https://img.shields.io/pypi/v/sglang)](https://pypi.org/project/sglang) ![PyPI - Downloads](https://img.shields.io/pypi/dm/sglang) [![license](https://img.shields.io/github/license/sgl-project/sglang.svg)](https://github.com/sgl-project/sglang/tree/main/LICENSE) [![issue resolution](https://img.shields.io/github/issues-closed-raw/sgl-project/sglang)](https://github.com/sgl-project/sglang/issues) [![open issues](https://img.shields.io/github/issues-raw/sgl-project/sglang)](https://github.com/sgl-project/sglang/issues) [![](https://img.shields.io/badge/Gurubase-(experimental)-006BFF)](https://gurubase.io/g/sglang)
-------------------------------------------------------------------------------- | [**Blog**](https://lmsys.org/blog/2024-07-25-sglang-llama3/) | [**Documentation**](https://docs.sglang.ai/) | [**Join Slack**](https://slack.sglang.ai/) | [**Join Bi-Weekly Development Meeting**](https://meeting.sglang.ai/) | [**Slides**](https://github.com/sgl-project/sgl-learning-materials?tab=readme-ov-file#slides) | ## News - [2025/01] 🔥 SGLang provides day one support for DeepSeek V3/R1 models on NVIDIA and AMD GPUs with DeepSeek-specific optimizations. ([instructions](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3), [AMD blog](https://www.amd.com/en/developer/resources/technical-articles/amd-instinct-gpus-power-deepseek-v3-revolutionizing-ai-development-with-sglang.html)) - [2024/12] 🔥 v0.4 Release: Zero-Overhead Batch Scheduler, Cache-Aware Load Balancer, Faster Structured Outputs ([blog](https://lmsys.org/blog/2024-12-04-sglang-v0-4/)). - [2024/09] v0.3 Release: 7x Faster DeepSeek MLA, 1.5x Faster torch.compile, Multi-Image/Video LLaVA-OneVision ([blog](https://lmsys.org/blog/2024-09-04-sglang-v0-3/)). - [2024/07] v0.2 Release: Faster Llama3 Serving with SGLang Runtime (vs. TensorRT-LLM, vLLM) ([blog](https://lmsys.org/blog/2024-07-25-sglang-llama3/)).
More - [2024/10] The First SGLang Online Meetup ([slides](https://github.com/sgl-project/sgl-learning-materials?tab=readme-ov-file#the-first-sglang-online-meetup)). - [2024/02] SGLang enables **3x faster JSON decoding** with compressed finite state machine ([blog](https://lmsys.org/blog/2024-02-05-compressed-fsm/)). - [2024/01] SGLang provides up to **5x faster inference** with RadixAttention ([blog](https://lmsys.org/blog/2024-01-17-sglang/)). - [2024/01] SGLang powers the serving of the official **LLaVA v1.6** release demo ([usage](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#demo)).
## About SGLang is a fast serving framework for large language models and vision language models. It makes your interaction with models faster and more controllable by co-designing the backend runtime and frontend language. The core features include: - **Fast Backend Runtime**: Provides efficient serving with RadixAttention for prefix caching, jump-forward constrained decoding, overhead-free CPU scheduler, continuous batching, token attention (paged attention), tensor parallelism, FlashInfer kernels, chunked prefill, and quantization (FP8/INT4/AWQ/GPTQ). - **Flexible Frontend Language**: Offers an intuitive interface for programming LLM applications, including chained generation calls, advanced prompting, control flow, multi-modal inputs, parallelism, and external interactions. - **Extensive Model Support**: Supports a wide range of generative models (Llama, Gemma, Mistral, QWen, DeepSeek, LLaVA, etc.), embedding models (e5-mistral, gte, mcdse) and reward models (Skywork), with easy extensibility for integrating new models. - **Active Community**: SGLang is open-source and backed by an active community with industry adoption. ## Getting Started - [Install SGLang](https://docs.sglang.ai/start/install.html) - [Quick Start](https://docs.sglang.ai/start/send_request.html) - [Backend Tutorial](https://docs.sglang.ai/backend/openai_api_completions.html) - [Frontend Tutorial](https://docs.sglang.ai/frontend/frontend.html) - [Contribution Guide](https://docs.sglang.ai/references/contribution_guide.html) ## Benchmark and Performance Learn more in the release blogs: [v0.2 blog](https://lmsys.org/blog/2024-07-25-sglang-llama3/), [v0.3 blog](https://lmsys.org/blog/2024-09-04-sglang-v0-3/), [v0.4 blog](https://lmsys.org/blog/2024-12-04-sglang-v0-4/) ## Roadmap [Development Roadmap (2024 Q4)](https://github.com/sgl-project/sglang/issues/1487) ## Adoption and Sponsorship The project is supported by (alphabetically): AMD, Baseten, Cursor, DataCrunch, Etched, Hyperbolic, Jam & Tea Studios, LinkedIn, LMSYS.org, Meituan, NVIDIA, RunPod, Stanford, UC Berkeley, UCLA, xAI, 01.AI. ## Acknowledgment and Citation We learned the design and reused code from the following projects: [Guidance](https://github.com/guidance-ai/guidance), [vLLM](https://github.com/vllm-project/vllm), [LightLLM](https://github.com/ModelTC/lightllm), [FlashInfer](https://github.com/flashinfer-ai/flashinfer), [Outlines](https://github.com/outlines-dev/outlines), and [LMQL](https://github.com/eth-sri/lmql). Please cite the paper, [SGLang: Efficient Execution of Structured Language Model Programs](https://arxiv.org/abs/2312.07104), if you find the project useful.