andylizf commited on
Commit
ba0cbbd
·
verified ·
1 Parent(s): 905a6f9

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. rag-evaluation-harness/lm_eval/tasks/bigbench/generate_until/checkmate_in_one.yaml +4 -0
  2. rag-evaluation-harness/lm_eval/tasks/bigbench/generate_until/codenames.yaml +4 -0
  3. rag-evaluation-harness/lm_eval/tasks/bigbench/generate_until/conceptual_combinations.yaml +4 -0
  4. rag-evaluation-harness/lm_eval/tasks/bigbench/generate_until/disambiguation_qa.yaml +4 -0
  5. rag-evaluation-harness/lm_eval/tasks/bigbench/generate_until/intersect_geometry.yaml +4 -0
  6. rag-evaluation-harness/lm_eval/tasks/bigbench/generate_until/key_value_maps.yaml +4 -0
  7. rag-evaluation-harness/lm_eval/tasks/bigbench/generate_until/misconceptions_russian.yaml +4 -0
  8. rag-evaluation-harness/lm_eval/tasks/bigbench/generate_until/similarities_abstraction.yaml +4 -0
  9. rag-evaluation-harness/lm_eval/tasks/bigbench/generate_until/social_iqa.yaml +4 -0
  10. rag-evaluation-harness/lm_eval/tasks/bigbench/generate_until/temporal_sequences.yaml +4 -0
  11. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/01_gemm/README.md +9 -0
  12. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/01_gemm/common.hpp +222 -0
  13. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/01_gemm/gemm_dl_fp16.cpp +37 -0
  14. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/01_gemm/gemm_dl_int4.cpp +44 -0
  15. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/01_gemm/gemm_wmma_fp16.cpp +73 -0
  16. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/01_gemm/gemm_xdl_fp16_fp8_v3.cpp +53 -0
  17. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/01_gemm/gemm_xdl_fp16_v2.cpp +51 -0
  18. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/01_gemm/gemm_xdl_int4.cpp +45 -0
  19. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/01_gemm/run_gemm_example_v2.inc +297 -0
  20. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/09_convnd_fwd/convnd_fwd_common.hpp +257 -0
  21. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/09_convnd_fwd/convnd_fwd_dl_common.hpp +196 -0
  22. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/09_convnd_fwd/convnd_fwd_dl_int8.cpp +40 -0
  23. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/09_convnd_fwd/convnd_fwd_xdl_fp64.cpp +79 -0
  24. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/09_convnd_fwd/convnd_fwd_xdl_int8.cpp +79 -0
  25. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/15_grouped_gemm/grouped_gemm_multiple_d_splitk_xdl_fp16.cpp +394 -0
  26. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/17_convnd_bwd_data/convnd_bwd_data_common.hpp +153 -0
  27. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/22_cgemm/cgemm_xdl_common.hpp +254 -0
  28. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/22_cgemm/cgemm_xdl_fp32.cpp +132 -0
  29. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/22_cgemm/cgemm_xdl_int4.cpp +140 -0
  30. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/22_cgemm/cgemm_xdl_int8.cpp +132 -0
  31. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/27_layernorm2d_fwd/common.hpp +22 -0
  32. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/27_layernorm2d_fwd/layernorm2d_fwd_fp16.cpp +44 -0
  33. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/27_layernorm2d_fwd/layernorm2d_fwd_splitk_fp16.cpp +45 -0
  34. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_fp32.cpp +135 -0
  35. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_int8.cpp +133 -0
  36. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/33_multiple_reduce/README.md +37 -0
  37. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/33_multiple_reduce/dual_reduce_common.hpp +314 -0
  38. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/33_multiple_reduce/dual_reduce_multiblock.cpp +98 -0
  39. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/33_multiple_reduce/dual_reduce_threadwise.cpp +93 -0
  40. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/52_im2col_col2im/common.hpp +97 -0
  41. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/52_im2col_col2im/image_to_column_f32.cpp +168 -0
  42. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_bias_fastgelu_bf16_i8.cpp +273 -0
  43. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_fastgelu_bf16_i8.cpp +273 -0
  44. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_fp16.cpp +363 -0
  45. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_multiply_bias_fastgelu_bf16_i8.cpp +274 -0
  46. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/profiler/include/profiler/data_type_enum.hpp +20 -0
  47. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/profiler/include/profiler/profile_batched_gemm_add_relu_gemm_add_impl.hpp +360 -0
  48. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/profiler/include/profiler/profile_batched_gemm_gemm_impl.hpp +319 -0
  49. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/profiler/include/profiler/profile_batched_gemm_impl.hpp +264 -0
  50. sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/profiler/include/profiler/profile_batched_gemm_reduce_impl.hpp +362 -0
rag-evaluation-harness/lm_eval/tasks/bigbench/generate_until/checkmate_in_one.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ # Generated by utils.py
2
+ dataset_name: checkmate_in_one_zero_shot
3
+ include: ../generate_until_template_yaml
4
+ task: bigbench_checkmate_in_one_generate_until
rag-evaluation-harness/lm_eval/tasks/bigbench/generate_until/codenames.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ # Generated by utils.py
2
+ dataset_name: codenames_zero_shot
3
+ include: ../generate_until_template_yaml
4
+ task: bigbench_codenames_generate_until
rag-evaluation-harness/lm_eval/tasks/bigbench/generate_until/conceptual_combinations.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ # Generated by utils.py
2
+ dataset_name: conceptual_combinations_zero_shot
3
+ include: ../generate_until_template_yaml
4
+ task: bigbench_conceptual_combinations_generate_until
rag-evaluation-harness/lm_eval/tasks/bigbench/generate_until/disambiguation_qa.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ # Generated by utils.py
2
+ dataset_name: disambiguation_qa_zero_shot
3
+ include: ../generate_until_template_yaml
4
+ task: bigbench_disambiguation_qa_generate_until
rag-evaluation-harness/lm_eval/tasks/bigbench/generate_until/intersect_geometry.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ # Generated by utils.py
2
+ dataset_name: intersect_geometry_zero_shot
3
+ include: ../generate_until_template_yaml
4
+ task: bigbench_intersect_geometry_generate_until
rag-evaluation-harness/lm_eval/tasks/bigbench/generate_until/key_value_maps.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ # Generated by utils.py
2
+ dataset_name: key_value_maps_zero_shot
3
+ include: ../generate_until_template_yaml
4
+ task: bigbench_key_value_maps_generate_until
rag-evaluation-harness/lm_eval/tasks/bigbench/generate_until/misconceptions_russian.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ # Generated by utils.py
2
+ dataset_name: misconceptions_russian_zero_shot
3
+ include: ../generate_until_template_yaml
4
+ task: bigbench_misconceptions_russian_generate_until
rag-evaluation-harness/lm_eval/tasks/bigbench/generate_until/similarities_abstraction.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ # Generated by utils.py
2
+ dataset_name: similarities_abstraction_zero_shot
3
+ include: ../generate_until_template_yaml
4
+ task: bigbench_similarities_abstraction_generate_until
rag-evaluation-harness/lm_eval/tasks/bigbench/generate_until/social_iqa.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ # Generated by utils.py
2
+ dataset_name: social_iqa_zero_shot
3
+ include: ../generate_until_template_yaml
4
+ task: bigbench_social_iqa_generate_until
rag-evaluation-harness/lm_eval/tasks/bigbench/generate_until/temporal_sequences.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ # Generated by utils.py
2
+ dataset_name: temporal_sequences_zero_shot
3
+ include: ../generate_until_template_yaml
4
+ task: bigbench_temporal_sequences_generate_until
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/01_gemm/README.md ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ # Instructions for ```example_gemm_xdl```
2
+
3
+ ## Run ```example_gemm_xdl```
4
+ ```bash
5
+ #arg1: verification (0=no, 1=yes)
6
+ #arg2: initialization (0=no init, 1=integer value, 2=decimal value)
7
+ #arg3: run kernel # of times (>1)
8
+ ./bin/example_gemm_xdl 0 1 5
9
+ ```
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/01_gemm/common.hpp ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #pragma once
5
+
6
+ #include <cstdlib>
7
+ #include <iostream>
8
+ #include <initializer_list>
9
+ #include <numeric>
10
+
11
+ #include "ck/ck.hpp"
12
+ #include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
13
+ #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
14
+ #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
15
+ #include "ck/utility/data_type.hpp"
16
+
17
+ #include "ck/library/utility/check_err.hpp"
18
+ #include "ck/library/utility/device_memory.hpp"
19
+ #include "ck/library/utility/fill.hpp"
20
+ #include "ck/library/utility/host_tensor.hpp"
21
+ #include "ck/library/utility/host_tensor_generator.hpp"
22
+ #include "ck/library/utility/literals.hpp"
23
+ #include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
24
+
25
+ struct ProblemSize final
26
+ {
27
+ ck::index_t M = 3840;
28
+ ck::index_t N = 4096;
29
+ ck::index_t K = 4096;
30
+
31
+ ck::index_t StrideA = 4096;
32
+ ck::index_t StrideB = 4096;
33
+ ck::index_t StrideC = 4096;
34
+ };
35
+
36
+ struct ProblemSizeStreamK final
37
+ {
38
+ ck::index_t M = 3840;
39
+ ck::index_t N = 4096;
40
+ ck::index_t K = 4096;
41
+
42
+ ck::index_t StrideA = 4096;
43
+ ck::index_t StrideB = 4096;
44
+ ck::index_t StrideC = 4096;
45
+
46
+ ck::index_t NumSKBlocks = -1;
47
+ };
48
+
49
+ struct ProblemSizeSplitK final
50
+ {
51
+ ck::index_t M = 3840;
52
+ ck::index_t N = 4096;
53
+ ck::index_t K = 4096;
54
+
55
+ ck::index_t StrideA = 4096;
56
+ ck::index_t StrideB = 4096;
57
+ ck::index_t StrideC = 4096;
58
+
59
+ ck::index_t KBatch = 1;
60
+ };
61
+
62
+ struct ExecutionConfig final
63
+ {
64
+ bool do_verification = true;
65
+ int init_method = 2;
66
+ bool time_kernel = false;
67
+ };
68
+
69
+ template <ck::index_t... Is>
70
+ using S = ck::Sequence<Is...>;
71
+
72
+ using Row = ck::tensor_layout::gemm::RowMajor;
73
+ using Col = ck::tensor_layout::gemm::ColumnMajor;
74
+
75
+ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
76
+
77
+ template <typename ProblemType>
78
+ bool parse_cmd_args(int, char*[], ProblemType&, ExecutionConfig&)
79
+ {
80
+ return false;
81
+ }
82
+
83
+ template <>
84
+ bool parse_cmd_args<ProblemSize>(int argc,
85
+ char* argv[],
86
+ ProblemSize& problem_size,
87
+ ExecutionConfig& config)
88
+ {
89
+ if(argc == 1)
90
+ {
91
+ // use default case
92
+ }
93
+ else if(argc == 4)
94
+ {
95
+ config.do_verification = std::stoi(argv[1]);
96
+ config.init_method = std::stoi(argv[2]);
97
+ config.time_kernel = std::stoi(argv[3]);
98
+ }
99
+ else if(argc == 10)
100
+ {
101
+ config.do_verification = std::stoi(argv[1]);
102
+ config.init_method = std::stoi(argv[2]);
103
+ config.time_kernel = std::stoi(argv[3]);
104
+
105
+ problem_size.M = std::stoi(argv[4]);
106
+ problem_size.N = std::stoi(argv[5]);
107
+ problem_size.K = std::stoi(argv[6]);
108
+
109
+ problem_size.StrideA = std::stoi(argv[7]);
110
+ problem_size.StrideB = std::stoi(argv[8]);
111
+ problem_size.StrideC = std::stoi(argv[9]);
112
+ }
113
+ else
114
+ {
115
+ std::cerr << "arg1: verification (0=no, 1=yes)" << std::endl
116
+ << "arg2: initialization (0=no init, 1=integer value, 2=decimal value)"
117
+ << std::endl
118
+ << "arg3: time kernel (0=no, 1=yes)" << std::endl
119
+ << "arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC" << std::endl;
120
+ return false;
121
+ }
122
+
123
+ return true;
124
+ }
125
+
126
+ template <>
127
+ bool parse_cmd_args<ProblemSizeStreamK>(int argc,
128
+ char* argv[],
129
+ ProblemSizeStreamK& problem_size,
130
+ ExecutionConfig& config)
131
+ {
132
+ if(argc == 1)
133
+ {
134
+ // use default case
135
+ }
136
+ else if(argc == 4)
137
+ {
138
+ config.do_verification = std::stoi(argv[1]);
139
+ config.init_method = std::stoi(argv[2]);
140
+ config.time_kernel = std::stoi(argv[3]);
141
+ }
142
+ else if(argc >= 10)
143
+ {
144
+ config.do_verification = std::stoi(argv[1]);
145
+ config.init_method = std::stoi(argv[2]);
146
+ config.time_kernel = std::stoi(argv[3]);
147
+
148
+ problem_size.M = std::stoi(argv[4]);
149
+ problem_size.N = std::stoi(argv[5]);
150
+ problem_size.K = std::stoi(argv[6]);
151
+
152
+ problem_size.StrideA = std::stoi(argv[7]);
153
+ problem_size.StrideB = std::stoi(argv[8]);
154
+ problem_size.StrideC = std::stoi(argv[9]);
155
+
156
+ if(argc >= 11)
157
+ {
158
+ problem_size.NumSKBlocks = std::stoi(argv[10]);
159
+ }
160
+ }
161
+ else
162
+ {
163
+ std::cerr << "arg1: verification (0=no, 1=yes)" << std::endl
164
+ << "arg2: initialization (0=no init, 1=integer value, 2=decimal value)"
165
+ << std::endl
166
+ << "arg3: time kernel (0=no, 1=yes)" << std::endl
167
+ << "arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC" << std::endl
168
+ << "arg10: NumSKBlocks(optional)" << std::endl;
169
+ return false;
170
+ }
171
+
172
+ return true;
173
+ }
174
+
175
+ template <>
176
+ bool parse_cmd_args<ProblemSizeSplitK>(int argc,
177
+ char* argv[],
178
+ ProblemSizeSplitK& problem_size,
179
+ ExecutionConfig& config)
180
+ {
181
+ if(argc == 1)
182
+ {
183
+ // use default case
184
+ }
185
+ else if(argc == 4)
186
+ {
187
+ config.do_verification = std::stoi(argv[1]);
188
+ config.init_method = std::stoi(argv[2]);
189
+ config.time_kernel = std::stoi(argv[3]);
190
+ }
191
+ else if(argc >= 10)
192
+ {
193
+ config.do_verification = std::stoi(argv[1]);
194
+ config.init_method = std::stoi(argv[2]);
195
+ config.time_kernel = std::stoi(argv[3]);
196
+
197
+ problem_size.M = std::stoi(argv[4]);
198
+ problem_size.N = std::stoi(argv[5]);
199
+ problem_size.K = std::stoi(argv[6]);
200
+
201
+ problem_size.StrideA = std::stoi(argv[7]);
202
+ problem_size.StrideB = std::stoi(argv[8]);
203
+ problem_size.StrideC = std::stoi(argv[9]);
204
+
205
+ if(argc >= 11)
206
+ {
207
+ problem_size.KBatch = std::stoi(argv[10]);
208
+ }
209
+ }
210
+ else
211
+ {
212
+ std::cerr << "arg1: verification (0=no, 1=yes)" << std::endl
213
+ << "arg2: initialization (0=no init, 1=integer value, 2=decimal value)"
214
+ << std::endl
215
+ << "arg3: time kernel (0=no, 1=yes)" << std::endl
216
+ << "arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC" << std::endl
217
+ << "arg10: KBatch" << std::endl;
218
+ return false;
219
+ }
220
+
221
+ return true;
222
+ }
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/01_gemm/gemm_dl_fp16.cpp ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #include "common.hpp"
5
+
6
+ #include "ck/tensor_operation/gpu/device/impl/device_gemm_dl.hpp"
7
+
8
+ using ADataType = ck::half_t;
9
+ using BDataType = ck::half_t;
10
+ using CDataType = ck::half_t;
11
+ using AccDataType = float;
12
+
13
+ using ALayout = Col;
14
+ using BLayout = Row;
15
+ using CLayout = Row;
16
+
17
+ using AElementOp = PassThrough;
18
+ using BElementOp = PassThrough;
19
+ using CElementOp = PassThrough;
20
+
21
+ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
22
+
23
+ // clang-format off
24
+ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmDl
25
+ // ######| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
26
+ // ######| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
27
+ // ######| | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
28
+ // ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
29
+ < ADataType, BDataType, CDataType, AccDataType, ALayout, BLayout, CLayout, AElementOp, BElementOp, CElementOp, GemmDefault, 256, 128, 128, 16, 2, 4, 4, 1, S<8, 2>, S<8, 2>, S<2, 1, 4, 2>, S<8, 1, 32, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 2>, S<2, 1, 4, 2>, S<8, 1, 32, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>;
30
+ // clang-format on
31
+
32
+ using ReferenceGemmInstance = ck::tensor_operation::host::
33
+ ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
34
+
35
+ #include "run_gemm_example.inc"
36
+
37
+ int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); }
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/01_gemm/gemm_dl_int4.cpp ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
5
+
6
+ #include "common.hpp"
7
+
8
+ #include "ck/tensor_operation/gpu/device/impl/device_gemm_dl.hpp"
9
+
10
+ using ADataType = ck::int4_t;
11
+ using BDataType = ck::int4_t;
12
+ using CDataType = ck::int4_t;
13
+ using KernelADataType = int8_t;
14
+ using KernelBDataType = int8_t;
15
+ using KernelCDataType = int8_t;
16
+ using AccDataType = int32_t;
17
+
18
+ using ALayout = Col;
19
+ using BLayout = Row;
20
+ using CLayout = Row;
21
+
22
+ using AElementOp = PassThrough;
23
+ using BElementOp = PassThrough;
24
+ using CElementOp = PassThrough;
25
+
26
+ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
27
+
28
+ // clang-format off
29
+ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmDl
30
+ // ######| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
31
+ // ######| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
32
+ // ######| | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
33
+ // ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
34
+ < KernelADataType, KernelBDataType, KernelCDataType, AccDataType, ALayout, BLayout, CLayout, AElementOp, BElementOp, CElementOp, GemmDefault, 256, 128, 128, 16, 4, 4, 4, 1, S<8, 2>, S<8, 2>, S<2, 1, 4, 4>, S<8, 1, 32, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 4>, S<2, 1, 4, 4>, S<8, 1, 32, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 4>, S<0, 1, 2, 3, 4, 5>, 5, 4>;
35
+ // clang-format on
36
+
37
+ using ReferenceGemmInstance = ck::tensor_operation::host::
38
+ ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
39
+
40
+ #define BUILD_INT4_EXAMPLE
41
+ #include "run_gemm_example.inc"
42
+
43
+ int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); }
44
+ #endif
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/01_gemm/gemm_wmma_fp16.cpp ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #include "common.hpp"
5
+
6
+ #include "ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp"
7
+
8
+ using ADataType = ck::half_t;
9
+ using BDataType = ck::half_t;
10
+ using AccDataType = float;
11
+ using CShuffleDataType = float;
12
+ using CDataType = ck::half_t;
13
+
14
+ using ALayout = Row;
15
+ using BLayout = Col;
16
+ using CLayout = Row;
17
+
18
+ using AElementOp = PassThrough;
19
+ using BElementOp = PassThrough;
20
+ using CElementOp = PassThrough;
21
+
22
+ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
23
+
24
+ // clang-format off
25
+ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmWmma_CShuffle
26
+ < ALayout,
27
+ BLayout,
28
+ CLayout,
29
+ ADataType,
30
+ BDataType,
31
+ CDataType,
32
+ AccDataType,
33
+ CShuffleDataType,
34
+ AElementOp,
35
+ BElementOp,
36
+ CElementOp,
37
+ GemmDefault,
38
+ 1, // Prefetch stage
39
+ 128, // BlockSize
40
+ 64, // MPerBlock
41
+ 128, // NPerBlock
42
+ 64, // KPerBlock
43
+ 8, // K1
44
+ 16, // MPerWmma
45
+ 16, // NPerWmma
46
+ 2, // M-Repeat // M-PerWmma / M-Repeat = M-Wave
47
+ 4, // N-Repeat // N-PerWmma / N-Repeat = N-Wave
48
+ S<4, 32, 1>,
49
+ S<1, 0, 2>,
50
+ S<1, 0, 2>,
51
+ 2,
52
+ 8,
53
+ 8,
54
+ true,
55
+ S<4, 32, 1>,
56
+ S<1, 0, 2>,
57
+ S<1, 0, 2>,
58
+ 2,
59
+ 8,
60
+ 8,
61
+ true,
62
+ 1, // C shuffle (M Repeat) Per store
63
+ 1, // C shuffle (N Repeat) Per store
64
+ S<1, 32, 1, 4>,
65
+ 8>;
66
+ // clang-format on
67
+
68
+ using ReferenceGemmInstance = ck::tensor_operation::host::
69
+ ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
70
+
71
+ #include "run_gemm_example.inc"
72
+
73
+ int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); }
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/01_gemm/gemm_xdl_fp16_fp8_v3.cpp ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #include "common.hpp"
5
+
6
+ #include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3.hpp"
7
+
8
+ using ADataType = ck::f8_t;
9
+ using BDataType = ck::half_t;
10
+ using AccDataType = float;
11
+ using CShuffleDataType = ck::half_t;
12
+ using CDataType = ck::half_t;
13
+
14
+ using ALayout = Row;
15
+ using BLayout = Col;
16
+ using CLayout = Row;
17
+
18
+ using AElementOp = PassThrough;
19
+ using BElementOp = PassThrough;
20
+ using CElementOp = PassThrough;
21
+
22
+ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
23
+
24
+ // clang-format off
25
+ using DeviceGemmV2Instance =
26
+ ck::tensor_operation::device::DeviceGemm_Xdl_CShuffleV3<
27
+ ALayout, BLayout, CLayout,
28
+ ADataType, BDataType, CDataType, AccDataType, CShuffleDataType,
29
+ AElementOp, BElementOp, CElementOp, GemmDefault,
30
+ 64,
31
+ 16, 16,
32
+ 64, 16, 8,
33
+ 16, 16,
34
+ 1, 1,
35
+ S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>,
36
+ 2, 16, 16, 0,
37
+ S<8, 8, 1>, S<1, 0, 2>, S<1, 0, 2>,
38
+ 2, 8, 8, 0,
39
+ 1, 1, S<1, 16, 1, 4>, 4,
40
+ ck::BlockGemmPipelineScheduler::Intrawave,ck::BlockGemmPipelineVersion::v1>;
41
+ // clang-format on
42
+
43
+ using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
44
+ BDataType,
45
+ CDataType,
46
+ AccDataType,
47
+ PassThrough,
48
+ PassThrough,
49
+ PassThrough>;
50
+
51
+ #include "run_gemm_example_v2.inc"
52
+
53
+ int main(int argc, char* argv[]) { return !run_gemm_splitk_example(argc, argv); }
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/01_gemm/gemm_xdl_fp16_v2.cpp ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #include "common.hpp"
5
+
6
+ #include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v2.hpp"
7
+
8
+ using ADataType = ck::half_t;
9
+ using BDataType = ck::half_t;
10
+ using AccDataType = float;
11
+ using CShuffleDataType = ck::half_t;
12
+ using CDataType = ck::half_t;
13
+
14
+ using F16 = ck::half_t;
15
+ using F32 = float;
16
+
17
+ using ALayout = Row;
18
+ using BLayout = Row;
19
+ using CLayout = Row;
20
+
21
+ using AElementOp = PassThrough;
22
+ using BElementOp = PassThrough;
23
+ using CElementOp = PassThrough;
24
+
25
+ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
26
+
27
+ // clang-format off
28
+ using DeviceGemmInstance =
29
+ ck::tensor_operation::device::DeviceGemm_Xdl_CShuffleV2<
30
+ ALayout, BLayout, CLayout,
31
+ F16, F16, F16, F32, F16,
32
+ PassThrough, PassThrough, PassThrough, GemmDefault,
33
+ 2, 256,
34
+ 256, 256,
35
+ 32, 8, 4,
36
+ 32, 32,
37
+ 4, 4,
38
+ S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>,
39
+ 2, 8, 8, 0,
40
+ S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>,
41
+ 1, 8, 4, 0,
42
+ 1, 1, S<1, 32, 1, 8>, 8,
43
+ ck::LoopScheduler::Default, ck::PipelineVersion::v1>;
44
+ // clang-format on
45
+
46
+ using ReferenceGemmInstance = ck::tensor_operation::host::
47
+ ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
48
+
49
+ #include "run_gemm_example.inc"
50
+
51
+ int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); }
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/01_gemm/gemm_xdl_int4.cpp ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
5
+
6
+ #include "common.hpp"
7
+
8
+ #include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp"
9
+
10
+ using ADataType = ck::int4_t;
11
+ using BDataType = ck::int4_t;
12
+ using CDataType = ck::int4_t;
13
+ using KernelADataType = int8_t;
14
+ using KernelBDataType = int8_t;
15
+ using KernelCDataType = int8_t;
16
+ using AccDataType = int32_t;
17
+ using CShuffleDataType = int8_t;
18
+
19
+ using ALayout = Row;
20
+ using BLayout = Col;
21
+ using CLayout = Row;
22
+
23
+ using AElementOp = PassThrough;
24
+ using BElementOp = PassThrough;
25
+ using CElementOp = PassThrough;
26
+
27
+ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
28
+
29
+ // clang-format off
30
+ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle
31
+ // ######| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
32
+ // ######| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
33
+ // ######| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
34
+ // ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
35
+ < ALayout, BLayout, CLayout, KernelADataType, KernelBDataType, KernelCDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CElementOp, GemmDefault, 1, 256, 256, 128, 64, 16, 16, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 64, 1, 4>, 16>;
36
+ // clang-format on
37
+
38
+ using ReferenceGemmInstance = ck::tensor_operation::host::
39
+ ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
40
+
41
+ #define BUILD_INT4_EXAMPLE
42
+ #include "run_gemm_example.inc"
43
+
44
+ int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); }
45
+ #endif
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/01_gemm/run_gemm_example_v2.inc ADDED
@@ -0,0 +1,297 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #pragma once
5
+
6
+ template <typename DataType>
7
+ inline __host__ __device__ constexpr double get_rtol()
8
+ {
9
+ if constexpr(std::is_same_v<DataType, float>)
10
+ {
11
+ return 1e-3;
12
+ }
13
+ else if constexpr(std::is_same_v<DataType, double>)
14
+ {
15
+ return 1e-6;
16
+ }
17
+ else if constexpr(std::is_same_v<DataType, ck::half_t>)
18
+ {
19
+ return 1e-3;
20
+ }
21
+ else if constexpr(std::is_same_v<DataType, ck::bhalf_t>)
22
+ {
23
+ return 5e-2;
24
+ }
25
+ else if constexpr(std::is_same_v<DataType, int32_t>)
26
+ {
27
+ return 1e-1;
28
+ }
29
+ else if constexpr(std::is_same_v<DataType, int8_t>)
30
+ {
31
+ return 1e-1;
32
+ }
33
+ else if constexpr(std::is_same_v<DataType, ck::f8_t>)
34
+ {
35
+ return 1e-1; // 240 and 224 are acceptable
36
+ }
37
+ else if constexpr(std::is_same_v<DataType, ck::bf8_t>)
38
+ {
39
+ return 1.5e-1; // 57344 and 49152 are acceptable
40
+ }
41
+ else
42
+ {
43
+ return 1e-3;
44
+ }
45
+ }
46
+
47
+ template <typename DataType>
48
+ inline __host__ __device__ constexpr double get_atol()
49
+ {
50
+ if constexpr(std::is_same_v<DataType, float>)
51
+ {
52
+ return 1e-3;
53
+ }
54
+ else if constexpr(std::is_same_v<DataType, double>)
55
+ {
56
+ return 1e-6;
57
+ }
58
+ else if constexpr(std::is_same_v<DataType, ck::half_t>)
59
+ {
60
+ return 1e-3;
61
+ }
62
+ else if constexpr(std::is_same_v<DataType, ck::bhalf_t>)
63
+ {
64
+ return 5e-2;
65
+ }
66
+ else if constexpr(std::is_same_v<DataType, int32_t>)
67
+ {
68
+ return 1e-1;
69
+ }
70
+ else if constexpr(std::is_same_v<DataType, int8_t>)
71
+ {
72
+ return 1e-1;
73
+ }
74
+ else if constexpr(std::is_same_v<DataType, ck::f8_t>)
75
+ {
76
+ return 16.1; // 240 and 224 are acceptable
77
+ }
78
+ else if constexpr(std::is_same_v<DataType, ck::bf8_t>)
79
+ {
80
+ return 8192.1; // 57344 and 49152 are acceptable
81
+ }
82
+ else
83
+ {
84
+ return 1e-3;
85
+ }
86
+ }
87
+
88
+ template <typename ProblemType>
89
+ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
90
+ {
91
+ #if defined(BUILD_INT4_EXAMPLE) && defined(CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4)
92
+ static_assert(sizeof(ck::int4_t) == sizeof(int8_t));
93
+ #endif
94
+
95
+ using namespace ck::literals;
96
+
97
+ auto M = problem_size.M;
98
+ auto N = problem_size.N;
99
+ auto K = problem_size.K;
100
+ auto StrideA = problem_size.StrideA;
101
+ auto StrideB = problem_size.StrideB;
102
+ auto StrideC = problem_size.StrideC;
103
+ auto KBatch = problem_size.KBatch;
104
+
105
+ auto f_host_tensor_descriptor =
106
+ [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
107
+ if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
108
+ {
109
+ return HostTensorDescriptor({row, col}, {stride, 1_uz});
110
+ }
111
+ else
112
+ {
113
+ return HostTensorDescriptor({row, col}, {1_uz, stride});
114
+ }
115
+ };
116
+
117
+ auto f_get_default_stride =
118
+ [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
119
+ if(stride == 0)
120
+ {
121
+ // give a chance if stride is zero, return a default packed stride
122
+ if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
123
+ {
124
+ return col;
125
+ }
126
+ else
127
+ {
128
+ return row;
129
+ }
130
+ }
131
+ else
132
+ return stride;
133
+ };
134
+
135
+ StrideA = f_get_default_stride(M, K, StrideA, ALayout{});
136
+ StrideB = f_get_default_stride(K, N, StrideB, BLayout{});
137
+ StrideC = f_get_default_stride(M, N, StrideC, CLayout{});
138
+
139
+ Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
140
+ Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
141
+
142
+ switch(config.init_method)
143
+ {
144
+ case 0:
145
+ a_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
146
+ b_k_n.GenerateTensorValue(GeneratorTensor_1<BDataType>{1});
147
+ break;
148
+ case 1:
149
+ a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
150
+ b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2});
151
+ break;
152
+ case 2:
153
+ a_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
154
+ b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2});
155
+ break;
156
+ case 3:
157
+ a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
158
+ b_k_n.GenerateTensorValue(GeneratorTensor_1<BDataType>{1});
159
+ break;
160
+ default:
161
+ a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
162
+ b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
163
+ }
164
+ #if 0
165
+ printf("B matrix:\n");
166
+ for (int in = 0; in < N; in++)
167
+ {
168
+ for (int ik = 0; ik < K; ik++)
169
+ {
170
+ printf("%02x ", *(reinterpret_cast<uint8_t*>(&b_k_n(ik,in))));
171
+ if(ik%8==7) printf("|");
172
+ }
173
+ printf("\n");
174
+ }
175
+ #endif
176
+
177
+ Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
178
+ Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
179
+
180
+ std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
181
+ std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
182
+ std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
183
+
184
+ #ifdef BUILD_INT4_EXAMPLE
185
+ DeviceMem a_m_k_device_buf(sizeof(KernelADataType) * a_m_k.mDesc.GetElementSpaceSize());
186
+ DeviceMem b_k_n_device_buf(sizeof(KernelBDataType) * b_k_n.mDesc.GetElementSpaceSize());
187
+ DeviceMem c_m_n_device_buf(sizeof(KernelCDataType) *
188
+ c_m_n_device_result.mDesc.GetElementSpaceSize());
189
+
190
+ const Tensor<KernelADataType> a_m_k_converted(a_m_k);
191
+ const Tensor<KernelBDataType> b_k_n_converted(b_k_n);
192
+
193
+ a_m_k_device_buf.ToDevice(a_m_k_converted.mData.data());
194
+ b_k_n_device_buf.ToDevice(b_k_n_converted.mData.data());
195
+ #else
196
+ DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
197
+ DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
198
+ DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpaceSize());
199
+
200
+ a_m_k_device_buf.ToDevice(a_m_k.mData.data());
201
+ b_k_n_device_buf.ToDevice(b_k_n.mData.data());
202
+ #endif
203
+ DeviceMem workspace;
204
+
205
+ auto a_element_op = AElementOp{};
206
+ auto b_element_op = BElementOp{};
207
+ auto c_element_op = CElementOp{};
208
+
209
+ // do GEMM
210
+ auto gemm = DeviceGemmV2Instance{};
211
+ auto invoker = gemm.MakeInvoker();
212
+ float ave_time = 0;
213
+
214
+ auto argument = gemm.MakeArgument(
215
+ #ifdef BUILD_INT4_EXAMPLE
216
+ static_cast<KernelADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
217
+ static_cast<KernelBDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
218
+ static_cast<KernelCDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
219
+ #else
220
+ static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
221
+ static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
222
+ static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
223
+ #endif
224
+ M,
225
+ N,
226
+ K,
227
+ StrideA,
228
+ StrideB,
229
+ StrideC,
230
+ KBatch,
231
+ a_element_op,
232
+ b_element_op,
233
+ c_element_op);
234
+
235
+ if(!gemm.IsSupportedArgument(argument))
236
+ {
237
+ std::cerr << gemm.GetTypeString() << " does not support this problem" << std::endl;
238
+
239
+ return true;
240
+ }
241
+
242
+ bool pass = true;
243
+ if(config.do_verification)
244
+ {
245
+ auto ref_gemm = ReferenceGemmInstance{};
246
+ auto ref_invoker = ref_gemm.MakeInvoker();
247
+
248
+ auto ref_argument = ref_gemm.MakeArgument(
249
+ a_m_k, b_k_n, c_m_n_host_result, PassThrough{}, PassThrough{}, PassThrough{});
250
+
251
+ ref_invoker.Run(ref_argument);
252
+
253
+ ave_time = invoker.Run(argument, StreamConfig{nullptr, false, 1});
254
+ #ifdef BUILD_INT4_EXAMPLE
255
+ Tensor<CDataType> c_m_n_device_result_converted(c_m_n_host_result.mDesc);
256
+
257
+ c_m_n_device_buf.FromDevice(c_m_n_device_result_converted.mData.data());
258
+
259
+ c_m_n_device_result = c_m_n_device_result_converted.CopyAsType<CDataType>();
260
+
261
+ return ck::utils::check_err(c_m_n_device_result_converted, c_m_n_host_result);
262
+ #else
263
+ c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
264
+
265
+ pass &= ck::utils::check_err(c_m_n_device_result,
266
+ c_m_n_host_result,
267
+ "Error: Incorrect results!",
268
+ get_rtol<CDataType>(),
269
+ get_atol<CDataType>());
270
+ #endif
271
+ }
272
+
273
+ if(config.time_kernel)
274
+ {
275
+ ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
276
+
277
+ std::size_t flop = 2_uz * M * N * K;
278
+ std::size_t num_btype =
279
+ sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;
280
+
281
+ float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
282
+
283
+ float gb_per_sec = num_btype / 1.E6 / ave_time;
284
+
285
+ std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
286
+ << " GB/s, " << gemm.GetTypeString() << std::endl;
287
+ }
288
+ return pass;
289
+ }
290
+
291
+ bool run_gemm_splitk_example(int argc, char* argv[])
292
+ {
293
+ ProblemSizeSplitK problem_size;
294
+ ExecutionConfig config;
295
+
296
+ return !parse_cmd_args(argc, argv, problem_size, config) || run_gemm(problem_size, config);
297
+ }
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/09_convnd_fwd/convnd_fwd_common.hpp ADDED
@@ -0,0 +1,257 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #include <cstdlib>
5
+ #include <iostream>
6
+ #include <numeric>
7
+ #include <type_traits>
8
+
9
+ #include "ck/ck.hpp"
10
+ #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
11
+ #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
12
+
13
+ #include "ck/library/utility/algorithm.hpp"
14
+ #include "ck/library/utility/check_err.hpp"
15
+ #include "ck/library/utility/device_memory.hpp"
16
+ #include "ck/library/utility/host_tensor.hpp"
17
+ #include "ck/library/utility/host_tensor_generator.hpp"
18
+ #include "ck/library/utility/convolution_parameter.hpp"
19
+ #include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
20
+ #include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
21
+
22
+ void print_helper_msg()
23
+ {
24
+ std::cout << "arg1: verification (0=no, 1=yes)\n"
25
+ << "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
26
+ << "arg3: time kernel (0=no, 1=yes)\n"
27
+ << ck::utils::conv::get_conv_param_parser_helper_msg() << std::endl;
28
+ }
29
+
30
+ template <typename DataType>
31
+ inline __host__ __device__ constexpr double get_rtol()
32
+ {
33
+ if constexpr(std::is_same_v<DataType, float>)
34
+ {
35
+ return 1e-3;
36
+ }
37
+ else if constexpr(std::is_same_v<DataType, double>)
38
+ {
39
+ return 1e-6;
40
+ }
41
+ else if constexpr(std::is_same_v<DataType, ck::half_t>)
42
+ {
43
+ return 1e-3;
44
+ }
45
+ else if constexpr(std::is_same_v<DataType, ck::bhalf_t>)
46
+ {
47
+ return 5e-2;
48
+ }
49
+ else if constexpr(std::is_same_v<DataType, int32_t>)
50
+ {
51
+ return 1e-1;
52
+ }
53
+ else if constexpr(std::is_same_v<DataType, int8_t>)
54
+ {
55
+ return 1e-1;
56
+ }
57
+ else if constexpr(std::is_same_v<DataType, ck::f8_t>)
58
+ {
59
+ return 1e-1; // 240 and 224 are acceptable
60
+ }
61
+ else if constexpr(std::is_same_v<DataType, ck::bf8_t>)
62
+ {
63
+ return 1.5e-1; // 57344 and 49152 are acceptable
64
+ }
65
+ else
66
+ {
67
+ return 1e-3;
68
+ }
69
+ }
70
+
71
+ template <typename DataType>
72
+ inline __host__ __device__ constexpr double get_atol()
73
+ {
74
+ if constexpr(std::is_same_v<DataType, float>)
75
+ {
76
+ return 1e-3;
77
+ }
78
+ else if constexpr(std::is_same_v<DataType, double>)
79
+ {
80
+ return 1e-6;
81
+ }
82
+ else if constexpr(std::is_same_v<DataType, ck::half_t>)
83
+ {
84
+ return 1e-3;
85
+ }
86
+ else if constexpr(std::is_same_v<DataType, ck::bhalf_t>)
87
+ {
88
+ return 5e-2;
89
+ }
90
+ else if constexpr(std::is_same_v<DataType, int32_t>)
91
+ {
92
+ return 1e-1;
93
+ }
94
+ else if constexpr(std::is_same_v<DataType, int8_t>)
95
+ {
96
+ return 1e-1;
97
+ }
98
+ else if constexpr(std::is_same_v<DataType, ck::f8_t>)
99
+ {
100
+ return 16.1; // 240 and 224 are acceptable
101
+ }
102
+ else if constexpr(std::is_same_v<DataType, ck::bf8_t>)
103
+ {
104
+ return 8192.1; // 57344 and 49152 are acceptable
105
+ }
106
+ else
107
+ {
108
+ return 1e-3;
109
+ }
110
+ }
111
+
112
+ template <ck::index_t NDimSpatial,
113
+ typename InDataType,
114
+ typename WeiDataType,
115
+ typename OutDataType,
116
+ typename InElementOp,
117
+ typename WeiElementOp,
118
+ typename OutElementOp,
119
+ typename DeviceConvNDFwdInstance>
120
+ bool run_grouped_conv_fwd(bool do_verification,
121
+ int init_method,
122
+ bool time_kernel,
123
+ const ck::utils::conv::ConvParam& conv_param,
124
+ const HostTensorDescriptor& in_g_n_c_wis_desc,
125
+ const HostTensorDescriptor& wei_g_k_c_xs_desc,
126
+ const HostTensorDescriptor& out_g_n_k_wos_desc,
127
+ const InElementOp& in_element_op,
128
+ const WeiElementOp& wei_element_op,
129
+ const OutElementOp& out_element_op)
130
+ {
131
+ Tensor<InDataType> in(in_g_n_c_wis_desc);
132
+ Tensor<WeiDataType> wei(wei_g_k_c_xs_desc);
133
+ Tensor<OutDataType> out_host(out_g_n_k_wos_desc);
134
+ Tensor<OutDataType> out_device(out_g_n_k_wos_desc);
135
+
136
+ std::cout << "in: " << in.mDesc << std::endl;
137
+ std::cout << "wei: " << wei.mDesc << std::endl;
138
+ std::cout << "out: " << out_host.mDesc << std::endl;
139
+
140
+ switch(init_method)
141
+ {
142
+ case 0: break;
143
+ case 1:
144
+ in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
145
+ wei.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
146
+ break;
147
+ default:
148
+ in.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
149
+ wei.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
150
+ }
151
+
152
+ DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
153
+ DeviceMem wei_device_buf(sizeof(WeiDataType) * wei.mDesc.GetElementSpaceSize());
154
+ DeviceMem out_device_buf(sizeof(OutDataType) * out_device.mDesc.GetElementSpaceSize());
155
+
156
+ in_device_buf.ToDevice(in.mData.data());
157
+ wei_device_buf.ToDevice(wei.mData.data());
158
+
159
+ std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_lengths{};
160
+ std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_strides{};
161
+ std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_lengths{};
162
+ std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_strides{};
163
+ std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_lengths{};
164
+ std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_strides{};
165
+ std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
166
+ std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
167
+ std::array<ck::index_t, NDimSpatial> input_left_pads{};
168
+ std::array<ck::index_t, NDimSpatial> input_right_pads{};
169
+
170
+ auto copy = [](const auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
171
+
172
+ copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
173
+ copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
174
+ copy(wei_g_k_c_xs_desc.GetLengths(), b_g_k_c_xs_lengths);
175
+ copy(wei_g_k_c_xs_desc.GetStrides(), b_g_k_c_xs_strides);
176
+ copy(out_g_n_k_wos_desc.GetLengths(), e_g_n_k_wos_lengths);
177
+ copy(out_g_n_k_wos_desc.GetStrides(), e_g_n_k_wos_strides);
178
+ copy(conv_param.conv_filter_strides_, conv_filter_strides);
179
+ copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
180
+ copy(conv_param.input_left_pads_, input_left_pads);
181
+ copy(conv_param.input_right_pads_, input_right_pads);
182
+
183
+ // do Conv
184
+ auto conv = DeviceConvNDFwdInstance{};
185
+ auto invoker = conv.MakeInvoker();
186
+ auto argument = conv.MakeArgument(in_device_buf.GetDeviceBuffer(),
187
+ wei_device_buf.GetDeviceBuffer(),
188
+ std::array<const void*, 0>{},
189
+ out_device_buf.GetDeviceBuffer(),
190
+ a_g_n_c_wis_lengths,
191
+ a_g_n_c_wis_strides,
192
+ b_g_k_c_xs_lengths,
193
+ b_g_k_c_xs_strides,
194
+ std::array<std::array<ck::index_t, NDimSpatial + 3>, 0>{{}},
195
+ std::array<std::array<ck::index_t, NDimSpatial + 3>, 0>{{}},
196
+ e_g_n_k_wos_lengths,
197
+ e_g_n_k_wos_strides,
198
+ conv_filter_strides,
199
+ conv_filter_dilations,
200
+ input_left_pads,
201
+ input_right_pads,
202
+ in_element_op,
203
+ wei_element_op,
204
+ out_element_op);
205
+
206
+ if(!conv.IsSupportedArgument(argument))
207
+ {
208
+ throw std::runtime_error(
209
+ "wrong! device_conv with the specified compilation parameters does "
210
+ "not support this Conv problem");
211
+ }
212
+
213
+ float avg_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
214
+
215
+ std::size_t flop = conv_param.GetFlops();
216
+ std::size_t num_btype = conv_param.GetByte<InDataType, WeiDataType, OutDataType>();
217
+
218
+ float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
219
+ float gb_per_sec = num_btype / 1.E6 / avg_time;
220
+ std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
221
+ << conv.GetTypeString() << std::endl;
222
+
223
+ if(do_verification)
224
+ {
225
+ auto ref_conv = ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial,
226
+ InDataType,
227
+ WeiDataType,
228
+ OutDataType,
229
+ InElementOp,
230
+ WeiElementOp,
231
+ OutElementOp>();
232
+
233
+ auto ref_invoker = ref_conv.MakeInvoker();
234
+ auto ref_argument = ref_conv.MakeArgument(in,
235
+ wei,
236
+ out_host,
237
+ conv_param.conv_filter_strides_,
238
+ conv_param.conv_filter_dilations_,
239
+ conv_param.input_left_pads_,
240
+ conv_param.input_right_pads_,
241
+ in_element_op,
242
+ wei_element_op,
243
+ out_element_op);
244
+
245
+ ref_invoker.Run(ref_argument);
246
+
247
+ out_device_buf.FromDevice(out_device.mData.data());
248
+
249
+ return ck::utils::check_err(out_device,
250
+ out_host,
251
+ "Error: incorrect results!",
252
+ get_rtol<OutDataType>(),
253
+ get_atol<OutDataType>());
254
+ }
255
+
256
+ return true;
257
+ }
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/09_convnd_fwd/convnd_fwd_dl_common.hpp ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #include <cstdlib>
5
+ #include <iostream>
6
+ #include <numeric>
7
+ #include <type_traits>
8
+
9
+ #include "ck/ck.hpp"
10
+ #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
11
+ #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
12
+
13
+ #include "ck/library/utility/algorithm.hpp"
14
+ #include "ck/library/utility/check_err.hpp"
15
+ #include "ck/library/utility/device_memory.hpp"
16
+ #include "ck/library/utility/host_tensor.hpp"
17
+ #include "ck/library/utility/host_tensor_generator.hpp"
18
+ #include "ck/library/utility/convolution_parameter.hpp"
19
+ #include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
20
+ #include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
21
+
22
+ void print_helper_msg()
23
+ {
24
+ std::cout << "arg1: verification (0=no, 1=yes)\n"
25
+ << "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
26
+ << "arg3: time kernel (0=no, 1=yes)\n"
27
+ << ck::utils::conv::get_conv_param_parser_helper_msg() << std::endl;
28
+ }
29
+
30
+ template <ck::index_t NDimSpatial,
31
+ typename InDataType,
32
+ typename WeiDataType,
33
+ typename DsDataType,
34
+ typename OutDataType,
35
+ typename InElementOp,
36
+ typename WeiElementOp,
37
+ typename OutElementOp,
38
+ typename DeviceConvNDFwdInstance>
39
+ bool run_grouped_conv_fwd_dl(bool do_verification,
40
+ int init_method,
41
+ bool time_kernel,
42
+ const ck::utils::conv::ConvParam& conv_param,
43
+ const HostTensorDescriptor& in_g_n_c_wis_desc,
44
+ const HostTensorDescriptor& wei_g_k_c_xs_desc,
45
+ const HostTensorDescriptor& out_g_n_k_wos_desc,
46
+ const InElementOp& in_element_op,
47
+ const WeiElementOp& wei_element_op,
48
+ const OutElementOp& out_element_op)
49
+ {
50
+ using DDataType = ck::remove_cvref_t<ck::tuple_element_t<0, DsDataType>>;
51
+ Tensor<InDataType> in(in_g_n_c_wis_desc);
52
+ Tensor<WeiDataType> wei(wei_g_k_c_xs_desc);
53
+ Tensor<DDataType> bias(out_g_n_k_wos_desc);
54
+ Tensor<OutDataType> out_host(out_g_n_k_wos_desc);
55
+ Tensor<OutDataType> out_device(out_g_n_k_wos_desc);
56
+
57
+ std::cout << "in: " << in.mDesc << std::endl;
58
+ std::cout << "wei: " << wei.mDesc << std::endl;
59
+ std::cout << "out: " << out_host.mDesc << std::endl;
60
+
61
+ switch(init_method)
62
+ {
63
+ case 0: break;
64
+ case 1:
65
+ in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-2, 3});
66
+ wei.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-2, 3});
67
+ bias.GenerateTensorValue(GeneratorTensor_2<DDataType>{-2, 3});
68
+ break;
69
+ case 2:
70
+ in.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
71
+ wei.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
72
+ bias.GenerateTensorValue(GeneratorTensor_3<DDataType>{-0.5, 0.5});
73
+ break;
74
+ default:
75
+ in.GenerateTensorValue(GeneratorTensor_1<InDataType>{1});
76
+ wei.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{-1});
77
+ bias.GenerateTensorValue(GeneratorTensor_1<DDataType>{1});
78
+ }
79
+
80
+ DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
81
+ DeviceMem wei_device_buf(sizeof(WeiDataType) * wei.mDesc.GetElementSpaceSize());
82
+ DeviceMem bias_device_buf(sizeof(DDataType) * bias.mDesc.GetElementSpaceSize());
83
+ DeviceMem out_device_buf(sizeof(OutDataType) * out_device.mDesc.GetElementSpaceSize());
84
+
85
+ in_device_buf.ToDevice(in.mData.data());
86
+ wei_device_buf.ToDevice(wei.mData.data());
87
+ bias_device_buf.ToDevice(bias.mData.data());
88
+
89
+ std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_lengths{};
90
+ std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_strides{};
91
+ std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_lengths{};
92
+ std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_strides{};
93
+ std::array<ck::index_t, NDimSpatial + 3> d_g_n_k_wos_lengths{};
94
+ std::array<ck::index_t, NDimSpatial + 3> d_g_n_k_wos_strides{};
95
+ std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_lengths{};
96
+ std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_strides{};
97
+ std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
98
+ std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
99
+ std::array<ck::index_t, NDimSpatial> input_left_pads{};
100
+ std::array<ck::index_t, NDimSpatial> input_right_pads{};
101
+
102
+ auto copy = [](auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
103
+
104
+ copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
105
+ copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
106
+ copy(wei_g_k_c_xs_desc.GetLengths(), b_g_k_c_xs_lengths);
107
+ copy(wei_g_k_c_xs_desc.GetStrides(), b_g_k_c_xs_strides);
108
+ copy(out_g_n_k_wos_desc.GetLengths(), d_g_n_k_wos_lengths);
109
+ copy(out_g_n_k_wos_desc.GetStrides(), d_g_n_k_wos_strides);
110
+ copy(out_g_n_k_wos_desc.GetLengths(), e_g_n_k_wos_lengths);
111
+ copy(out_g_n_k_wos_desc.GetStrides(), e_g_n_k_wos_strides);
112
+ copy(conv_param.conv_filter_strides_, conv_filter_strides);
113
+ copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
114
+ copy(conv_param.input_left_pads_, input_left_pads);
115
+ copy(conv_param.input_right_pads_, input_right_pads);
116
+
117
+ // do Conv
118
+ auto conv = DeviceConvNDFwdInstance{};
119
+ auto invoker = conv.MakeInvoker();
120
+ auto argument = conv.MakeArgument(
121
+ in_device_buf.GetDeviceBuffer(),
122
+ wei_device_buf.GetDeviceBuffer(),
123
+ std::array<const void*, 1>{bias_device_buf.GetDeviceBuffer()},
124
+ out_device_buf.GetDeviceBuffer(),
125
+ a_g_n_c_wis_lengths,
126
+ a_g_n_c_wis_strides,
127
+ b_g_k_c_xs_lengths,
128
+ b_g_k_c_xs_strides,
129
+ std::array<std::array<ck::index_t, NDimSpatial + 3>, 1>{{d_g_n_k_wos_lengths}},
130
+ std::array<std::array<ck::index_t, NDimSpatial + 3>, 1>{{d_g_n_k_wos_strides}},
131
+ e_g_n_k_wos_lengths,
132
+ e_g_n_k_wos_strides,
133
+ conv_filter_strides,
134
+ conv_filter_dilations,
135
+ input_left_pads,
136
+ input_right_pads,
137
+ in_element_op,
138
+ wei_element_op,
139
+ out_element_op);
140
+
141
+ if(!conv.IsSupportedArgument(argument))
142
+ {
143
+ std::cout << "wrong! device_conv with the specified compilation parameters does not "
144
+ "support this Conv problem"
145
+ << std::endl;
146
+ return true;
147
+ }
148
+
149
+ float avg_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
150
+
151
+ std::size_t flop = conv_param.GetFlops();
152
+ std::size_t num_btype = conv_param.GetByte<InDataType, WeiDataType, OutDataType>();
153
+
154
+ float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
155
+ float gb_per_sec = num_btype / 1.E6 / avg_time;
156
+ std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
157
+ << conv.GetTypeString() << std::endl;
158
+
159
+ if(do_verification)
160
+ {
161
+ auto ref_conv = ck::tensor_operation::host::ReferenceConvFwd<
162
+ NDimSpatial,
163
+ InDataType,
164
+ WeiDataType,
165
+ OutDataType,
166
+ InElementOp,
167
+ WeiElementOp,
168
+ ck::tensor_operation::element_wise::PassThrough>();
169
+
170
+ auto ref_invoker = ref_conv.MakeInvoker();
171
+ auto ref_argument =
172
+ ref_conv.MakeArgument(in,
173
+ wei,
174
+ out_host,
175
+ conv_param.conv_filter_strides_,
176
+ conv_param.conv_filter_dilations_,
177
+ conv_param.input_left_pads_,
178
+ conv_param.input_right_pads_,
179
+ in_element_op,
180
+ wei_element_op,
181
+ ck::tensor_operation::element_wise::PassThrough{});
182
+
183
+ ref_invoker.Run(ref_argument);
184
+
185
+ // cde_elementwise
186
+ out_host.ForEach(
187
+ [&](auto&, auto idx) { out_element_op(out_host(idx), out_host(idx), bias(idx)); });
188
+
189
+ out_device_buf.FromDevice(out_device.mData.data());
190
+
191
+ return ck::utils::check_err(
192
+ out_device.mData, out_host.mData, "Error: incorrect results!", 1e-5f, 1e-4f);
193
+ }
194
+
195
+ return true;
196
+ }
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/09_convnd_fwd/convnd_fwd_dl_int8.cpp ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #include "convnd_fwd_dl_common.hpp"
5
+
6
+ #include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp"
7
+
8
+ #include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
9
+
10
+ using InDataType = int8_t;
11
+ using WeiDataType = int8_t;
12
+ using AccDataType = int32_t;
13
+ using DsDataType = ck::Tuple<int8_t>;
14
+ using OutDataType = int8_t;
15
+
16
+ template <ck::index_t... Is>
17
+ using S = ck::Sequence<Is...>;
18
+
19
+ using InElementOp = ck::tensor_operation::element_wise::PassThrough;
20
+ using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
21
+ using OutElementOp = ck::tensor_operation::element_wise::AddRelu;
22
+
23
+ static constexpr auto ConvSpec =
24
+ ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
25
+
26
+ static constexpr auto GemmPadingSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
27
+
28
+ template <ck::index_t NDimSpatial, typename InLayout, typename WeiLayout, typename OutLayout>
29
+ // clang-format off
30
+ using DeviceGroupedConvNDFwdInstance = ck::tensor_operation::device::DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK
31
+ // ######| NDim| InData| WeiData| MultpleD| OutData| AccData| InLayout| WeiLayout| MultipleD| OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
32
+ // ######| Spatial| Type| Type| Type| Type| Type| | | Layout| | Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
33
+ // ######| | | | | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
34
+ // ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
35
+ < NDimSpatial, InDataType, WeiDataType, DsDataType, OutDataType, AccDataType, InLayout, WeiLayout, ck::Tuple<OutLayout>, OutLayout, InElementOp, WeiElementOp, OutElementOp, ConvSpec, GemmPadingSpec, 256, 128, 128, 16, 4, 4, 4, 1, S<8, 2>, S<8, 2>, S<8, 1, 1, 4>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 4>, S<1, 2, 0, 3>, S<1, 1, 1, 4>, S<8, 1, 1, 4>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 4>, S<1, 2, 0, 3>, S<1, 1, 1, 4>, S<0, 1, 2, 3, 4, 5>, 5, 4>;
36
+ // clang-format on
37
+
38
+ #include "run_convnd_fwd_dl_example.inc"
39
+
40
+ int main(int argc, char* argv[]) { return run_convnd_fwd_dl_example(argc, argv) ? 0 : 1; }
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/09_convnd_fwd/convnd_fwd_xdl_fp64.cpp ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #include "convnd_fwd_common.hpp"
5
+
6
+ #include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
7
+
8
+ #include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
9
+
10
+ using InDataType = double;
11
+ using WeiDataType = double;
12
+ using AccDataType = double;
13
+ using CShuffleDataType = double;
14
+ using OutDataType = double;
15
+
16
+ template <ck::index_t... Is>
17
+ using S = ck::Sequence<Is...>;
18
+
19
+ using InElementOp = ck::tensor_operation::element_wise::PassThrough;
20
+ using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
21
+ using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
22
+
23
+ static constexpr auto ConvSpec =
24
+ ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
25
+
26
+ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
27
+
28
+ template <ck::index_t NDimSpatial, typename InLayout, typename WeiLayout, typename OutLayout>
29
+ using DeviceGroupedConvNDFwdInstance =
30
+ ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<
31
+ NDimSpatial,
32
+ InLayout,
33
+ WeiLayout,
34
+ ck::Tuple<>,
35
+ OutLayout,
36
+ InDataType,
37
+ WeiDataType,
38
+ AccDataType,
39
+ CShuffleDataType,
40
+ ck::Tuple<>,
41
+ OutDataType,
42
+ InElementOp,
43
+ WeiElementOp,
44
+ OutElementOp,
45
+ ConvSpec, // ConvForwardSpecialization
46
+ GemmSpec, // GemmSpecialization
47
+ 1, //
48
+ 256, // BlockSize
49
+ 128, // MPerBlock
50
+ 128, // NPerBlock
51
+ 8, // KPerBlock
52
+ 2, // AK1
53
+ 2, // BK1
54
+ 16, // MPerXdl
55
+ 16, // NPerXdl
56
+ 4, // MXdlPerWave
57
+ 4, // NXdlPerWave
58
+ S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
59
+ S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
60
+ S<1, 0, 2>, // ABlockTransferSrcAccessOrder
61
+ 2, // ABlockTransferSrcVectorDim
62
+ 2, // ABlockTransferSrcScalarPerVector
63
+ 2, // ABlockTransferDstScalarPerVector_AK1
64
+ 1, // ABlockLdsExtraM
65
+ S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
66
+ S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
67
+ S<1, 0, 2>, // BBlockTransferSrcAccessOrder
68
+ 2, // BBlockTransferSrcVectorDim
69
+ 2, // BBlockTransferSrcScalarPerVector
70
+ 2, // BBlockTransferDstScalarPerVector_BK1
71
+ 1, // BBlockLdsExtraN
72
+ 1,
73
+ 1,
74
+ S<1, 16, 1, 16>,
75
+ 1>;
76
+
77
+ #include "run_convnd_fwd_example.inc"
78
+
79
+ int main(int argc, char* argv[]) { return run_convnd_fwd_example(argc, argv) ? 0 : 1; }
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/09_convnd_fwd/convnd_fwd_xdl_int8.cpp ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #include "convnd_fwd_common.hpp"
5
+
6
+ #include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
7
+
8
+ #include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
9
+
10
+ using InDataType = int8_t;
11
+ using WeiDataType = int8_t;
12
+ using AccDataType = int32_t;
13
+ using CShuffleDataType = int8_t;
14
+ using OutDataType = int8_t;
15
+
16
+ template <ck::index_t... Is>
17
+ using S = ck::Sequence<Is...>;
18
+
19
+ using InElementOp = ck::tensor_operation::element_wise::PassThrough;
20
+ using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
21
+ using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
22
+
23
+ static constexpr auto ConvSpec =
24
+ ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
25
+
26
+ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
27
+
28
+ template <ck::index_t NDimSpatial, typename InLayout, typename WeiLayout, typename OutLayout>
29
+ using DeviceGroupedConvNDFwdInstance =
30
+ ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<
31
+ NDimSpatial,
32
+ InLayout,
33
+ WeiLayout,
34
+ ck::Tuple<>,
35
+ OutLayout,
36
+ InDataType,
37
+ WeiDataType,
38
+ AccDataType,
39
+ CShuffleDataType,
40
+ ck::Tuple<>,
41
+ OutDataType,
42
+ InElementOp,
43
+ WeiElementOp,
44
+ OutElementOp,
45
+ ConvSpec, // ConvForwardSpecialization
46
+ GemmSpec, // GemmSpecialization
47
+ 1, //
48
+ 256, // BlockSize
49
+ 128, // MPerBlock
50
+ 256, // NPerBlock
51
+ 64, // KPerBlock
52
+ 16, // AK1
53
+ 16, // BK1
54
+ 32, // MPerXdl
55
+ 32, // NPerXdl
56
+ 2, // MXdlPerWave
57
+ 4, // NXdlPerWave
58
+ S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
59
+ S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
60
+ S<1, 0, 2>, // ABlockTransferSrcAccessOrder
61
+ 2, // ABlockTransferSrcVectorDim
62
+ 16, // ABlockTransferSrcScalarPerVector
63
+ 16, // ABlockTransferDstScalarPerVector_AK1
64
+ 1, // ABlockLdsExtraM
65
+ S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
66
+ S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
67
+ S<1, 0, 2>, // BBlockTransferSrcAccessOrder
68
+ 2, // BBlockTransferSrcVectorDim
69
+ 16, // BBlockTransferSrcScalarPerVector
70
+ 16, // BBlockTransferDstScalarPerVector_BK1
71
+ 1, // BBlockLdsExtraN
72
+ 1,
73
+ 1,
74
+ S<1, 64, 1, 4>,
75
+ 16>;
76
+
77
+ #include "run_convnd_fwd_example.inc"
78
+
79
+ int main(int argc, char* argv[]) { return run_convnd_fwd_example(argc, argv) ? 0 : 1; }
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/15_grouped_gemm/grouped_gemm_multiple_d_splitk_xdl_fp16.cpp ADDED
@@ -0,0 +1,394 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #include <iostream>
5
+ #include <numeric>
6
+ #include <initializer_list>
7
+ #include <cstdlib>
8
+
9
+ #include "ck/ck.hpp"
10
+ #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
11
+ #include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
12
+ #include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_multiple_d_splitk_xdl_cshuffle_two_stage.hpp"
13
+ #include "ck/tensor_operation/gpu/device/device_grouped_gemm.hpp"
14
+ #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
15
+
16
+ #include <ck/utility/data_type.hpp>
17
+ #include <ck/utility/tuple.hpp>
18
+
19
+ #include "ck/library/utility/check_err.hpp"
20
+ #include "ck/library/utility/device_memory.hpp"
21
+ #include "ck/library/utility/host_tensor.hpp"
22
+ #include "ck/library/utility/host_tensor_generator.hpp"
23
+ #include "ck/library/utility/literals.hpp"
24
+ #include "ck/library/reference_tensor_operation/cpu/reference_gemm_multiple_d.hpp"
25
+
26
+ template <ck::index_t... Is>
27
+ using S = ck::Sequence<Is...>;
28
+
29
+ using F16 = ck::half_t;
30
+ using F32 = float;
31
+
32
+ using Row = ck::tensor_layout::gemm::RowMajor;
33
+ using Col = ck::tensor_layout::gemm::ColumnMajor;
34
+
35
+ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
36
+ using AddAdd = ck::tensor_operation::element_wise::AddAdd;
37
+
38
+ using ADataType = F16;
39
+ using BDataType = F16;
40
+ using AccDataType = F32;
41
+ using CShuffleDataType = F32;
42
+ using DDataType = F16;
43
+ using DsDataType = ck::Tuple<DDataType, DDataType>;
44
+ using EDataType = F32;
45
+
46
+ using ALayout = Row;
47
+ using BLayout = Col;
48
+ using DLayout = Row;
49
+ using DsLayout = ck::Tuple<DLayout, DLayout>;
50
+ using ELayout = Row;
51
+
52
+ using AElementOp = PassThrough;
53
+ using BElementOp = PassThrough;
54
+ using CDEElementOp = AddAdd;
55
+
56
+ static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
57
+ static constexpr int NumDMatrices = 2;
58
+
59
+ using DeviceGemmInstance =
60
+ ck::tensor_operation::device::DeviceGroupedGemmMultipleDSplitKXdlCShuffleTwoStage
61
+ // clang-format off
62
+ //######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
63
+ //######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
64
+ //######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
65
+ //######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
66
+ < ALayout, BLayout, DsLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 4>;
67
+ // clang-format on
68
+
69
+ struct ProblemSize final
70
+ {
71
+ std::vector<ck::index_t> Ms;
72
+ std::vector<ck::index_t> Ns;
73
+ std::vector<ck::index_t> Ks;
74
+
75
+ std::vector<ck::index_t> stride_As;
76
+ std::vector<ck::index_t> stride_Bs;
77
+ std::vector<std::vector<ck::index_t>> stride_Ds;
78
+ std::vector<ck::index_t> stride_Cs;
79
+
80
+ ck::index_t group_count;
81
+ };
82
+
83
+ struct ExecutionConfig final
84
+ {
85
+ bool do_verification = true;
86
+ int init_method = 1;
87
+ int k_batch = 128;
88
+ bool time_kernel = true;
89
+ };
90
+
91
+ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& config)
92
+ {
93
+ auto group_count = problem_size.group_count;
94
+
95
+ // GEMM shape
96
+ std::vector<ck::tensor_operation::device::GemmDesc> gemm_descs;
97
+ std::vector<void*> p_Cs;
98
+ std::vector<const void*> p_As;
99
+ std::vector<const void*> p_Bs;
100
+ std::vector<std::array<const void*, NumDMatrices>> p_Ds = {};
101
+
102
+ gemm_descs.reserve(group_count);
103
+ p_As.reserve(group_count);
104
+ p_Bs.reserve(group_count);
105
+ p_Ds.reserve(group_count);
106
+
107
+ auto f_host_tensor_descriptor =
108
+ [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
109
+ using namespace ck::literals;
110
+
111
+ if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
112
+ {
113
+ return HostTensorDescriptor({row, col}, {stride, 1_uz});
114
+ }
115
+ else
116
+ {
117
+ return HostTensorDescriptor({row, col}, {1_uz, stride});
118
+ }
119
+ };
120
+
121
+ std::vector<Tensor<ADataType>> a_tensors;
122
+ std::vector<Tensor<BDataType>> b_tensors;
123
+ std::vector<std::array<Tensor<DDataType>, NumDMatrices>> d_tensors;
124
+ std::vector<Tensor<EDataType>> c_host_tensors;
125
+ std::vector<Tensor<EDataType>> c_device_result_tensors;
126
+
127
+ a_tensors.reserve(group_count);
128
+ b_tensors.reserve(group_count);
129
+ d_tensors.reserve(group_count);
130
+ c_host_tensors.reserve(group_count);
131
+ c_device_result_tensors.reserve(group_count);
132
+
133
+ using DeviceMemPtr = std::unique_ptr<DeviceMem>;
134
+
135
+ std::vector<DeviceMemPtr> a_tensors_device, b_tensors_device, c_tensors_device;
136
+ std::vector<std::vector<DeviceMemPtr>> d_tensors_device;
137
+
138
+ a_tensors_device.reserve(group_count);
139
+ b_tensors_device.reserve(group_count);
140
+ d_tensors_device.reserve(group_count);
141
+ c_tensors_device.reserve(group_count);
142
+
143
+ std::size_t flop = 0, num_btype = 0;
144
+
145
+ for(int i = 0; i < group_count; i++)
146
+ {
147
+ a_tensors.push_back(Tensor<ADataType>(f_host_tensor_descriptor(
148
+ problem_size.Ms[i], problem_size.Ks[i], problem_size.stride_As[i], ALayout{})));
149
+ b_tensors.push_back(Tensor<BDataType>(f_host_tensor_descriptor(
150
+ problem_size.Ks[i], problem_size.Ns[i], problem_size.stride_Bs[i], BLayout{})));
151
+
152
+ auto d0_tensor = Tensor<DDataType>(f_host_tensor_descriptor(
153
+ problem_size.Ms[i], problem_size.Ns[i], problem_size.stride_Cs[i], DLayout{}));
154
+ auto d1_tensor = Tensor<DDataType>(f_host_tensor_descriptor(
155
+ problem_size.Ms[i], problem_size.Ns[i], problem_size.stride_Cs[i], DLayout{}));
156
+
157
+ std::array<Tensor<DDataType>, NumDMatrices> d_tens = {d0_tensor, d1_tensor};
158
+ d_tensors.push_back(d_tens);
159
+ c_host_tensors.push_back(Tensor<EDataType>(f_host_tensor_descriptor(
160
+ problem_size.Ms[i], problem_size.Ns[i], problem_size.stride_Cs[i], ELayout{})));
161
+ c_device_result_tensors.push_back(Tensor<EDataType>(f_host_tensor_descriptor(
162
+ problem_size.Ms[i], problem_size.Ns[i], problem_size.stride_Cs[i], ELayout{})));
163
+ std::cout << "gemm[" << i << "] a_m_k: " << a_tensors[i].mDesc
164
+ << " b_k_n: " << b_tensors[i].mDesc
165
+ << " c_m_n: " << c_device_result_tensors[i].mDesc << std::endl;
166
+
167
+ flop += std::size_t(2) * problem_size.Ms[i] * problem_size.Ks[i] * problem_size.Ns[i];
168
+ num_btype += sizeof(ADataType) * a_tensors[i].GetElementSize() +
169
+ sizeof(BDataType) * b_tensors[i].GetElementSize() +
170
+ sizeof(DDataType) * d_tensors[i][0].GetElementSize() * NumDMatrices +
171
+ sizeof(EDataType) * c_device_result_tensors[i].GetElementSize();
172
+
173
+ switch(config.init_method)
174
+ {
175
+ case 0: break;
176
+ case 1:
177
+ a_tensors[i].GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
178
+ b_tensors[i].GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
179
+ for(int j = 0; j < NumDMatrices; ++j)
180
+ {
181
+ d_tensors[i][j].GenerateTensorValue(GeneratorTensor_2<DDataType>{-5, 5});
182
+ }
183
+ break;
184
+ case 2:
185
+ a_tensors[i].GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
186
+ b_tensors[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
187
+ for(int j = 0; j < NumDMatrices; ++j)
188
+ {
189
+ d_tensors[i][j].GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
190
+ }
191
+ break;
192
+ default:
193
+ a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
194
+ b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{});
195
+ for(int j = 0; j < NumDMatrices; ++j)
196
+ {
197
+ d_tensors[i][j].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
198
+ }
199
+ }
200
+ }
201
+
202
+ for(int i = 0; i < group_count; i++)
203
+ {
204
+ a_tensors_device.emplace_back(
205
+ std::make_unique<DeviceMem>(a_tensors[i].GetElementSpaceSize() * sizeof(ADataType)));
206
+
207
+ b_tensors_device.emplace_back(
208
+ std::make_unique<DeviceMem>(b_tensors[i].GetElementSpaceSize() * sizeof(BDataType)));
209
+
210
+ c_tensors_device.emplace_back(std::make_unique<DeviceMem>(
211
+ c_device_result_tensors[i].GetElementSpaceSize() * sizeof(EDataType)));
212
+
213
+ for(int j = 0; j < NumDMatrices; ++j)
214
+ {
215
+ d_tensors_device[i].emplace_back(std::make_unique<DeviceMem>(
216
+ d_tensors[i][j].GetElementSpaceSize() * sizeof(DDataType)));
217
+ }
218
+
219
+ a_tensors_device[i]->ToDevice(a_tensors[i].mData.data());
220
+ b_tensors_device[i]->ToDevice(b_tensors[i].mData.data());
221
+ for(int j = 0; j < NumDMatrices; ++j)
222
+ {
223
+ d_tensors_device[i][j]->ToDevice(d_tensors[i][j].mData.data());
224
+ }
225
+ c_tensors_device[i]->SetZero();
226
+ p_As.push_back(a_tensors_device[i]->GetDeviceBuffer());
227
+ p_Bs.push_back(b_tensors_device[i]->GetDeviceBuffer());
228
+ p_Ds.push_back(
229
+ {d_tensors_device[i][0]->GetDeviceBuffer(), d_tensors_device[i][1]->GetDeviceBuffer()});
230
+ p_Cs.push_back(c_tensors_device[i]->GetDeviceBuffer());
231
+ gemm_descs.push_back({problem_size.Ms[i],
232
+ problem_size.Ns[i],
233
+ problem_size.Ks[i],
234
+ problem_size.stride_As[i],
235
+ problem_size.stride_Bs[i],
236
+ problem_size.stride_Cs[i],
237
+ problem_size.stride_Ds[i]});
238
+ }
239
+ auto a_element_op = AElementOp{};
240
+ auto b_element_op = BElementOp{};
241
+ auto cde_element_op = CDEElementOp{};
242
+
243
+ auto gemm = DeviceGemmInstance{};
244
+ auto invoker = gemm.MakeInvoker();
245
+
246
+ // do GEMM
247
+ auto argument = gemm.MakeArgument(
248
+ p_As, p_Bs, p_Ds, p_Cs, gemm_descs, a_element_op, b_element_op, cde_element_op);
249
+ gemm.SetKBatchSize(argument, config.k_batch);
250
+ if(!gemm.IsSupportedArgument(argument))
251
+ {
252
+ throw std::runtime_error(
253
+ "wrong! device_gemm with the specified compilation parameters does "
254
+ "not support this GEMM problem");
255
+ }
256
+ DeviceMem gemm_workspace_dev(gemm.GetWorkSpaceSize(&argument));
257
+ gemm.SetWorkSpacePointer(&argument, gemm_workspace_dev.GetDeviceBuffer());
258
+
259
+ DeviceMem gemm_arg_dev_mem(gemm.GetDeviceKernelArgSize(&argument));
260
+ gemm.SetDeviceKernelArgs(argument, gemm_arg_dev_mem.GetDeviceBuffer());
261
+
262
+ invoker.Run(argument, StreamConfig{nullptr, false, 1});
263
+
264
+ if(config.time_kernel)
265
+ {
266
+ float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
267
+ float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
268
+ float gb_per_sec = num_btype / 1.E6 / ave_time;
269
+
270
+ std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
271
+ << " GB/s, " << gemm.GetTypeString() << std::endl;
272
+ }
273
+
274
+ bool pass = true;
275
+ if(config.do_verification)
276
+ {
277
+ using ReferenceGemmInstance =
278
+ ck::tensor_operation::host::ReferenceGemmMultipleD<ADataType,
279
+ BDataType,
280
+ DsDataType,
281
+ EDataType,
282
+ AccDataType,
283
+ AElementOp,
284
+ BElementOp,
285
+ CDEElementOp>;
286
+
287
+ for(std::size_t i = 0; i < gemm_descs.size(); i++)
288
+ {
289
+ auto karg = argument.gemm_kernel_args_[i].karg_;
290
+ auto dev_res_tensor =
291
+ Tensor<float>(f_host_tensor_descriptor(karg.M, karg.N, karg.StrideC, ELayout{}));
292
+
293
+ c_tensors_device[i]->FromDevice(c_device_result_tensors[i].mData.data(),
294
+ c_device_result_tensors[i].mDesc.GetElementSize() *
295
+ sizeof(EDataType));
296
+ auto ref_gemm = ReferenceGemmInstance{};
297
+ auto ref_invoker = ref_gemm.MakeInvoker();
298
+
299
+ auto ref_argument = ref_gemm.MakeArgument(a_tensors[i],
300
+ b_tensors[i],
301
+ d_tensors[i],
302
+ c_host_tensors[i],
303
+ a_element_op,
304
+ b_element_op,
305
+ cde_element_op);
306
+
307
+ ref_invoker.Run(ref_argument);
308
+ pass &= ck::utils::check_err(c_device_result_tensors[i], c_host_tensors[i]);
309
+ }
310
+
311
+ std::cout << "Verification: " << (pass ? "SUCCESS" : "FAILURE") << "!" << std::endl;
312
+ }
313
+
314
+ return pass;
315
+ }
316
+
317
+ std::vector<int> argToIntArray(char* input)
318
+ {
319
+ std::vector<int> out;
320
+
321
+ std::istringstream in(input);
322
+
323
+ std::string item;
324
+
325
+ while(std::getline(in, item, ','))
326
+ {
327
+ out.push_back(std::stoi(item));
328
+ }
329
+
330
+ return out;
331
+ }
332
+
333
+ int main(int argc, char* argv[])
334
+ {
335
+ ProblemSize problem_size;
336
+ ExecutionConfig config;
337
+
338
+ if(argc < 11)
339
+ {
340
+ std::vector<ck::index_t> Ms{64, 127, 255, 129, 260, 190, 77};
341
+ problem_size.group_count = Ms.size();
342
+
343
+ for(int i = 0; i < problem_size.group_count; i++)
344
+ {
345
+ problem_size.Ms.push_back(Ms[i]);
346
+ problem_size.Ns.push_back(252);
347
+ problem_size.Ks.push_back(4608);
348
+
349
+ problem_size.stride_As.push_back(problem_size.Ks[i]);
350
+ problem_size.stride_Bs.push_back(problem_size.Ks[i]);
351
+ problem_size.stride_Cs.push_back(problem_size.Ns[i]);
352
+
353
+ problem_size.stride_Ds.push_back({});
354
+ for(int j = 0; j < NumDMatrices; ++j)
355
+ {
356
+ problem_size.stride_Ds[i].push_back(problem_size.Ns[i]);
357
+ }
358
+ }
359
+
360
+ std::cout
361
+ << "Usage:\n"
362
+ << "arg1: verification (0=no, 1=yes)\n"
363
+ << "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
364
+ << "arg3: time kernel (0=n0, 1=yes)\n"
365
+ << "arg4 to 9: Ms, Ns, Ks, StrideAs, StrideBs, StrideCs (e.g., 256,256 128,128 64,64 "
366
+ "64,64 64,64 128,128)\n"
367
+ << "arg10: k_batch (> 0)\n"
368
+ << "... setting default values." << std::endl;
369
+ }
370
+ else
371
+ {
372
+ config.do_verification = std::stoi(argv[1]);
373
+ config.init_method = std::stoi(argv[2]);
374
+ config.time_kernel = std::stoi(argv[3]);
375
+ config.k_batch = std::stoi(argv[10]);
376
+
377
+ problem_size.Ms = argToIntArray(argv[4]);
378
+ problem_size.Ns = argToIntArray(argv[5]);
379
+ problem_size.Ks = argToIntArray(argv[6]);
380
+
381
+ problem_size.stride_As = argToIntArray(argv[7]);
382
+ problem_size.stride_Bs = argToIntArray(argv[8]);
383
+ problem_size.stride_Cs = argToIntArray(argv[9]);
384
+
385
+ for(int j = 0; j < NumDMatrices; ++j)
386
+ {
387
+ problem_size.stride_Ds.push_back(problem_size.stride_Cs);
388
+ }
389
+
390
+ problem_size.group_count = problem_size.Ms.size();
391
+ }
392
+
393
+ return !run_grouped_gemm(problem_size, config);
394
+ }
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/17_convnd_bwd_data/convnd_bwd_data_common.hpp ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #include <iostream>
5
+ #include <numeric>
6
+ #include <initializer_list>
7
+ #include <cstdlib>
8
+
9
+ #include "ck/ck.hpp"
10
+ #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
11
+ #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
12
+
13
+ #include "ck/library/utility/check_err.hpp"
14
+ #include "ck/library/utility/device_memory.hpp"
15
+ #include "ck/library/utility/host_tensor.hpp"
16
+ #include "ck/library/utility/host_tensor_generator.hpp"
17
+ #include "ck/library/utility/convolution_parameter.hpp"
18
+ #include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
19
+ #include "ck/library/reference_tensor_operation/cpu/reference_conv_bwd_data.hpp"
20
+
21
+ void print_helper_msg()
22
+ {
23
+ std::cout << "arg1: verification (0=no, 1=yes)\n"
24
+ << "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
25
+ << "arg3: time kernel (0=no, 1=yes)\n"
26
+ << ck::utils::conv::get_conv_param_parser_helper_msg() << std::endl;
27
+ }
28
+
29
+ template <ck::index_t NDimSpatial,
30
+ typename InDataType,
31
+ typename WeiDataType,
32
+ typename OutDataType,
33
+ typename InElementOp,
34
+ typename WeiElementOp,
35
+ typename OutElementOp,
36
+ typename DeviceConvNdBwdDataInstance>
37
+ int run_conv_bwd_data(bool do_verification,
38
+ int init_method,
39
+ bool time_kernel,
40
+ const ck::utils::conv::ConvParam& conv_param,
41
+ const HostTensorDescriptor& in_g_n_c_wis_desc,
42
+ const HostTensorDescriptor& wei_g_k_c_xs_desc,
43
+ const HostTensorDescriptor& out_g_n_k_wos_desc,
44
+ const InElementOp& in_element_op,
45
+ const WeiElementOp& wei_element_op,
46
+ const OutElementOp& out_element_op)
47
+ {
48
+ Tensor<InDataType> in_host(in_g_n_c_wis_desc);
49
+ Tensor<InDataType> in_device(in_g_n_c_wis_desc);
50
+ Tensor<WeiDataType> wei(wei_g_k_c_xs_desc);
51
+ Tensor<OutDataType> out(out_g_n_k_wos_desc);
52
+
53
+ std::cout << "in: " << in_host.mDesc << std::endl;
54
+ std::cout << "wei: " << wei.mDesc << std::endl;
55
+ std::cout << "out: " << out.mDesc << std::endl;
56
+
57
+ switch(init_method)
58
+ {
59
+ case 0: break;
60
+ case 1:
61
+ out.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
62
+ wei.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
63
+ break;
64
+ case 2:
65
+ out.GenerateTensorValue(GeneratorTensor_3<OutDataType>{0.0, 1.0});
66
+ wei.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
67
+ break;
68
+ default:
69
+ out.GenerateTensorValue(GeneratorTensor_1<OutDataType>{1});
70
+ wei.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{1});
71
+ }
72
+
73
+ DeviceMem in_device_buf(sizeof(InDataType) * in_device.mDesc.GetElementSpaceSize());
74
+ DeviceMem wei_device_buf(sizeof(WeiDataType) * wei.mDesc.GetElementSpaceSize());
75
+ DeviceMem out_device_buf(sizeof(OutDataType) * out.mDesc.GetElementSpaceSize());
76
+
77
+ out_device_buf.ToDevice(out.mData.data());
78
+ wei_device_buf.ToDevice(wei.mData.data());
79
+
80
+ // reset input to zero
81
+ in_device_buf.SetZero();
82
+
83
+ // do GEMM
84
+ auto conv = DeviceConvNdBwdDataInstance{};
85
+ auto invoker = conv.MakeInvoker();
86
+ auto argument =
87
+ conv.MakeArgumentPointer(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
88
+ static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
89
+ static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
90
+ conv_param.N_,
91
+ conv_param.K_,
92
+ conv_param.C_,
93
+ conv_param.input_spatial_lengths_,
94
+ conv_param.filter_spatial_lengths_,
95
+ conv_param.GetOutputSpatialLengths(),
96
+ conv_param.conv_filter_strides_,
97
+ conv_param.conv_filter_dilations_,
98
+ conv_param.input_left_pads_,
99
+ conv_param.input_right_pads_,
100
+ in_element_op,
101
+ wei_element_op,
102
+ out_element_op);
103
+
104
+ if(!conv.IsSupportedArgument(argument.get()))
105
+ {
106
+ std::cout << "Not support,please check parameters or device";
107
+ return 0;
108
+ }
109
+
110
+ float ave_time = invoker.Run(argument.get(), StreamConfig{nullptr, time_kernel});
111
+
112
+ std::size_t flop = conv_param.GetFlops();
113
+ std::size_t num_btype = conv_param.GetByte<InDataType, WeiDataType, OutDataType>();
114
+
115
+ float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
116
+
117
+ float gb_per_sec = num_btype / 1.E6 / ave_time;
118
+
119
+ std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
120
+ << std::endl;
121
+
122
+ if(do_verification)
123
+ {
124
+ auto ref_conv = ck::tensor_operation::host::ReferenceConvBwdData<NDimSpatial,
125
+ InDataType,
126
+ WeiDataType,
127
+ OutDataType,
128
+ InElementOp,
129
+ WeiElementOp,
130
+ OutElementOp>();
131
+
132
+ auto ref_invoker = ref_conv.MakeInvoker();
133
+
134
+ auto ref_argument = ref_conv.MakeArgument(in_host,
135
+ wei,
136
+ out,
137
+ conv_param.conv_filter_strides_,
138
+ conv_param.conv_filter_dilations_,
139
+ conv_param.input_left_pads_,
140
+ conv_param.input_right_pads_,
141
+ in_element_op,
142
+ wei_element_op,
143
+ out_element_op);
144
+
145
+ ref_invoker.Run(ref_argument);
146
+
147
+ in_device_buf.FromDevice(in_device.mData.data());
148
+
149
+ return ck::utils::check_err(in_device, in_host) ? 0 : 1;
150
+ }
151
+
152
+ return 0;
153
+ }
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/22_cgemm/cgemm_xdl_common.hpp ADDED
@@ -0,0 +1,254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #include <numeric>
5
+ #include <initializer_list>
6
+ #include <cstdlib>
7
+
8
+ #include "ck/ck.hpp"
9
+ #include "ck/stream_config.hpp"
10
+ #include "ck/library/utility/check_err.hpp"
11
+ #include "ck/library/utility/device_memory.hpp"
12
+ #include "ck/library/utility/host_tensor.hpp"
13
+ #include "ck/library/utility/host_tensor_generator.hpp"
14
+ #include "ck/library/utility/literals.hpp"
15
+ #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
16
+
17
+ template <ck::index_t... Is>
18
+ using S = ck::Sequence<Is...>;
19
+
20
+ using F16 = ck::half_t;
21
+ using F32 = float;
22
+ using BF16 = ck::bhalf_t;
23
+ using INT8 = std::int8_t;
24
+ using INT32 = std::int32_t;
25
+ #ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
26
+ using INT4 = ck::int4_t;
27
+ #endif
28
+
29
+ template <typename ADataType,
30
+ typename BDataType,
31
+ typename CDataType,
32
+ typename ALayout,
33
+ typename BLayout,
34
+ typename CLayout,
35
+ typename AElementwiseOperation,
36
+ typename BElementwiseOperation,
37
+ typename CElementwiseOperation,
38
+ typename DeviceCGemmInstance,
39
+ typename ReferenceCGemmInstance,
40
+ typename KernelADataType = ADataType,
41
+ typename KernelBDataType = BDataType,
42
+ typename KernelCDataType = CDataType>
43
+ bool run_cgemm_xdl(ck::index_t M,
44
+ ck::index_t N,
45
+ ck::index_t K,
46
+ ck::index_t StrideA,
47
+ ck::index_t StrideB,
48
+ ck::index_t StrideC,
49
+ bool do_verification,
50
+ int init_method,
51
+ bool time_kernel)
52
+ {
53
+ #ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
54
+ static_assert(sizeof(ck::int4_t) == sizeof(int8_t),
55
+ "sizeof ck::int4_t and int8_t is different!");
56
+ static_assert(sizeof(ADataType) == sizeof(KernelADataType),
57
+ "sizeof ADataType and KernelADataType is different!");
58
+ static_assert(sizeof(BDataType) == sizeof(KernelBDataType),
59
+ "sizeof BDataType and KernelBDataType is different!");
60
+ static_assert(sizeof(CDataType) == sizeof(KernelCDataType),
61
+ "sizeof CDataType and KernelCDataType is different!");
62
+ #endif
63
+
64
+ auto f_host_tensor_descriptor =
65
+ [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
66
+ using namespace ck::literals;
67
+
68
+ if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
69
+ {
70
+ return HostTensorDescriptor({row, col}, {stride, 1_uz});
71
+ }
72
+ else
73
+ {
74
+ return HostTensorDescriptor({row, col}, {1_uz, stride});
75
+ }
76
+ };
77
+
78
+ Tensor<ADataType> a_m_k_real(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
79
+ Tensor<ADataType> a_m_k_imag(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
80
+ Tensor<BDataType> b_k_n_real(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
81
+ Tensor<BDataType> b_k_n_imag(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
82
+ Tensor<KernelCDataType> c_m_n_real_device_result(
83
+ f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
84
+ Tensor<KernelCDataType> c_m_n_imag_device_result(
85
+ f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
86
+
87
+ std::cout << "a_m_k_real: " << a_m_k_real.mDesc << std::endl;
88
+ std::cout << "a_m_k_imag: " << a_m_k_imag.mDesc << std::endl;
89
+ std::cout << "b_k_n_real: " << b_k_n_real.mDesc << std::endl;
90
+ std::cout << "b_k_n_imag: " << b_k_n_imag.mDesc << std::endl;
91
+ std::cout << "c_m_n_real: " << c_m_n_real_device_result.mDesc << std::endl;
92
+ std::cout << "c_m_n_imag: " << c_m_n_imag_device_result.mDesc << std::endl;
93
+
94
+ switch(init_method)
95
+ {
96
+ case 0: break;
97
+ case 1:
98
+ a_m_k_real.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
99
+ a_m_k_imag.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
100
+ b_k_n_real.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2});
101
+ b_k_n_imag.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2});
102
+ break;
103
+ default:
104
+ a_m_k_real.GenerateTensorValue(GeneratorTensor_3<ADataType>{-0.5, 0.5});
105
+ a_m_k_imag.GenerateTensorValue(GeneratorTensor_3<ADataType>{-0.5, 0.5});
106
+ b_k_n_real.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
107
+ b_k_n_imag.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
108
+ }
109
+
110
+ auto cgemm = DeviceCGemmInstance{};
111
+
112
+ DeviceMem a_m_k_real_device_buf(sizeof(KernelADataType) *
113
+ a_m_k_real.mDesc.GetElementSpaceSize());
114
+ DeviceMem a_m_k_imag_device_buf(sizeof(KernelADataType) *
115
+ a_m_k_imag.mDesc.GetElementSpaceSize());
116
+ DeviceMem b_k_n_real_device_buf(sizeof(KernelBDataType) *
117
+ b_k_n_real.mDesc.GetElementSpaceSize());
118
+ DeviceMem b_k_n_imag_device_buf(sizeof(KernelBDataType) *
119
+ b_k_n_imag.mDesc.GetElementSpaceSize());
120
+ DeviceMem c_m_n_real_device_buf(sizeof(KernelCDataType) *
121
+ c_m_n_real_device_result.mDesc.GetElementSpaceSize());
122
+ DeviceMem c_m_n_imag_device_buf(sizeof(KernelCDataType) *
123
+ c_m_n_imag_device_result.mDesc.GetElementSpaceSize());
124
+ DeviceMem workspace_device_buf(cgemm.GetWorkspaceSize(M, N, K, StrideA, StrideB, StrideC));
125
+
126
+ #ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
127
+ if constexpr(std::is_same_v<ADataType, ck::int4_t>)
128
+ {
129
+ Tensor<KernelADataType> a_m_k_real_converted(a_m_k_real);
130
+ Tensor<KernelADataType> a_m_k_imag_converted(a_m_k_imag);
131
+ Tensor<KernelBDataType> b_k_n_real_converted(b_k_n_real);
132
+ Tensor<KernelBDataType> b_k_n_imag_converted(b_k_n_imag);
133
+
134
+ a_m_k_real_device_buf.ToDevice(a_m_k_real_converted.mData.data());
135
+ a_m_k_imag_device_buf.ToDevice(a_m_k_imag_converted.mData.data());
136
+ b_k_n_real_device_buf.ToDevice(b_k_n_real_converted.mData.data());
137
+ b_k_n_imag_device_buf.ToDevice(b_k_n_imag_converted.mData.data());
138
+ }
139
+ else
140
+ #endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
141
+ {
142
+ a_m_k_real_device_buf.ToDevice(a_m_k_real.mData.data());
143
+ a_m_k_imag_device_buf.ToDevice(a_m_k_imag.mData.data());
144
+ b_k_n_real_device_buf.ToDevice(b_k_n_real.mData.data());
145
+ b_k_n_imag_device_buf.ToDevice(b_k_n_imag.mData.data());
146
+ }
147
+
148
+ auto a_element_op = AElementwiseOperation{};
149
+ auto b_element_op = BElementwiseOperation{};
150
+ auto c_element_op = CElementwiseOperation{};
151
+
152
+ // do GEMM
153
+ auto invoker = cgemm.MakeInvoker();
154
+ auto argument =
155
+ cgemm.MakeArgument(static_cast<KernelADataType*>(a_m_k_real_device_buf.GetDeviceBuffer()),
156
+ static_cast<KernelADataType*>(a_m_k_imag_device_buf.GetDeviceBuffer()),
157
+ static_cast<KernelBDataType*>(b_k_n_real_device_buf.GetDeviceBuffer()),
158
+ static_cast<KernelBDataType*>(b_k_n_imag_device_buf.GetDeviceBuffer()),
159
+ static_cast<KernelCDataType*>(c_m_n_real_device_buf.GetDeviceBuffer()),
160
+ static_cast<KernelCDataType*>(c_m_n_imag_device_buf.GetDeviceBuffer()),
161
+ static_cast<KernelCDataType*>(workspace_device_buf.GetDeviceBuffer()),
162
+ M,
163
+ N,
164
+ K,
165
+ StrideA,
166
+ StrideB,
167
+ StrideC,
168
+ a_element_op,
169
+ b_element_op,
170
+ c_element_op);
171
+
172
+ if(!cgemm.IsSupportedArgument(argument))
173
+ {
174
+ throw std::runtime_error(
175
+ "wrong! device_cgemm with the specified compilation parameters does "
176
+ "not support this CGEMM problem");
177
+ }
178
+
179
+ float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
180
+
181
+ std::size_t flop = std::size_t(8) * M * N * K;
182
+ std::size_t num_btype =
183
+ std::size_t(2) *
184
+ (sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N);
185
+
186
+ float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
187
+ float gb_per_sec = num_btype / 1.E6 / ave_time;
188
+
189
+ std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
190
+ << cgemm.GetTypeString() << std::endl;
191
+
192
+ if(do_verification)
193
+ {
194
+ Tensor<CDataType> c_m_n_real_host_result(
195
+ f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
196
+ Tensor<CDataType> c_m_n_imag_host_result(
197
+ f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
198
+
199
+ auto ref_cgemm = ReferenceCGemmInstance{};
200
+ auto ref_invoker = ref_cgemm.MakeInvoker();
201
+ auto ref_argument = ref_cgemm.MakeArgument(a_m_k_real,
202
+ a_m_k_imag,
203
+ b_k_n_real,
204
+ b_k_n_imag,
205
+ c_m_n_real_host_result,
206
+ c_m_n_imag_host_result,
207
+ a_element_op,
208
+ b_element_op,
209
+ c_element_op);
210
+
211
+ ref_invoker.Run(ref_argument);
212
+
213
+ c_m_n_real_device_buf.FromDevice(c_m_n_real_device_result.mData.data());
214
+ c_m_n_imag_device_buf.FromDevice(c_m_n_imag_device_result.mData.data());
215
+
216
+ bool result = true;
217
+ #ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
218
+ if constexpr(std::is_same_v<ADataType, ck::int4_t>)
219
+ {
220
+ const Tensor<CDataType> c_m_n_real_device_result_converted(c_m_n_real_device_result);
221
+ const Tensor<CDataType> c_m_n_imag_device_result_converted(c_m_n_imag_device_result);
222
+
223
+ result = ck::utils::check_err(c_m_n_real_device_result_converted,
224
+ c_m_n_real_host_result,
225
+ "Verification error: incorrect results in real part!",
226
+ 1e-2f,
227
+ 1e-1f);
228
+ result = result && ck::utils::check_err(
229
+ c_m_n_imag_device_result_converted,
230
+ c_m_n_imag_host_result,
231
+ "Verification error: incorrect results in imaginary part!",
232
+ 1e-2f,
233
+ 1e-1f);
234
+ }
235
+ else
236
+ #endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
237
+ {
238
+ result = ck::utils::check_err(c_m_n_real_device_result,
239
+ c_m_n_real_host_result,
240
+ "Verification error: incorrect results in real part!",
241
+ 1e-2f,
242
+ 1e-1f);
243
+ result = result && ck::utils::check_err(
244
+ c_m_n_imag_device_result,
245
+ c_m_n_imag_host_result,
246
+ "Verification error: incorrect results in imaginary part!",
247
+ 1e-2f,
248
+ 1e-1f);
249
+ }
250
+
251
+ return result;
252
+ }
253
+ return true;
254
+ }
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/22_cgemm/cgemm_xdl_fp32.cpp ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #include <iostream>
5
+
6
+ #include "cgemm_xdl_common.hpp"
7
+
8
+ #include "ck/library/reference_tensor_operation/cpu/reference_cgemm.hpp"
9
+
10
+ #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
11
+ #include "ck/tensor_operation/gpu/device/impl/device_cgemm_4gemm_xdl_cshuffle.hpp"
12
+ #include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
13
+
14
+ using ADataType = F32;
15
+ using BDataType = F32;
16
+ using CDataType = F32;
17
+ using AccDataType = F32;
18
+
19
+ using ALayout = ck::tensor_layout::gemm::RowMajor;
20
+ using BLayout = ck::tensor_layout::gemm::ColumnMajor;
21
+ using CLayout = ck::tensor_layout::gemm::RowMajor;
22
+
23
+ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
24
+
25
+ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
26
+
27
+ using ReferenceCGemmInstance = ck::tensor_operation::host::
28
+ ReferenceCGemm<ADataType, BDataType, CDataType, PassThrough, PassThrough, PassThrough>;
29
+
30
+ // clang-format off
31
+ using DeviceCGemmInstance = ck::tensor_operation::device::DeviceCGemm_4Gemm_Xdl_CShuffle
32
+ <ALayout, // typename ALayout
33
+ BLayout, // typename BLayout
34
+ CLayout, // typename CLayout
35
+ ADataType, // typename ADataType
36
+ BDataType, // typename BDataType
37
+ CDataType, // typename CDataType
38
+ AccDataType, // typename GemmAccDataType
39
+ CDataType, // typename CShuffleDataType
40
+ PassThrough, // typename AElementwiseOperation
41
+ PassThrough, // typename BElementwiseOperation
42
+ PassThrough, // typename CElementwiseOperation
43
+ GemmDefault, // GemmSpecialization GemmSpec
44
+ 1, // index_t NumGemmKPrefetchStage
45
+ 256, // index_t BlockSize
46
+ 256, // index_t MPerBlock
47
+ 128, // index_t NPerBlock
48
+ 16, // index_t KPerBlock
49
+ 4, // index_t AK1
50
+ 4, // index_t BK1
51
+ 32, // index_t MPerXDL
52
+ 32, // index_t NPerXDL
53
+ 4, // index_t MXdlPerWave
54
+ 2, // index_t NXdlPerWave
55
+ S<4, 64, 1>, // typename ABlockTransferThreadClusterLengths_AK0_M_AK1
56
+ S<1, 0, 2>, // typename ABlockTransferThreadClusterArrangeOrder
57
+ S<1, 0, 2>, // typename ABlockTransferSrcAccessOrder
58
+ 2, // index_t ABlockTransferSrcVectorDim
59
+ 4, // index_t ABlockTransferSrcScalarPerVector
60
+ 4, // index_t ABlockTransferDstScalarPerVector_AK1
61
+ 1, // index_t ABlockLdsExtraM
62
+ S<4, 64, 1>, // typename BBlockTransferThreadClusterLengths_BK0_N_BK1
63
+ S<1, 0, 2>, // typename BBlockTransferThreadClusterArrangeOrder
64
+ S<1, 0, 2>, // typename BBlockTransferSrcAccessOrder
65
+ 2, // index_t BBlockTransferSrcVectorDim
66
+ 4, // index_t BBlockTransferSrcScalarPerVector
67
+ 4, // index_t BBlockTransferDstScalarPerVector_BK1
68
+ 1, // index_t BBlockLdsExtraN
69
+ 1, // index_t CShuffleMXdlPerWavePerShuffle
70
+ 1, // index_t CShuffleNXdlPerWavePerShuffle
71
+ S<1, 16, 1, 16>, // typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
72
+ 4>; // index_t CShuffleBlockTransferScalarPerVector_NPerBlock
73
+ // clang-format on
74
+
75
+ int main(int argc, char* argv[])
76
+ {
77
+ bool do_verification = true;
78
+ int init_method = 1;
79
+ bool time_kernel = false;
80
+
81
+ // CGEMM shape
82
+ ck::index_t M = 3840;
83
+ ck::index_t N = 4096;
84
+ ck::index_t K = 4096;
85
+
86
+ ck::index_t StrideA = 4096;
87
+ ck::index_t StrideB = 4096;
88
+ ck::index_t StrideC = 4096;
89
+
90
+ if(argc == 4)
91
+ {
92
+ do_verification = std::stoi(argv[1]);
93
+ init_method = std::stoi(argv[2]);
94
+ time_kernel = std::stoi(argv[3]);
95
+ }
96
+ else if(argc == 10)
97
+ {
98
+ do_verification = std::stoi(argv[1]);
99
+ init_method = std::stoi(argv[2]);
100
+ time_kernel = std::stoi(argv[3]);
101
+
102
+ M = std::stoi(argv[4]);
103
+ N = std::stoi(argv[5]);
104
+ K = std::stoi(argv[6]);
105
+
106
+ StrideA = std::stoi(argv[7]);
107
+ StrideB = std::stoi(argv[8]);
108
+ StrideC = std::stoi(argv[9]);
109
+ }
110
+ else
111
+ {
112
+ std::cout << "arg1: verification (0=no, 1=yes)\n"
113
+ << "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
114
+ << "arg3: run kernel # of times (>1)\n"
115
+ << "arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n"
116
+ << std::endl;
117
+ exit(0);
118
+ }
119
+
120
+ return !run_cgemm_xdl<ADataType,
121
+ BDataType,
122
+ CDataType,
123
+ ALayout,
124
+ BLayout,
125
+ CLayout,
126
+ PassThrough,
127
+ PassThrough,
128
+ PassThrough,
129
+ DeviceCGemmInstance,
130
+ ReferenceCGemmInstance>(
131
+ M, N, K, StrideA, StrideB, StrideC, do_verification, init_method, time_kernel);
132
+ }
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/22_cgemm/cgemm_xdl_int4.cpp ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #include <iostream>
5
+
6
+ #include "cgemm_xdl_common.hpp"
7
+
8
+ #include "ck/library/reference_tensor_operation/cpu/reference_cgemm.hpp"
9
+
10
+ #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
11
+ #include "ck/tensor_operation/gpu/device/impl/device_cgemm_4gemm_xdl_cshuffle.hpp"
12
+ #include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
13
+
14
+ using ADataType = INT4;
15
+ using BDataType = INT4;
16
+ using CDataType = INT4;
17
+ using AccDataType = INT32;
18
+ using CShuffleDataType = INT32;
19
+
20
+ using KernelADataType = INT8;
21
+ using KernelBDataType = INT8;
22
+ using KernelCDataType = INT8;
23
+
24
+ using ALayout = ck::tensor_layout::gemm::RowMajor;
25
+ using BLayout = ck::tensor_layout::gemm::ColumnMajor;
26
+ using CLayout = ck::tensor_layout::gemm::RowMajor;
27
+
28
+ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
29
+
30
+ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
31
+
32
+ using ReferenceCGemmInstance = ck::tensor_operation::host::
33
+ ReferenceCGemm<ADataType, BDataType, CDataType, PassThrough, PassThrough, PassThrough>;
34
+
35
+ // clang-format off
36
+ using DeviceCGemmInstance = ck::tensor_operation::device::DeviceCGemm_4Gemm_Xdl_CShuffle
37
+ <ALayout, // typename ALayout
38
+ BLayout, // typename BLayout
39
+ CLayout, // typename CLayout
40
+ KernelADataType, // typename ADataType
41
+ KernelBDataType, // typename BDataType
42
+ KernelCDataType, // typename CDataType
43
+ AccDataType, // typename GemmAccDataType
44
+ CShuffleDataType, // typename CShuffleDataType
45
+ PassThrough, // typename AElementwiseOperation
46
+ PassThrough, // typename BElementwiseOperation
47
+ PassThrough, // typename CElementwiseOperation
48
+ GemmDefault, // GemmSpecialization GemmSpec
49
+ 1, // index_t NumGemmKPrefetchStage
50
+ 256, // index_t BlockSize
51
+ 256, // index_t MPerBlock
52
+ 128, // index_t NPerBlock
53
+ 64, // index_t KPerBlock
54
+ 16, // index_t AK1
55
+ 16, // index_t BK1
56
+ 32, // index_t MPerXDL
57
+ 32, // index_t NPerXDL
58
+ 4, // index_t MXdlPerWave
59
+ 2, // index_t NXdlPerWave
60
+ S<4, 64, 1>, // typename ABlockTransferThreadClusterLengths_AK0_M_AK1
61
+ S<1, 0, 2>, // typename ABlockTransferThreadClusterArrangeOrder
62
+ S<1, 0, 2>, // typename ABlockTransferSrcAccessOrder
63
+ 2, // index_t ABlockTransferSrcVectorDim
64
+ 16, // index_t ABlockTransferSrcScalarPerVector
65
+ 16, // index_t ABlockTransferDstScalarPerVector_AK1
66
+ 1, // index_t ABlockLdsExtraM
67
+ S<4, 64, 1>, // typename BBlockTransferThreadClusterLengths_BK0_N_BK1
68
+ S<1, 0, 2>, // typename BBlockTransferThreadClusterArrangeOrder
69
+ S<1, 0, 2>, // typename BBlockTransferSrcAccessOrder
70
+ 2, // index_t BBlockTransferSrcVectorDim
71
+ 8, // index_t BBlockTransferSrcScalarPerVector
72
+ 8, // index_t BBlockTransferDstScalarPerVector_BK1
73
+ 1, // index_t BBlockLdsExtraN
74
+ 1, // index_t CShuffleMXdlPerWavePerShuffle
75
+ 1, // index_t CShuffleNXdlPerWavePerShuffle
76
+ S<1, 64, 1, 4>, // typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
77
+ 16>; // index_t CShuffleBlockTransferScalarPerVector_NPerBlock
78
+ // clang-format on
79
+
80
+ int main(int argc, char* argv[])
81
+ {
82
+ bool do_verification = true;
83
+ int init_method = 1;
84
+ bool time_kernel = true;
85
+
86
+ // CGEMM shape
87
+ ck::index_t M = 1024;
88
+ ck::index_t N = 1152;
89
+ ck::index_t K = 512;
90
+
91
+ ck::index_t StrideA = K;
92
+ ck::index_t StrideB = K;
93
+ ck::index_t StrideC = N;
94
+
95
+ if(argc == 4)
96
+ {
97
+ do_verification = std::stoi(argv[1]);
98
+ init_method = std::stoi(argv[2]);
99
+ time_kernel = std::stoi(argv[3]);
100
+ }
101
+ else if(argc == 10)
102
+ {
103
+ do_verification = std::stoi(argv[1]);
104
+ init_method = std::stoi(argv[2]);
105
+ time_kernel = std::stoi(argv[3]);
106
+
107
+ M = std::stoi(argv[4]);
108
+ N = std::stoi(argv[5]);
109
+ K = std::stoi(argv[6]);
110
+
111
+ StrideA = std::stoi(argv[7]);
112
+ StrideB = std::stoi(argv[8]);
113
+ StrideC = std::stoi(argv[9]);
114
+ }
115
+ else
116
+ {
117
+ std::cout << "arg1: verification (0=no, 1=yes)\n"
118
+ << "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
119
+ << "arg3: time kernel (0=no, 1=yes)\n"
120
+ << "arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n"
121
+ << std::endl;
122
+ exit(EXIT_SUCCESS);
123
+ }
124
+
125
+ return !run_cgemm_xdl<ADataType,
126
+ BDataType,
127
+ CDataType,
128
+ ALayout,
129
+ BLayout,
130
+ CLayout,
131
+ PassThrough,
132
+ PassThrough,
133
+ PassThrough,
134
+ DeviceCGemmInstance,
135
+ ReferenceCGemmInstance,
136
+ KernelADataType,
137
+ KernelBDataType,
138
+ KernelCDataType>(
139
+ M, N, K, StrideA, StrideB, StrideC, do_verification, init_method, time_kernel);
140
+ }
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/22_cgemm/cgemm_xdl_int8.cpp ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #include <iostream>
5
+
6
+ #include "cgemm_xdl_common.hpp"
7
+
8
+ #include "ck/library/reference_tensor_operation/cpu/reference_cgemm.hpp"
9
+
10
+ #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
11
+ #include "ck/tensor_operation/gpu/device/impl/device_cgemm_4gemm_xdl_cshuffle.hpp"
12
+ #include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
13
+
14
+ using ADataType = INT8;
15
+ using BDataType = INT8;
16
+ using CDataType = INT8;
17
+ using AccDataType = INT32;
18
+
19
+ using ALayout = ck::tensor_layout::gemm::RowMajor;
20
+ using BLayout = ck::tensor_layout::gemm::ColumnMajor;
21
+ using CLayout = ck::tensor_layout::gemm::RowMajor;
22
+
23
+ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
24
+
25
+ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
26
+
27
+ using ReferenceCGemmInstance = ck::tensor_operation::host::
28
+ ReferenceCGemm<ADataType, BDataType, CDataType, PassThrough, PassThrough, PassThrough>;
29
+
30
+ // clang-format off
31
+ using DeviceCGemmInstance = ck::tensor_operation::device::DeviceCGemm_4Gemm_Xdl_CShuffle
32
+ <ALayout, // typename ALayout
33
+ BLayout, // typename BLayout
34
+ CLayout, // typename CLayout
35
+ ADataType, // typename ADataType
36
+ BDataType, // typename BDataType
37
+ CDataType, // typename CDataType
38
+ AccDataType, // typename GemmAccDataType
39
+ CDataType, // typename CShuffleDataType
40
+ PassThrough, // typename AElementwiseOperation
41
+ PassThrough, // typename BElementwiseOperation
42
+ PassThrough, // typename CElementwiseOperation
43
+ GemmDefault, // GemmSpecialization GemmSpec
44
+ 1, // index_t NumGemmKPrefetchStage
45
+ 256, // index_t BlockSize
46
+ 256, // index_t MPerBlock
47
+ 128, // index_t NPerBlock
48
+ 64, // index_t KPerBlock
49
+ 16, // index_t AK1
50
+ 16, // index_t BK1
51
+ 32, // index_t MPerXDL
52
+ 32, // index_t NPerXDL
53
+ 4, // index_t MXdlPerWave
54
+ 2, // index_t NXdlPerWave
55
+ S<4, 64, 1>, // typename ABlockTransferThreadClusterLengths_AK0_M_AK1
56
+ S<1, 0, 2>, // typename ABlockTransferThreadClusterArrangeOrder
57
+ S<1, 0, 2>, // typename ABlockTransferSrcAccessOrder
58
+ 2, // index_t ABlockTransferSrcVectorDim
59
+ 16, // index_t ABlockTransferSrcScalarPerVector
60
+ 16, // index_t ABlockTransferDstScalarPerVector_AK1
61
+ 1, // index_t ABlockLdsExtraM
62
+ S<4, 64, 1>, // typename BBlockTransferThreadClusterLengths_BK0_N_BK1
63
+ S<1, 0, 2>, // typename BBlockTransferThreadClusterArrangeOrder
64
+ S<1, 0, 2>, // typename BBlockTransferSrcAccessOrder
65
+ 2, // index_t BBlockTransferSrcVectorDim
66
+ 8, // index_t BBlockTransferSrcScalarPerVector
67
+ 8, // index_t BBlockTransferDstScalarPerVector_BK1
68
+ 1, // index_t BBlockLdsExtraN
69
+ 1, // index_t CShuffleMXdlPerWavePerShuffle
70
+ 1, // index_t CShuffleNXdlPerWavePerShuffle
71
+ S<1, 64, 1, 4>, // typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
72
+ 16>; // index_t CShuffleBlockTransferScalarPerVector_NPerBlock
73
+ // clang-format on
74
+
75
+ int main(int argc, char* argv[])
76
+ {
77
+ bool do_verification = true;
78
+ int init_method = 1;
79
+ bool time_kernel = false;
80
+
81
+ // CGEMM shape
82
+ ck::index_t M = 3840;
83
+ ck::index_t N = 4096;
84
+ ck::index_t K = 4096;
85
+
86
+ ck::index_t StrideA = 4096;
87
+ ck::index_t StrideB = 4096;
88
+ ck::index_t StrideC = 4096;
89
+
90
+ if(argc == 4)
91
+ {
92
+ do_verification = std::stoi(argv[1]);
93
+ init_method = std::stoi(argv[2]);
94
+ time_kernel = std::stoi(argv[3]);
95
+ }
96
+ else if(argc == 10)
97
+ {
98
+ do_verification = std::stoi(argv[1]);
99
+ init_method = std::stoi(argv[2]);
100
+ time_kernel = std::stoi(argv[3]);
101
+
102
+ M = std::stoi(argv[4]);
103
+ N = std::stoi(argv[5]);
104
+ K = std::stoi(argv[6]);
105
+
106
+ StrideA = std::stoi(argv[7]);
107
+ StrideB = std::stoi(argv[8]);
108
+ StrideC = std::stoi(argv[9]);
109
+ }
110
+ else
111
+ {
112
+ std::cout << "arg1: verification (0=no, 1=yes)\n"
113
+ << "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
114
+ << "arg3: run kernel # of times (>1)\n"
115
+ << "arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n"
116
+ << std::endl;
117
+ exit(0);
118
+ }
119
+
120
+ return !run_cgemm_xdl<ADataType,
121
+ BDataType,
122
+ CDataType,
123
+ ALayout,
124
+ BLayout,
125
+ CLayout,
126
+ PassThrough,
127
+ PassThrough,
128
+ PassThrough,
129
+ DeviceCGemmInstance,
130
+ ReferenceCGemmInstance>(
131
+ M, N, K, StrideA, StrideB, StrideC, do_verification, init_method, time_kernel);
132
+ }
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/27_layernorm2d_fwd/common.hpp ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #pragma once
5
+
6
+ #include <iostream>
7
+ #include <numeric>
8
+ #include <initializer_list>
9
+ #include <cstdlib>
10
+ #include <getopt.h>
11
+
12
+ #include "ck/ck.hpp"
13
+ #include "ck/tensor_operation/gpu/device/impl/device_normalization_fwd_impl.hpp"
14
+ #include "ck/tensor_operation/gpu/device/impl/device_normalization_fwd_splitk_impl.hpp"
15
+
16
+ #include "ck/library/utility/check_err.hpp"
17
+ #include "ck/library/utility/device_memory.hpp"
18
+ #include "ck/library/utility/host_common_util.hpp"
19
+ #include "ck/library/utility/host_tensor.hpp"
20
+ #include "ck/library/utility/host_tensor_generator.hpp"
21
+ #include "ck/library/utility/literals.hpp"
22
+ #include "ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp"
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/27_layernorm2d_fwd/layernorm2d_fwd_fp16.cpp ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #include "common.hpp"
5
+
6
+ using XDataType = ck::half_t;
7
+ using GammaDataType = ck::half_t;
8
+ using BetaDataType = ck::half_t;
9
+ using YDataType = ck::half_t;
10
+ using SaveMeanInvStdDataType = float;
11
+ using ComputeDataType = float;
12
+ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
13
+
14
+ #define SAVE_MEAN_INV_STD
15
+
16
+ constexpr int Rank = 2;
17
+ constexpr int NumReduceDim = 1;
18
+
19
+ using DeviceInstance =
20
+ ck::tensor_operation::device::DeviceNormalizationFwdImpl<XDataType,
21
+ GammaDataType,
22
+ BetaDataType,
23
+ ComputeDataType,
24
+ YDataType,
25
+ SaveMeanInvStdDataType,
26
+ PassThrough,
27
+ Rank,
28
+ NumReduceDim,
29
+ 256, // BlockSize
30
+ 8, // ClusterM
31
+ 32, // ClusterK
32
+ 1, // SliceM
33
+ 8, // SliceK
34
+ 1, // XYVectorDim (0=M, 1=K)
35
+ 8, // SrcScalarPerVector
36
+ 1, // GammaVecDim (0=M, 1=K)
37
+ 8, // GammaScalarPerVector
38
+ 1, // BetaVecDim (0=M, 1=K)
39
+ 8, // BetaScalarPerVector
40
+ 8, // YScalarPerVector
41
+ 1>; // SaveMeanInvStdScalarPerVector
42
+ #include "run_layernorm_example.inc"
43
+
44
+ int main() { return run_layernorm2d_fwd_example<DeviceInstance>(); }
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/27_layernorm2d_fwd/layernorm2d_fwd_splitk_fp16.cpp ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #include "common.hpp"
5
+
6
+ using XDataType = ck::half_t;
7
+ using GammaDataType = ck::half_t;
8
+ using BetaDataType = ck::half_t;
9
+ using YDataType = ck::half_t;
10
+ using SaveMeanInvStdDataType = float;
11
+ using ComputeDataType = float;
12
+ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
13
+
14
+ #define SAVE_MEAN_INV_STD
15
+
16
+ constexpr int Rank = 2;
17
+ constexpr int NumReduceDim = 1;
18
+
19
+ using DeviceInstance = ck::tensor_operation::device::DeviceNormalizationFwdSplitKImpl<
20
+ XDataType,
21
+ GammaDataType,
22
+ BetaDataType,
23
+ ComputeDataType,
24
+ YDataType,
25
+ SaveMeanInvStdDataType,
26
+ PassThrough,
27
+ Rank,
28
+ NumReduceDim,
29
+ 256, // BlockSize
30
+ 8, // ClusterM
31
+ 32, // ClusterK
32
+ 1, // SliceM
33
+ 8, // SliceK
34
+ 1, // XYVectorDim (0=M, 1=K)
35
+ 8, // XScalarPerVector
36
+ 1, // GammaVecDim (0=M, 1=K)
37
+ 8, // GammaScalarPerVector
38
+ 1, // BetaVecDim (0=M, 1=K)
39
+ 8, // BetaScalarPerVector
40
+ 8, // YScalarPerVector
41
+ 1>; // SaveMeanInvStdScalarPerVector
42
+
43
+ #include "run_layernorm_example.inc"
44
+
45
+ int main() { return run_layernorm2d_fwd_example<DeviceInstance>(); }
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_fp32.cpp ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ /*
5
+ Gemm + Gemm fused operation. Computes C_m_o = A_m_k * B0_k_n * B1_n_o
6
+ |------------|
7
+ Gemm0
8
+ |---------------------|
9
+ Gemm1
10
+ */
11
+
12
+ #include <iostream>
13
+ #include <numeric>
14
+ #include <initializer_list>
15
+ #include <cstdlib>
16
+
17
+ #include "ck/ck.hpp"
18
+ #include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
19
+ #include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_gemm_xdl_cshuffle.hpp"
20
+ #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
21
+
22
+ #include "ck/library/utility/check_err.hpp"
23
+ #include "ck/library/utility/device_memory.hpp"
24
+ #include "ck/library/utility/host_tensor.hpp"
25
+ #include "ck/library/utility/host_tensor_generator.hpp"
26
+ #include "ck/library/utility/literals.hpp"
27
+ #include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
28
+
29
+ template <ck::index_t... Is>
30
+ using S = ck::Sequence<Is...>;
31
+
32
+ using F32 = float;
33
+
34
+ using Row = ck::tensor_layout::gemm::RowMajor;
35
+ using Col = ck::tensor_layout::gemm::ColumnMajor;
36
+
37
+ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
38
+
39
+ using ADataType = F32;
40
+ using B0DataType = F32;
41
+ using B1DataType = F32;
42
+ using AccDataType = F32;
43
+ using CShuffleDataType = F32;
44
+ using CDataType = F32;
45
+
46
+ using ALayout = Row;
47
+ using B0Layout = Col;
48
+ using B1Layout = Row;
49
+ using CLayout = Row;
50
+
51
+ using AElementOp = PassThrough;
52
+ using B0ElementOp = PassThrough;
53
+ using Acc0ElementOp = PassThrough;
54
+ using B1ElementOp = PassThrough;
55
+ using CElementOp = PassThrough;
56
+
57
+ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
58
+
59
+ using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmGemm_Xdl_CShuffle<
60
+ ALayout,
61
+ B0Layout,
62
+ B1Layout,
63
+ CLayout,
64
+ ADataType,
65
+ B0DataType,
66
+ B1DataType,
67
+ CDataType,
68
+ AccDataType,
69
+ CShuffleDataType,
70
+ AElementOp,
71
+ B0ElementOp,
72
+ Acc0ElementOp,
73
+ B1ElementOp,
74
+ CElementOp,
75
+ GemmDefault,
76
+ 1,
77
+ 256,
78
+ 128, // MPerBlock
79
+ 128, // NPerBlock
80
+ 16, // KPerBlock
81
+ 128, // Gemm1NPerBlock
82
+ 16, // Gemm1KPerBlock
83
+ 4, // AK1
84
+ 4, // BK1
85
+ 1, // B1K1
86
+ 32, // MPerXDL
87
+ 32, // NPerXDL
88
+ 1, // MXdlPerWave
89
+ 4, // NXdlPerWave
90
+ 4, // Gemm1NXdlPerWave
91
+ S<4, 64, 1>, // ABlockTransfer
92
+ S<1, 0, 2>,
93
+ S<1, 0, 2>,
94
+ 2,
95
+ 4,
96
+ 4,
97
+ true,
98
+ S<4, 64, 1>, // BBlockTransfer
99
+ S<1, 0, 2>,
100
+ S<1, 0, 2>,
101
+ 2,
102
+ 4,
103
+ 4,
104
+ true,
105
+ S<8, 32, 1>, // B1BlockTransfer
106
+ S<0, 2, 1>,
107
+ S<0, 2, 1>,
108
+ 1,
109
+ 4,
110
+ 1,
111
+ false,
112
+ 1, // CShuffleMXdlPerWavePerShuffle
113
+ 2, // CShuffleNXdlPerWavePerShuffle
114
+ S<1, 16, 1, 16>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
115
+ 4>; // CShuffleBlockTransferScalarPerVector_NPerBlock
116
+
117
+ using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
118
+ B0DataType,
119
+ ADataType,
120
+ AccDataType,
121
+ AElementOp,
122
+ B0ElementOp,
123
+ CElementOp>;
124
+
125
+ using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
126
+ B1DataType,
127
+ CDataType,
128
+ AccDataType,
129
+ AElementOp,
130
+ B1ElementOp,
131
+ CElementOp>;
132
+
133
+ #include "run_batched_gemm_gemm_example.inc"
134
+
135
+ int main(int argc, char* argv[]) { return run_batched_gemm_gemm_example(argc, argv) ? 0 : 1; }
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_int8.cpp ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ /*
5
+ Gemm + Gemm fused operation. Computes C_m_o = A_m_k * B0_k_n * B1_n_o
6
+ |------------|
7
+ Gemm0
8
+ |---------------------|
9
+ Gemm1
10
+ */
11
+
12
+ #include <iostream>
13
+ #include <numeric>
14
+ #include <initializer_list>
15
+ #include <cstdlib>
16
+
17
+ #include "ck/ck.hpp"
18
+ #include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
19
+ #include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_gemm_xdl_cshuffle.hpp"
20
+ #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
21
+
22
+ #include "ck/library/utility/check_err.hpp"
23
+ #include "ck/library/utility/device_memory.hpp"
24
+ #include "ck/library/utility/host_tensor.hpp"
25
+ #include "ck/library/utility/host_tensor_generator.hpp"
26
+ #include "ck/library/utility/literals.hpp"
27
+ #include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
28
+
29
+ template <ck::index_t... Is>
30
+ using S = ck::Sequence<Is...>;
31
+
32
+ using Row = ck::tensor_layout::gemm::RowMajor;
33
+ using Col = ck::tensor_layout::gemm::ColumnMajor;
34
+
35
+ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
36
+
37
+ using ADataType = int8_t;
38
+ using B0DataType = int8_t;
39
+ using B1DataType = int8_t;
40
+ using AccDataType = int32_t;
41
+ using CShuffleDataType = int32_t;
42
+ using CDataType = int8_t;
43
+
44
+ using ALayout = Row;
45
+ using B0Layout = Col;
46
+ using B1Layout = Row;
47
+ using CLayout = Row;
48
+
49
+ using AElementOp = PassThrough;
50
+ using B0ElementOp = PassThrough;
51
+ using Acc0ElementOp = PassThrough;
52
+ using B1ElementOp = PassThrough;
53
+ using CElementOp = PassThrough;
54
+
55
+ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
56
+
57
+ using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmGemm_Xdl_CShuffle<
58
+ ALayout,
59
+ B0Layout,
60
+ B1Layout,
61
+ CLayout,
62
+ ADataType,
63
+ B0DataType,
64
+ B1DataType,
65
+ CDataType,
66
+ AccDataType,
67
+ CShuffleDataType,
68
+ AElementOp,
69
+ B0ElementOp,
70
+ Acc0ElementOp,
71
+ B1ElementOp,
72
+ CElementOp,
73
+ GemmDefault,
74
+ 1,
75
+ 256,
76
+ 128, // MPerBlock
77
+ 128, // NPerBlock
78
+ 64, // KPerBlock
79
+ 128, // Gemm1NPerBlock
80
+ 64, // Gemm1KPerBlock
81
+ 16, // AK1
82
+ 16, // BK1
83
+ 4, // B1K1
84
+ 32, // MPerXDL
85
+ 32, // NPerXDL
86
+ 1, // MXdlPerWave
87
+ 4, // NXdlPerWave
88
+ 4, // Gemm1NXdlPerWave
89
+ S<4, 64, 1>, // ABlockTransfer
90
+ S<1, 0, 2>,
91
+ S<1, 0, 2>,
92
+ 2,
93
+ 16,
94
+ 16,
95
+ true,
96
+ S<4, 64, 1>, // BBlockTransfer
97
+ S<1, 0, 2>,
98
+ S<1, 0, 2>,
99
+ 2,
100
+ 16,
101
+ 16,
102
+ true,
103
+ S<8, 32, 1>, // B1BlockTransfer
104
+ S<0, 2, 1>,
105
+ S<0, 2, 1>,
106
+ 1,
107
+ 4,
108
+ 4,
109
+ false,
110
+ 1, // CShuffleMXdlPerWavePerShuffle
111
+ 2, // CShuffleNXdlPerWavePerShuffle
112
+ S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
113
+ 8>; // CShuffleBlockTransferScalarPerVector_NPerBlock
114
+
115
+ using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
116
+ B0DataType,
117
+ ADataType,
118
+ AccDataType,
119
+ AElementOp,
120
+ B0ElementOp,
121
+ CElementOp>;
122
+
123
+ using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
124
+ B1DataType,
125
+ CDataType,
126
+ AccDataType,
127
+ AElementOp,
128
+ B1ElementOp,
129
+ CElementOp>;
130
+
131
+ #include "run_batched_gemm_gemm_example.inc"
132
+
133
+ int main(int argc, char* argv[]) { return run_batched_gemm_gemm_example(argc, argv) ? 0 : 1; }
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/33_multiple_reduce/README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Instructions for ```example_dual_reduce```
2
+
3
+ ## Run ```example_dual_reduce_multiblock```
4
+ ```bash
5
+ # -D <xxx> : input 4-d tensor lengths
6
+ # -v <x> : verification (0=no, 1=yes)
7
+ #arg1: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
8
+ #arg2: time kernel (0=no, 1=yes)
9
+ ./bin/example_dual_reduce_multiblock -D 600,28,28,256 -v 1 2 1
10
+ ```
11
+
12
+ Result
13
+ ```
14
+ ./bin/example_dual_reduce_multiblock -D 600,28,28,256 -v 1 2 1
15
+ launch_and_time_kernel: grid_dim {150, 1, 1}, block_dim {256, 1, 1}
16
+ Warm up 1 time
17
+ Start running 10 times...
18
+ Perf: 1.19529 ms, 201.499 GB/s, DeviceMultipleReduceBlockWise<256,M_C4_S1,K_C64_S1,InSrcVectorDim_1_InSrcVectorSize_1,OutDstVectorSize_1_1>
19
+ ```
20
+
21
+ ## Run ```example_dual_reduce_threadwise```
22
+ ```bash
23
+ # -D <xxx> : input 4-d tensor lengths
24
+ # -v <x> : verification (0=no, 1=yes)
25
+ #arg1: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
26
+ #arg2: time kernel (0=no, 1=yes)
27
+ ./bin/example_dual_reduce_multiblock -D 8000,4,4,4 -v 1 2 1
28
+ ```
29
+
30
+ Result
31
+ ```
32
+ ./bin/example_dual_reduce_threadwise -D 8000,4,4,4 -v 1 2 1
33
+ launch_and_time_kernel: grid_dim {32, 1, 1}, block_dim {256, 1, 1}
34
+ Warm up 1 time
35
+ Start running 10 times...
36
+ Perf: 0.01512 ms, 71.9577 GB/s, DeviceMultipleReduceThreadwise<256,M_C256_S1,K_C1_S4,InSrcVectorDim_1_InSrcVectorSize_2,OutDstVectorSize_1_1>
37
+ ```
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/33_multiple_reduce/dual_reduce_common.hpp ADDED
@@ -0,0 +1,314 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #include <iostream>
5
+ #include <cstdlib>
6
+ #include <vector>
7
+ #include <array>
8
+ #include <algorithm>
9
+ #include <getopt.h>
10
+
11
+ #include "ck/ck.hpp"
12
+ #include "ck/utility/reduction_enums.hpp"
13
+ #include "ck/utility/data_type.hpp"
14
+
15
+ #include "ck/library/utility/algorithm.hpp"
16
+ #include "ck/library/utility/check_err.hpp"
17
+ #include "ck/library/utility/device_memory.hpp"
18
+ #include "ck/library/utility/host_tensor.hpp"
19
+ #include "ck/library/utility/host_tensor_generator.hpp"
20
+ #include "ck/library/utility/host_common_util.hpp"
21
+
22
+ static struct option long_options[] = {{"inLengths", required_argument, nullptr, 'D'},
23
+ {"verify", required_argument, nullptr, 'v'},
24
+ {"help", no_argument, nullptr, '?'},
25
+ {nullptr, 0, nullptr, 0}};
26
+
27
+ class SimpleAppArgs
28
+ {
29
+ private:
30
+ int option_index = 0;
31
+
32
+ public:
33
+ std::vector<size_t> inLengths = {600, 28, 28, 256};
34
+ size_t n, h, w, c;
35
+
36
+ bool do_verification = true;
37
+ int init_method = 2;
38
+ bool time_kernel = true;
39
+
40
+ public:
41
+ SimpleAppArgs()
42
+ {
43
+ n = inLengths[0];
44
+ h = inLengths[1];
45
+ w = inLengths[2];
46
+ c = inLengths[3];
47
+ };
48
+
49
+ void show_usage(const char* cmd)
50
+ {
51
+ std::cout << "Usage of " << cmd << std::endl;
52
+ std::cout << "--inLengths or -D, comma separated list of input tensor dimension lengths"
53
+ << std::endl;
54
+ std::cout << "--verify or -v, 1/0 to indicate whether to verify the reduction result by "
55
+ "comparing with the host-based reduction"
56
+ << std::endl;
57
+ std::cout << "Arg1 -- init method (0=no init, 1=single integer value, 2=scope integer "
58
+ "value, 3=decimal value)"
59
+ << std::endl;
60
+ std::cout << "Arg2 -- time kernel (0=no, 1=yes)" << std::endl;
61
+ };
62
+
63
+ int processArgs(int argc, char* argv[])
64
+ {
65
+ using ck::host_common::getTypeValuesFromString;
66
+
67
+ int ch;
68
+
69
+ while(1)
70
+ {
71
+ ch = getopt_long(argc, argv, "D:v:l:", long_options, &option_index);
72
+ if(ch == -1)
73
+ break;
74
+ switch(ch)
75
+ {
76
+ case 'D':
77
+ if(!optarg)
78
+ throw std::runtime_error("Invalid option format!");
79
+
80
+ inLengths = getTypeValuesFromString<size_t>(optarg);
81
+ if(inLengths.size() != 4)
82
+ throw std::runtime_error(
83
+ "Invalid option format! The number of integers is incorrect!");
84
+
85
+ break;
86
+ case 'v':
87
+ if(!optarg)
88
+ throw std::runtime_error("Invalid option format!");
89
+
90
+ do_verification = static_cast<bool>(std::atoi(optarg));
91
+ break;
92
+ case '?':
93
+ if(std::string(long_options[option_index].name) == "help")
94
+ {
95
+ show_usage(argv[0]);
96
+ return (-1);
97
+ };
98
+ break;
99
+ default: show_usage(argv[0]); return (-1);
100
+ };
101
+ };
102
+
103
+ if(optind + 2 > argc)
104
+ throw std::runtime_error("Invalid cmd-line arguments, more argumetns are needed!");
105
+
106
+ init_method = std::atoi(argv[optind++]);
107
+ time_kernel = static_cast<bool>(std::atoi(argv[optind]));
108
+
109
+ n = inLengths[0];
110
+ h = inLengths[1];
111
+ w = inLengths[2];
112
+ c = inLengths[3];
113
+
114
+ return (0);
115
+ };
116
+ };
117
+
118
+ template <typename InDataType, typename OutDataType1, typename OutDataType2, typename AccDataType>
119
+ static void mean_meansquare_host(const Tensor<InDataType>& in,
120
+ Tensor<OutDataType1>& mean_ref,
121
+ Tensor<OutDataType2>& meansquare_ref,
122
+ size_t n,
123
+ size_t h,
124
+ size_t w,
125
+ size_t c)
126
+
127
+ {
128
+ auto thread_reduce_func = [&](auto iN) {
129
+ AccDataType mean = ck::type_convert<AccDataType>(0.0f);
130
+ AccDataType meansquare = ck::type_convert<AccDataType>(0.0f);
131
+
132
+ // compute mean, meanquare, variance, invVariance
133
+ for(std::size_t iH = 0; iH < h; iH++)
134
+ {
135
+ for(std::size_t iW = 0; iW < w; iW++)
136
+ {
137
+ for(std::size_t iC = 0; iC < c; iC++)
138
+ {
139
+ AccDataType curr_value = ck::type_convert<AccDataType>(in(iN, iH, iW, iC));
140
+
141
+ mean += curr_value;
142
+ meansquare += curr_value * curr_value;
143
+ };
144
+ }
145
+ };
146
+
147
+ mean = mean / (h * w * c);
148
+ meansquare = meansquare / (h * w * c);
149
+
150
+ mean_ref(iN) = ck::type_convert<OutDataType1>(mean);
151
+ meansquare_ref(iN) = ck::type_convert<OutDataType2>(meansquare);
152
+ };
153
+
154
+ std::size_t num_thread = std::thread::hardware_concurrency();
155
+ std::size_t work_per_thread = (n + num_thread - 1) / num_thread;
156
+
157
+ std::vector<joinable_thread> threads(num_thread);
158
+
159
+ for(std::size_t it = 0; it < num_thread; it++)
160
+ {
161
+ std::size_t iN_begin = it * work_per_thread;
162
+ std::size_t iN_end = std::min(static_cast<size_t>((it + 1) * work_per_thread), n);
163
+
164
+ auto f = [=] {
165
+ for(std::size_t iN = iN_begin; iN < iN_end; iN++)
166
+ {
167
+ thread_reduce_func(iN);
168
+ }
169
+ };
170
+
171
+ threads[it] = joinable_thread(f);
172
+ }
173
+ };
174
+
175
+ using ReduceOperation = ck::reduce::Add;
176
+
177
+ using InElementwiseOperation_Mean = ck::tensor_operation::element_wise::PassThrough;
178
+ using AccElementwiseOperation_Mean = ck::tensor_operation::element_wise::UnaryDivide;
179
+
180
+ using InElementwiseOperation_Meansquare = ck::tensor_operation::element_wise::UnarySquare;
181
+ using AccElementwiseOperation_Meansquare = ck::tensor_operation::element_wise::UnaryDivide;
182
+
183
+ using InElementwiseOperationTuple =
184
+ ck::Tuple<InElementwiseOperation_Mean, InElementwiseOperation_Meansquare>;
185
+ using AccElementwiseOperationTuple =
186
+ ck::Tuple<AccElementwiseOperation_Mean, AccElementwiseOperation_Meansquare>;
187
+
188
+ template <typename DeviceDualReduce,
189
+ typename InDataType,
190
+ typename OutDataType,
191
+ typename AccDataType,
192
+ int Rank,
193
+ int NumReduceDim>
194
+ int mean_meansquare_dual_reduce_test(size_t n,
195
+ size_t h,
196
+ size_t w,
197
+ size_t c,
198
+ bool do_verification,
199
+ int init_method,
200
+ bool time_kernel,
201
+ const std::array<int, NumReduceDim> reduceDims)
202
+ {
203
+ const std::vector<size_t> inLengths = {n, h, w, c};
204
+
205
+ Tensor<InDataType> in(inLengths);
206
+
207
+ std::vector<size_t> outLengths{n};
208
+
209
+ Tensor<OutDataType> mean_ref(outLengths);
210
+ Tensor<OutDataType> mean(outLengths);
211
+ Tensor<OutDataType> meansquare_ref(outLengths);
212
+ Tensor<OutDataType> meansquare(outLengths);
213
+
214
+ auto inStrides = in.mDesc.GetStrides();
215
+ auto outStrides = mean.mDesc.GetStrides();
216
+
217
+ size_t invariant_total_length = n;
218
+ size_t reduce_total_length = h * w * c;
219
+
220
+ const double alpha = 1.0f;
221
+ const double beta = 0.0f;
222
+
223
+ std::size_t num_thread = 1;
224
+
225
+ if(do_verification)
226
+ {
227
+ switch(init_method)
228
+ {
229
+ case 0: break;
230
+ case 1: in.GenerateTensorValue(GeneratorTensor_1<InDataType>{1}, num_thread); break;
231
+ case 2: in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}, num_thread); break;
232
+ default: in.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0}, num_thread);
233
+ }
234
+ };
235
+
236
+ // these buffers are usually provided by the user application
237
+ DeviceMem in_dev(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
238
+ DeviceMem mean_dev(sizeof(OutDataType) * mean.mDesc.GetElementSpaceSize());
239
+ DeviceMem meansquare_dev(sizeof(OutDataType) * meansquare.mDesc.GetElementSpaceSize());
240
+
241
+ in_dev.ToDevice(in.mData.data());
242
+
243
+ if(do_verification)
244
+ {
245
+ mean_meansquare_host<InDataType, OutDataType, OutDataType, AccDataType>(
246
+ in, mean_ref, meansquare_ref, n, h, w, c);
247
+ };
248
+
249
+ constexpr ck::index_t NumInputDim = Rank;
250
+ constexpr ck::index_t NumOutputDim = (Rank - NumReduceDim > 1) ? Rank - NumReduceDim : 1;
251
+
252
+ std::array<ck::index_t, NumInputDim> i_inLengths;
253
+ std::array<ck::index_t, NumInputDim> i_inStrides;
254
+ std::array<ck::index_t, NumOutputDim> i_outLengths;
255
+ std::array<ck::index_t, NumOutputDim> i_outStrides;
256
+
257
+ ck::ranges::copy(inLengths, i_inLengths.begin());
258
+ ck::ranges::copy(inStrides, i_inStrides.begin());
259
+ ck::ranges::copy(outLengths, i_outLengths.begin());
260
+ ck::ranges::copy(outStrides, i_outStrides.begin());
261
+
262
+ auto dual_reduce_op = DeviceDualReduce{};
263
+
264
+ auto argument_ptr = dual_reduce_op.MakeArgumentPointer(
265
+ i_inLengths,
266
+ i_inStrides,
267
+ i_outLengths,
268
+ {i_outStrides, i_outStrides},
269
+ reduceDims,
270
+ {alpha, alpha},
271
+ {beta, beta},
272
+ in_dev.GetDeviceBuffer(),
273
+ {mean_dev.GetDeviceBuffer(), meansquare_dev.GetDeviceBuffer()},
274
+ ck::make_tuple(InElementwiseOperation_Mean{}, InElementwiseOperation_Meansquare{}),
275
+ ck::make_tuple(
276
+ AccElementwiseOperation_Mean{static_cast<int32_t>(reduce_total_length)},
277
+ AccElementwiseOperation_Meansquare{static_cast<int32_t>(reduce_total_length)}));
278
+
279
+ if(!dual_reduce_op.IsSupportedArgument(argument_ptr.get()))
280
+ {
281
+ std::cout
282
+ << "The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
283
+ << std::endl;
284
+ return (-1);
285
+ };
286
+
287
+ std::string reduce_name = dual_reduce_op.GetTypeString();
288
+
289
+ auto invoker_ptr = dual_reduce_op.MakeInvokerPointer();
290
+
291
+ float avg_time = 0.0f;
292
+
293
+ avg_time += invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
294
+
295
+ std::size_t num_bytes = invariant_total_length * reduce_total_length * sizeof(InDataType) +
296
+ 2 * invariant_total_length * sizeof(OutDataType);
297
+
298
+ float gb_per_sec = num_bytes / 1.E6 / avg_time;
299
+
300
+ std::cout << "Perf: " << avg_time << " ms, " << gb_per_sec << " GB/s, " << reduce_name
301
+ << std::endl;
302
+
303
+ bool pass = true;
304
+
305
+ if(do_verification)
306
+ {
307
+ mean_dev.FromDevice(mean.mData.data());
308
+ meansquare_dev.FromDevice(meansquare.mData.data());
309
+ pass = pass && ck::utils::check_err(mean, mean_ref);
310
+ pass = pass && ck::utils::check_err(meansquare, meansquare_ref);
311
+ };
312
+
313
+ return (pass ? 0 : 1);
314
+ }
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/33_multiple_reduce/dual_reduce_multiblock.cpp ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #include <iostream>
5
+ #include <cstdlib>
6
+ #include <vector>
7
+ #include <array>
8
+ #include <algorithm>
9
+ #include <getopt.h>
10
+
11
+ #include "ck/ck.hpp"
12
+ #include "ck/utility/reduction_enums.hpp"
13
+ #include "ck/utility/data_type.hpp"
14
+
15
+ #include "ck/tensor_operation/gpu/device/device_base.hpp"
16
+ #include "ck/tensor_operation/gpu/device/impl/device_multiple_reduce_multiblock.hpp"
17
+ #include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
18
+
19
+ #include "dual_reduce_common.hpp"
20
+
21
+ using namespace ck;
22
+ using namespace ck::tensor_operation::device;
23
+
24
+ using InDataType = ck::half_t;
25
+ using OutDataType = float;
26
+ using OutDataTypeTuple = Tuple<OutDataType, OutDataType>;
27
+ using AccDataType = float;
28
+
29
+ // for NHWC layer-norm calculation of mean and meansquare
30
+ constexpr int Rank = 4;
31
+ constexpr int NumReduceDim = 3;
32
+
33
+ constexpr bool PropagateNan = false;
34
+
35
+ constexpr InMemoryDataOperationEnum OutMemoryDataOperation = InMemoryDataOperationEnum::Set;
36
+
37
+ using DeviceDualReduce = DeviceMultipleReduceMultiBlock<2,
38
+ InDataType,
39
+ AccDataType,
40
+ OutDataTypeTuple,
41
+ Rank,
42
+ NumReduceDim,
43
+ ReduceOperation,
44
+ InElementwiseOperationTuple,
45
+ AccElementwiseOperationTuple,
46
+ OutMemoryDataOperation,
47
+ PropagateNan,
48
+ 256,
49
+ 4,
50
+ 64,
51
+ 1,
52
+ 1,
53
+ 1, // InSrcVectorDim
54
+ 1,
55
+ ck::Sequence<1, 1>>;
56
+
57
+ int main(int argc, char* argv[])
58
+ {
59
+ int retval = 0;
60
+
61
+ if(argc > 1)
62
+ {
63
+ SimpleAppArgs arg;
64
+
65
+ if(arg.processArgs(argc, argv) < 0)
66
+ return (-1);
67
+
68
+ std::array<int, NumReduceDim> reduceDims = {1, 2, 3};
69
+
70
+ retval = mean_meansquare_dual_reduce_test<DeviceDualReduce,
71
+ InDataType,
72
+ OutDataType,
73
+ AccDataType,
74
+ Rank,
75
+ NumReduceDim>(arg.n,
76
+ arg.h,
77
+ arg.w,
78
+ arg.c,
79
+ arg.do_verification,
80
+ arg.init_method,
81
+ arg.time_kernel,
82
+ reduceDims);
83
+ }
84
+ else
85
+ {
86
+ std::array<int, NumReduceDim> reduceDims = {1, 2, 3};
87
+
88
+ retval = mean_meansquare_dual_reduce_test<DeviceDualReduce,
89
+ InDataType,
90
+ OutDataType,
91
+ AccDataType,
92
+ Rank,
93
+ NumReduceDim>(
94
+ 600, 28, 28, 256, true, 2, true, reduceDims);
95
+ };
96
+
97
+ return (retval);
98
+ }
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/33_multiple_reduce/dual_reduce_threadwise.cpp ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #include <iostream>
5
+ #include <cstdlib>
6
+ #include <vector>
7
+ #include <array>
8
+ #include <algorithm>
9
+ #include <getopt.h>
10
+
11
+ #include "ck/ck.hpp"
12
+ #include "ck/utility/reduction_enums.hpp"
13
+ #include "ck/utility/data_type.hpp"
14
+
15
+ #include "ck/tensor_operation/gpu/device/device_base.hpp"
16
+ #include "ck/tensor_operation/gpu/device/impl/device_multiple_reduce_threadwise.hpp"
17
+ #include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
18
+
19
+ #include "dual_reduce_common.hpp"
20
+
21
+ using namespace ck;
22
+ using namespace ck::tensor_operation::device;
23
+
24
+ using InDataType = ck::half_t;
25
+ using OutDataType = float;
26
+ using OutDataTypeTuple = Tuple<OutDataType, OutDataType>;
27
+ using AccDataType = float;
28
+
29
+ // for NHWC layer-norm calculation of mean and meansquare
30
+ constexpr int Rank = 4;
31
+ constexpr int NumReduceDim = 3;
32
+
33
+ constexpr bool PropagateNan = false;
34
+
35
+ using DeviceDualReduce = DeviceMultipleReduceThreadWise<2,
36
+ InDataType,
37
+ AccDataType,
38
+ OutDataTypeTuple,
39
+ Rank,
40
+ NumReduceDim,
41
+ ReduceOperation,
42
+ InElementwiseOperationTuple,
43
+ AccElementwiseOperationTuple,
44
+ PropagateNan,
45
+ 256,
46
+ 1,
47
+ 4,
48
+ 1, // InSrcVectorDim
49
+ 2,
50
+ ck::Sequence<1, 1>>;
51
+
52
+ int main(int argc, char* argv[])
53
+ {
54
+ int retval = 0;
55
+
56
+ if(argc > 1)
57
+ {
58
+ SimpleAppArgs arg;
59
+
60
+ if(arg.processArgs(argc, argv) < 0)
61
+ return (-1);
62
+
63
+ std::array<int, NumReduceDim> reduceDims = {1, 2, 3};
64
+
65
+ retval = mean_meansquare_dual_reduce_test<DeviceDualReduce,
66
+ InDataType,
67
+ OutDataType,
68
+ AccDataType,
69
+ Rank,
70
+ NumReduceDim>(arg.n,
71
+ arg.h,
72
+ arg.w,
73
+ arg.c,
74
+ arg.do_verification,
75
+ arg.init_method,
76
+ arg.time_kernel,
77
+ reduceDims);
78
+ }
79
+ else
80
+ {
81
+ std::array<int, NumReduceDim> reduceDims = {1, 2, 3};
82
+
83
+ retval = mean_meansquare_dual_reduce_test<DeviceDualReduce,
84
+ InDataType,
85
+ OutDataType,
86
+ AccDataType,
87
+ Rank,
88
+ NumReduceDim>(
89
+ 8000, 4, 4, 4, true, 2, true, reduceDims);
90
+ };
91
+
92
+ return (retval);
93
+ }
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/52_im2col_col2im/common.hpp ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #pragma once
5
+
6
+ #include <cstdlib>
7
+ #include <initializer_list>
8
+ #include <iostream>
9
+ #include <numeric>
10
+
11
+ #include "ck/ck.hpp"
12
+ #include "ck/tensor_operation/gpu/device/impl/device_image_to_column_impl.hpp"
13
+ #include "ck/tensor_operation/gpu/device/impl/device_column_to_image_impl.hpp"
14
+ #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
15
+
16
+ #include "ck/library/utility/algorithm.hpp"
17
+ #include "ck/library/utility/check_err.hpp"
18
+ #include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
19
+ #include "ck/library/utility/convolution_parameter.hpp"
20
+ #include "ck/library/utility/device_memory.hpp"
21
+ #include "ck/library/utility/host_tensor.hpp"
22
+ #include "ck/library/utility/host_tensor_generator.hpp"
23
+ #include "ck/library/reference_tensor_operation/cpu/reference_image_to_column.hpp"
24
+ #include "ck/library/reference_tensor_operation/cpu/reference_column_to_image.hpp"
25
+
26
+ template <ck::index_t... Is>
27
+ using S = ck::Sequence<Is...>;
28
+
29
+ static inline constexpr ck::index_t NDimSpatial = 2;
30
+
31
+ using FP32 = float;
32
+
33
+ struct ExecutionConfig final
34
+ {
35
+ bool do_verification = true;
36
+ int init_method = 1;
37
+ bool time_kernel = false;
38
+ };
39
+
40
+ #define DefaultConvParams \
41
+ ck::utils::conv::ConvParam \
42
+ { \
43
+ NDimSpatial, 1, 32, 1, 1, {4, 4}, {64, 64}, {1, 1}, {1, 1}, {0, 0}, { 0, 0 } \
44
+ }
45
+
46
+ inline void print_help_msg()
47
+ {
48
+ std::cerr << "arg1: verification (0=no, 1=yes)\n"
49
+ << "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
50
+ << "arg3: time kernel (0=no, 1=yes)\n"
51
+ << ck::utils::conv::get_conv_param_parser_helper_msg() << std::endl;
52
+ }
53
+
54
+ inline bool parse_cmd_args(int argc,
55
+ char* argv[],
56
+ ExecutionConfig& config,
57
+ ck::utils::conv::ConvParam& conv_params)
58
+ {
59
+ constexpr int num_execution_config_args =
60
+ 3; // arguments for do_verification, init_method, time_kernel
61
+ constexpr int num_conv_param_leading_args = 5; // arguments for num_dim_spatial_, G_, N_, K_, C_
62
+
63
+ constexpr int threshold_to_catch_partial_args = 1 + num_execution_config_args;
64
+ constexpr int threshold_to_catch_all_args =
65
+ threshold_to_catch_partial_args + num_conv_param_leading_args;
66
+
67
+ if(argc == 1)
68
+ {
69
+ // use default
70
+ config = ExecutionConfig{};
71
+ }
72
+ // catch only ExecutionConfig arguments
73
+ else if(argc == threshold_to_catch_partial_args)
74
+ {
75
+ config.do_verification = std::stoi(argv[1]);
76
+ config.init_method = std::stoi(argv[2]);
77
+ config.time_kernel = std::stoi(argv[3]);
78
+ }
79
+ // catch both ExecutionConfig & ConvParam arguments
80
+ else if(threshold_to_catch_all_args < argc && ((argc - threshold_to_catch_all_args) % 3 == 0))
81
+ {
82
+ config.do_verification = std::stoi(argv[1]);
83
+ config.init_method = std::stoi(argv[2]);
84
+ config.time_kernel = std::stoi(argv[3]);
85
+
86
+ const ck::index_t num_dim_spatial = std::stoi(argv[4]);
87
+ conv_params = ck::utils::conv::parse_conv_param(
88
+ num_dim_spatial, threshold_to_catch_partial_args, argv);
89
+ }
90
+ else
91
+ {
92
+ print_help_msg();
93
+ return false;
94
+ }
95
+
96
+ return true;
97
+ }
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/52_im2col_col2im/image_to_column_f32.cpp ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #include "common.hpp"
5
+
6
+ using InDataType = FP32;
7
+ using OutDataType = FP32;
8
+
9
+ using ImLayout = ck::tensor_layout::convolution::GNHWC;
10
+ using ImageToColumnOp = ck::conv_tensor_rearrange_op::ImageToColumn;
11
+
12
+ // clang-format off
13
+ using DeviceImgToColInstance = ck::tensor_operation::device::DeviceImageToColumnImpl
14
+ //#####################| Num| ImLayout| InDataType| OutDataType| Block| MPer| KPer| Thread| Scalar|
15
+ //#####################| Dim| | | | Size| Block| Block| Cluster| Per|
16
+ //#####################| Spatial| | | | | | | Lengths| Vector|
17
+ //#####################| | | | | | | | | |
18
+ < NDimSpatial, ImLayout, InDataType, OutDataType, 256, 128, 128, S<16, 16>, 1>;
19
+ // clang-format on
20
+
21
+ bool RunImageToColumn(const ExecutionConfig& config, const ck::utils::conv::ConvParam& conv_params)
22
+ {
23
+ const auto G = conv_params.G_;
24
+ const auto N = conv_params.N_;
25
+ const auto C = conv_params.C_;
26
+
27
+ const ck::index_t NDoHoWo =
28
+ N * ck::accumulate_n<ck::index_t>(
29
+ conv_params.output_spatial_lengths_.begin(), NDimSpatial, 1, std::multiplies<>());
30
+ const ck::index_t CZYX =
31
+ C * ck::accumulate_n<ck::index_t>(
32
+ conv_params.filter_spatial_lengths_.begin(), NDimSpatial, 1, std::multiplies<>());
33
+
34
+ const auto in_desc =
35
+ ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<ImLayout>(conv_params);
36
+ const auto out_desc = HostTensorDescriptor({G, NDoHoWo, CZYX});
37
+
38
+ std::array<ck::index_t, NDimSpatial> input_spatial_lengths{};
39
+ std::array<ck::index_t, NDimSpatial> filter_spatial_lengths{};
40
+ std::array<ck::index_t, NDimSpatial> output_spatial_lengths{};
41
+ std::array<ck::index_t, NDimSpatial + 3> image_g_n_c_wis_strides{};
42
+ std::array<ck::index_t, 3> gemm_g_m_k_strides{};
43
+ std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
44
+ std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
45
+ std::array<ck::index_t, NDimSpatial> input_left_pads{};
46
+ std::array<ck::index_t, NDimSpatial> input_right_pads{};
47
+
48
+ auto copy = [](const auto& x, auto& y) { std::copy(x.begin(), x.end(), y.begin()); };
49
+
50
+ copy(conv_params.input_spatial_lengths_, input_spatial_lengths);
51
+ copy(conv_params.filter_spatial_lengths_, filter_spatial_lengths);
52
+ copy(conv_params.output_spatial_lengths_, output_spatial_lengths);
53
+ copy(in_desc.GetStrides(), image_g_n_c_wis_strides);
54
+ copy(out_desc.GetStrides(), gemm_g_m_k_strides);
55
+ copy(conv_params.conv_filter_strides_, conv_filter_strides);
56
+ copy(conv_params.conv_filter_dilations_, conv_filter_dilations);
57
+ copy(conv_params.input_left_pads_, input_left_pads);
58
+ copy(conv_params.input_right_pads_, input_right_pads);
59
+
60
+ Tensor<InDataType> in(in_desc);
61
+ Tensor<OutDataType> out_device(out_desc);
62
+ Tensor<OutDataType> out_host(out_desc);
63
+
64
+ std::cout << "in: " << in.mDesc << std::endl;
65
+ std::cout << "out: " << out_device.mDesc << std::endl;
66
+
67
+ switch(config.init_method)
68
+ {
69
+ case 0: break;
70
+ case 1: in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}); break;
71
+ default: in.GenerateTensorValue(GeneratorTensor_3<InDataType>{-0.5, 0.5});
72
+ }
73
+
74
+ DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
75
+ DeviceMem out_device_buf(sizeof(OutDataType) * out_device.mDesc.GetElementSpaceSize());
76
+
77
+ in_device_buf.ToDevice(in.mData.data());
78
+
79
+ // reset input to zero
80
+ out_device_buf.SetZero();
81
+
82
+ static_assert(std::is_default_constructible_v<DeviceImgToColInstance>);
83
+
84
+ // do conv
85
+ auto img2col = DeviceImgToColInstance{};
86
+ auto invoker = img2col.MakeInvoker();
87
+ auto argument = img2col.MakeArgument(in_device_buf.GetDeviceBuffer(),
88
+ out_device_buf.GetDeviceBuffer(),
89
+ G,
90
+ N,
91
+ C,
92
+ input_spatial_lengths,
93
+ filter_spatial_lengths,
94
+ output_spatial_lengths,
95
+ image_g_n_c_wis_strides,
96
+ gemm_g_m_k_strides,
97
+ conv_filter_strides,
98
+ conv_filter_dilations,
99
+ input_left_pads,
100
+ input_right_pads);
101
+
102
+ if(!img2col.IsSupportedArgument(argument))
103
+ {
104
+ std::cerr << "wrong! device_img2col with the specified compilation parameters does "
105
+ "not support this img2col problem"
106
+ << std::endl;
107
+
108
+ return false;
109
+ }
110
+
111
+ float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
112
+ std::size_t num_btype = G * NDoHoWo * CZYX * (sizeof(OutDataType) + sizeof(InDataType));
113
+ float gb_per_sec = num_btype / 1.E6 / ave_time;
114
+ std::cout << "Perf: " << ave_time << " ms, " << gb_per_sec << " GB/s" << std::endl;
115
+
116
+ if(config.do_verification)
117
+ {
118
+ auto ref_image_to_column = ck::tensor_operation::host::
119
+ ReferenceImageToColumn<NDimSpatial, ImLayout, InDataType, OutDataType>();
120
+
121
+ auto ref_invoker = ref_image_to_column.MakeInvoker();
122
+
123
+ auto ref_argument = ref_image_to_column.MakeArgument(in,
124
+ out_host,
125
+ conv_params.filter_spatial_lengths_,
126
+ conv_params.conv_filter_strides_,
127
+ conv_params.conv_filter_dilations_,
128
+ conv_params.input_left_pads_,
129
+ conv_params.input_right_pads_);
130
+
131
+ if(!ref_image_to_column.IsSupportedArgument(&ref_argument))
132
+ {
133
+ std::cerr << "wrong! ref_img2col with the specified compilation parameters does "
134
+ "not support this img2col problem"
135
+ << std::endl;
136
+ return false;
137
+ }
138
+
139
+ ref_invoker.Run(ref_argument);
140
+
141
+ out_device_buf.FromDevice(out_device.mData.data());
142
+
143
+ return ck::utils::check_err(out_device.mData, out_host.mData);
144
+ }
145
+
146
+ return true;
147
+ }
148
+
149
+ int RunImageToColumnExample(int argc, char* argv[])
150
+ {
151
+ ExecutionConfig config;
152
+ ck::utils::conv::ConvParam conv_params = DefaultConvParams;
153
+
154
+ if(!parse_cmd_args(argc, argv, config, conv_params))
155
+ {
156
+ return EXIT_FAILURE;
157
+ }
158
+
159
+ if(conv_params.num_dim_spatial_ != NDimSpatial)
160
+ {
161
+ std::cerr << "unsupported # of spatial dimensions" << std::endl;
162
+ return EXIT_FAILURE;
163
+ }
164
+
165
+ return !RunImageToColumn(config, conv_params);
166
+ }
167
+
168
+ int main(int argc, char* argv[]) { return RunImageToColumnExample(argc, argv); }
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_bias_fastgelu_bf16_i8.cpp ADDED
@@ -0,0 +1,273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #include <iostream>
5
+ #include <numeric>
6
+ #include <initializer_list>
7
+ #include <cstdlib>
8
+
9
+ #include "ck/ck.hpp"
10
+ #include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
11
+ #include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_abd_xdl_cshuffle.hpp"
12
+ #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
13
+
14
+ #include "ck/library/utility/device_memory.hpp"
15
+ #include "ck/library/utility/host_tensor.hpp"
16
+ #include "ck/library/utility/host_tensor_generator.hpp"
17
+ #include "ck/library/utility/literals.hpp"
18
+ #include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
19
+ #include "ck/library/utility/check_err.hpp"
20
+
21
+ #include "ck/utility/blkgemmpipe_scheduler.hpp"
22
+
23
+ template <ck::index_t... Is>
24
+ using S = ck::Sequence<Is...>;
25
+
26
+ using F16 = ck::half_t;
27
+ using BF16 = ck::bhalf_t;
28
+ using I8 = int8_t;
29
+ using F32 = float;
30
+
31
+ using Row = ck::tensor_layout::gemm::RowMajor;
32
+ using Col = ck::tensor_layout::gemm::ColumnMajor;
33
+
34
+ using A0DataType = BF16;
35
+ using AsDataType = ck::Tuple<A0DataType>;
36
+ using B0DataType = I8;
37
+ using B1DataType = BF16;
38
+ using BsDataType = ck::Tuple<B0DataType, B1DataType>;
39
+ using AccDataType = F32;
40
+ using CShuffleDataType = BF16;
41
+ using D0DataType = BF16;
42
+ using DsDataType = ck::Tuple<D0DataType>;
43
+ using EDataType = BF16;
44
+
45
+ using A0Layout = Row;
46
+ using AsLayout = ck::Tuple<A0Layout>;
47
+ using B0Layout = Row;
48
+ using B1Layout = B0Layout;
49
+ using BsLayout = ck::Tuple<B0Layout, B1Layout>;
50
+ using D0Layout = Row;
51
+ using DsLayout = ck::Tuple<D0Layout>;
52
+ using ELayout = Row;
53
+
54
+ using Multiply = ck::tensor_operation::element_wise::Multiply;
55
+ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
56
+ using AddFastGelu = ck::tensor_operation::element_wise::AddFastGelu;
57
+
58
+ using AElementOp = PassThrough;
59
+ using BElementOp = Multiply;
60
+ using CDEElementOp = AddFastGelu;
61
+
62
+ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::Default;
63
+
64
+ using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleABD_Xdl_CShuffle
65
+ // clang-format off
66
+ ///######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
67
+ ///######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
68
+ ///######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
69
+ ///######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
70
+ < AsLayout, BsLayout, DsLayout, ELayout, AsDataType, BsDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, ck::BlockGemmPipelineScheduler::Intrawave, ck::BlockGemmPipelineVersion::v4>;
71
+ // clang-format on
72
+
73
+ int main(int argc, char* argv[])
74
+ {
75
+ bool do_verification = true;
76
+ int init_method = 1;
77
+ bool time_kernel = false;
78
+
79
+ // GEMM shape
80
+ ck::index_t M = 4096;
81
+ ck::index_t N = 768;
82
+ ck::index_t K = 6144;
83
+
84
+ ck::index_t StrideA = K;
85
+ ck::index_t StrideB = N;
86
+ ck::index_t StrideD = 0;
87
+ ck::index_t StrideE = N;
88
+
89
+ if(argc == 1)
90
+ {
91
+ // use default case
92
+ }
93
+ else if(argc == 4)
94
+ {
95
+ do_verification = std::stoi(argv[1]);
96
+ init_method = std::stoi(argv[2]);
97
+ time_kernel = std::stoi(argv[3]);
98
+ }
99
+ else if(argc == 11)
100
+ {
101
+ do_verification = std::stoi(argv[1]);
102
+ init_method = std::stoi(argv[2]);
103
+ time_kernel = std::stoi(argv[3]);
104
+
105
+ M = std::stoi(argv[4]);
106
+ N = std::stoi(argv[5]);
107
+ K = std::stoi(argv[6]);
108
+
109
+ StrideA = std::stoi(argv[7]);
110
+ StrideB = std::stoi(argv[8]);
111
+ StrideD = std::stoi(argv[9]);
112
+ StrideE = std::stoi(argv[10]);
113
+ }
114
+ else
115
+ {
116
+ printf("arg1: verification (0=no, 1=yes)\n");
117
+ printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
118
+ printf("arg3: time kernel (0=no, 1=yes)\n");
119
+ printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE\n");
120
+ exit(0);
121
+ }
122
+
123
+ auto f_host_tensor_descriptor =
124
+ [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
125
+ using namespace ck::literals;
126
+
127
+ if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
128
+ {
129
+ return HostTensorDescriptor({row, col}, {stride, 1_uz});
130
+ }
131
+ else
132
+ {
133
+ return HostTensorDescriptor({row, col}, {1_uz, stride});
134
+ }
135
+ };
136
+
137
+ Tensor<A0DataType> a0_m_k(f_host_tensor_descriptor(M, K, StrideA, A0Layout{}));
138
+ Tensor<B0DataType> b0_k_n(f_host_tensor_descriptor(K, N, StrideB, B0Layout{}));
139
+ Tensor<B1DataType> b1_k_n(f_host_tensor_descriptor(K, N, 0, B1Layout{}));
140
+ Tensor<D0DataType> d_m_n(f_host_tensor_descriptor(M, N, StrideD, D0Layout{}));
141
+ Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
142
+ Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
143
+
144
+ std::cout << "a0_m_k: " << a0_m_k.mDesc << std::endl;
145
+ std::cout << "b0_k_n: " << b0_k_n.mDesc << std::endl;
146
+ std::cout << "b1_k_n: " << b1_k_n.mDesc << std::endl;
147
+ std::cout << "d_m_n: " << d_m_n.mDesc << std::endl;
148
+ std::cout << "e_m_n: " << e_m_n_host_result.mDesc << std::endl;
149
+
150
+ switch(init_method)
151
+ {
152
+ case 0: break;
153
+ case 1:
154
+ a0_m_k.GenerateTensorValue(GeneratorTensor_2<A0DataType>{-5, 5});
155
+ b0_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
156
+ b1_k_n.GenerateTensorValue(GeneratorTensor_2<B1DataType>{0, 5});
157
+ d_m_n.GenerateTensorValue(GeneratorTensor_2<D0DataType>{-5, 5});
158
+ break;
159
+ default:
160
+ a0_m_k.GenerateTensorValue(GeneratorTensor_3<A0DataType>{0.0, 1.0});
161
+ b0_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
162
+ b1_k_n.GenerateTensorValue(GeneratorTensor_3<B1DataType>{0, 5});
163
+ d_m_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{-0.5, 0.5});
164
+ }
165
+
166
+ DeviceMem a0_device_buf(sizeof(A0DataType) * a0_m_k.mDesc.GetElementSpaceSize());
167
+ DeviceMem b0_device_buf(sizeof(B0DataType) * b0_k_n.mDesc.GetElementSpaceSize());
168
+ DeviceMem b1_device_buf(sizeof(B1DataType) * b1_k_n.mDesc.GetElementSpaceSize());
169
+ DeviceMem d_device_buf(sizeof(D0DataType) * d_m_n.mDesc.GetElementSpaceSize());
170
+ DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
171
+
172
+ a0_device_buf.ToDevice(a0_m_k.mData.data());
173
+ b0_device_buf.ToDevice(b0_k_n.mData.data());
174
+ b1_device_buf.ToDevice(b1_k_n.mData.data());
175
+ d_device_buf.ToDevice(d_m_n.mData.data());
176
+ e_device_buf.ToDevice(e_m_n_device_result.mData.data());
177
+
178
+ auto a_element_op = AElementOp{};
179
+ auto b_element_op = BElementOp{};
180
+ auto cde_element_op = CDEElementOp{};
181
+
182
+ constexpr ck::index_t NumATensor = 1;
183
+ constexpr ck::index_t NumBTensor = 2;
184
+ constexpr ck::index_t NumDTensor = 1;
185
+
186
+ // do GEMM
187
+ auto device_op = DeviceOpInstance{};
188
+ auto invoker = device_op.MakeInvoker();
189
+ auto argument =
190
+ device_op.MakeArgument(std::array<const void*, NumATensor>{a0_device_buf.GetDeviceBuffer()},
191
+ std::array<const void*, NumBTensor>{b0_device_buf.GetDeviceBuffer(),
192
+ b1_device_buf.GetDeviceBuffer()},
193
+ std::array<const void*, NumDTensor>{d_device_buf.GetDeviceBuffer()},
194
+ e_device_buf.GetDeviceBuffer(),
195
+ M,
196
+ N,
197
+ K,
198
+ std::array<ck::index_t, NumATensor>{StrideA},
199
+ std::array<ck::index_t, NumBTensor>{StrideB, 0},
200
+ std::array<ck::index_t, NumDTensor>{StrideD},
201
+ StrideE,
202
+ a_element_op,
203
+ b_element_op,
204
+ cde_element_op);
205
+
206
+ if(!device_op.IsSupportedArgument(argument))
207
+ {
208
+ throw std::runtime_error(
209
+ "wrong! device_gemm with the specified compilation parameters does "
210
+ "not support this GEMM problem");
211
+ }
212
+
213
+ float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
214
+
215
+ std::size_t flop = std::size_t(2) * M * N * K;
216
+ std::size_t num_btype =
217
+ sizeof(A0DataType) * M * K + sizeof(B0DataType) * K * N + sizeof(EDataType) * M * N;
218
+
219
+ float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
220
+
221
+ float gb_per_sec = num_btype / 1.E6 / ave_time;
222
+
223
+ std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
224
+ << std::endl;
225
+
226
+ e_device_buf.FromDevice(e_m_n_device_result.mData.data());
227
+
228
+ if(do_verification)
229
+ {
230
+ Tensor<CShuffleDataType> c_m_n({M, N});
231
+
232
+ Tensor<A0DataType> a_m_k({M, K});
233
+
234
+ Tensor<B1DataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, B0Layout{}));
235
+
236
+ for(int n = 0; n < N; ++n)
237
+ {
238
+ for(int k = 0; k < K; ++k)
239
+ {
240
+ b_element_op(b_k_n(k, n), b0_k_n(k, n), b1_k_n(k, n));
241
+ }
242
+ }
243
+
244
+ using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<A0DataType,
245
+ B1DataType,
246
+ CShuffleDataType,
247
+ AccDataType,
248
+ PassThrough,
249
+ PassThrough,
250
+ PassThrough>;
251
+ auto ref_gemm = ReferenceGemmInstance{};
252
+ auto ref_invoker = ref_gemm.MakeInvoker();
253
+
254
+ auto ref_argument = ref_gemm.MakeArgument(
255
+ a0_m_k, b_k_n, c_m_n, PassThrough{}, PassThrough{}, PassThrough{});
256
+
257
+ ref_invoker.Run(ref_argument);
258
+
259
+ for(int m = 0; m < M; ++m)
260
+ {
261
+ for(int n = 0; n < N; ++n)
262
+ {
263
+ cde_element_op(e_m_n_host_result(m, n), c_m_n(m, n), d_m_n(m, n));
264
+ }
265
+ }
266
+
267
+ e_device_buf.FromDevice(e_m_n_device_result.mData.data());
268
+
269
+ return ck::utils::check_err(e_m_n_device_result, e_m_n_host_result) ? 0 : 1;
270
+ }
271
+
272
+ return 0;
273
+ }
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_fastgelu_bf16_i8.cpp ADDED
@@ -0,0 +1,273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #include <iostream>
5
+ #include <numeric>
6
+ #include <initializer_list>
7
+ #include <cstdlib>
8
+
9
+ #include "ck/ck.hpp"
10
+ #include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
11
+ #include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_abd_xdl_cshuffle.hpp"
12
+ #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
13
+
14
+ #include "ck/library/utility/device_memory.hpp"
15
+ #include "ck/library/utility/host_tensor.hpp"
16
+ #include "ck/library/utility/host_tensor_generator.hpp"
17
+ #include "ck/library/utility/literals.hpp"
18
+ #include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
19
+ #include "ck/library/utility/check_err.hpp"
20
+
21
+ #include "ck/utility/blkgemmpipe_scheduler.hpp"
22
+
23
+ template <ck::index_t... Is>
24
+ using S = ck::Sequence<Is...>;
25
+
26
+ using F16 = ck::half_t;
27
+ using BF16 = ck::bhalf_t;
28
+ using I8 = int8_t;
29
+ using F32 = float;
30
+
31
+ using Row = ck::tensor_layout::gemm::RowMajor;
32
+ using Col = ck::tensor_layout::gemm::ColumnMajor;
33
+
34
+ using A0DataType = BF16;
35
+ using AsDataType = ck::Tuple<A0DataType>;
36
+ using B0DataType = I8;
37
+ using B1DataType = BF16;
38
+ using BsDataType = ck::Tuple<B0DataType, B1DataType>;
39
+ using AccDataType = F32;
40
+ using CShuffleDataType = F32;
41
+ using D0DataType = BF16;
42
+ using DsDataType = ck::Tuple<>;
43
+ using EDataType = BF16;
44
+
45
+ using A0Layout = Row;
46
+ using AsLayout = ck::Tuple<A0Layout>;
47
+ using B0Layout = Row;
48
+ using B1Layout = B0Layout;
49
+ using BsLayout = ck::Tuple<B0Layout, B1Layout>;
50
+ using D0Layout = Row;
51
+ using DsLayout = ck::Tuple<>;
52
+ using ELayout = Row;
53
+
54
+ using Multiply = ck::tensor_operation::element_wise::Multiply;
55
+ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
56
+ using FastGelu = ck::tensor_operation::element_wise::FastGelu;
57
+
58
+ using AElementOp = PassThrough;
59
+ using BElementOp = Multiply;
60
+ using CDEElementOp = FastGelu;
61
+
62
+ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::Default;
63
+
64
+ using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleABD_Xdl_CShuffle
65
+ // clang-format off
66
+ ///######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
67
+ ///######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
68
+ ///######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
69
+ ///######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
70
+ < AsLayout, BsLayout, DsLayout, ELayout, AsDataType, BsDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, ck::BlockGemmPipelineScheduler::Intrawave, ck::BlockGemmPipelineVersion::v4>;
71
+ // clang-format on
72
+
73
+ int main(int argc, char* argv[])
74
+ {
75
+ bool do_verification = true;
76
+ int init_method = 1;
77
+ bool time_kernel = false;
78
+
79
+ // GEMM shape
80
+ ck::index_t M = 4096;
81
+ ck::index_t N = 768;
82
+ ck::index_t K = 6144;
83
+
84
+ ck::index_t StrideA = K;
85
+ ck::index_t StrideB = N;
86
+ ck::index_t StrideD = 0;
87
+ ck::index_t StrideE = N;
88
+
89
+ if(argc == 1)
90
+ {
91
+ // use default case
92
+ }
93
+ else if(argc == 4)
94
+ {
95
+ do_verification = std::stoi(argv[1]);
96
+ init_method = std::stoi(argv[2]);
97
+ time_kernel = std::stoi(argv[3]);
98
+ }
99
+ else if(argc == 11)
100
+ {
101
+ do_verification = std::stoi(argv[1]);
102
+ init_method = std::stoi(argv[2]);
103
+ time_kernel = std::stoi(argv[3]);
104
+
105
+ M = std::stoi(argv[4]);
106
+ N = std::stoi(argv[5]);
107
+ K = std::stoi(argv[6]);
108
+
109
+ StrideA = std::stoi(argv[7]);
110
+ StrideB = std::stoi(argv[8]);
111
+ StrideD = std::stoi(argv[9]);
112
+ StrideE = std::stoi(argv[10]);
113
+ }
114
+ else
115
+ {
116
+ printf("arg1: verification (0=no, 1=yes)\n");
117
+ printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
118
+ printf("arg3: time kernel (0=no, 1=yes)\n");
119
+ printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE\n");
120
+ exit(0);
121
+ }
122
+
123
+ auto f_host_tensor_descriptor =
124
+ [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
125
+ using namespace ck::literals;
126
+
127
+ if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
128
+ {
129
+ return HostTensorDescriptor({row, col}, {stride, 1_uz});
130
+ }
131
+ else
132
+ {
133
+ return HostTensorDescriptor({row, col}, {1_uz, stride});
134
+ }
135
+ };
136
+
137
+ Tensor<A0DataType> a0_m_k(f_host_tensor_descriptor(M, K, StrideA, A0Layout{}));
138
+ Tensor<B0DataType> b0_k_n(f_host_tensor_descriptor(K, N, StrideB, B0Layout{}));
139
+ Tensor<B1DataType> b1_k_n(f_host_tensor_descriptor(K, N, 0, B1Layout{}));
140
+ Tensor<D0DataType> d_m_n(f_host_tensor_descriptor(M, N, StrideD, D0Layout{}));
141
+ Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
142
+ Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
143
+
144
+ std::cout << "a0_m_k: " << a0_m_k.mDesc << std::endl;
145
+ std::cout << "b0_k_n: " << b0_k_n.mDesc << std::endl;
146
+ std::cout << "b1_k_n: " << b1_k_n.mDesc << std::endl;
147
+ std::cout << "d_m_n: " << d_m_n.mDesc << std::endl;
148
+ std::cout << "e_m_n: " << e_m_n_host_result.mDesc << std::endl;
149
+
150
+ switch(init_method)
151
+ {
152
+ case 0: break;
153
+ case 1:
154
+ a0_m_k.GenerateTensorValue(GeneratorTensor_2<A0DataType>{-5, 5});
155
+ b0_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
156
+ b1_k_n.GenerateTensorValue(GeneratorTensor_2<B1DataType>{0, 5});
157
+ d_m_n.GenerateTensorValue(GeneratorTensor_2<D0DataType>{-5, 5});
158
+ break;
159
+ default:
160
+ a0_m_k.GenerateTensorValue(GeneratorTensor_3<A0DataType>{0.0, 1.0});
161
+ b0_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
162
+ b1_k_n.GenerateTensorValue(GeneratorTensor_3<B1DataType>{0, 5});
163
+ d_m_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{-0.5, 0.5});
164
+ }
165
+
166
+ DeviceMem a0_device_buf(sizeof(A0DataType) * a0_m_k.mDesc.GetElementSpaceSize());
167
+ DeviceMem b0_device_buf(sizeof(B0DataType) * b0_k_n.mDesc.GetElementSpaceSize());
168
+ DeviceMem b1_device_buf(sizeof(B1DataType) * b1_k_n.mDesc.GetElementSpaceSize());
169
+ DeviceMem d_device_buf(sizeof(D0DataType) * d_m_n.mDesc.GetElementSpaceSize());
170
+ DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
171
+
172
+ a0_device_buf.ToDevice(a0_m_k.mData.data());
173
+ b0_device_buf.ToDevice(b0_k_n.mData.data());
174
+ b1_device_buf.ToDevice(b1_k_n.mData.data());
175
+ d_device_buf.ToDevice(d_m_n.mData.data());
176
+ e_device_buf.ToDevice(e_m_n_device_result.mData.data());
177
+
178
+ auto a_element_op = AElementOp{};
179
+ auto b_element_op = BElementOp{};
180
+ auto cde_element_op = CDEElementOp{};
181
+
182
+ constexpr ck::index_t NumATensor = 1;
183
+ constexpr ck::index_t NumBTensor = 2;
184
+ constexpr ck::index_t NumDTensor = 0;
185
+
186
+ // do GEMM
187
+ auto device_op = DeviceOpInstance{};
188
+ auto invoker = device_op.MakeInvoker();
189
+ auto argument =
190
+ device_op.MakeArgument(std::array<const void*, NumATensor>{a0_device_buf.GetDeviceBuffer()},
191
+ std::array<const void*, NumBTensor>{b0_device_buf.GetDeviceBuffer(),
192
+ b1_device_buf.GetDeviceBuffer()},
193
+ std::array<const void*, NumDTensor>{},
194
+ e_device_buf.GetDeviceBuffer(),
195
+ M,
196
+ N,
197
+ K,
198
+ std::array<ck::index_t, NumATensor>{StrideA},
199
+ std::array<ck::index_t, NumBTensor>{StrideB, 0},
200
+ std::array<ck::index_t, NumDTensor>{},
201
+ StrideE,
202
+ a_element_op,
203
+ b_element_op,
204
+ cde_element_op);
205
+
206
+ if(!device_op.IsSupportedArgument(argument))
207
+ {
208
+ throw std::runtime_error(
209
+ "wrong! device_gemm with the specified compilation parameters does "
210
+ "not support this GEMM problem");
211
+ }
212
+
213
+ float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
214
+
215
+ std::size_t flop = std::size_t(2) * M * N * K;
216
+ std::size_t num_btype =
217
+ sizeof(A0DataType) * M * K + sizeof(B0DataType) * K * N + sizeof(EDataType) * M * N;
218
+
219
+ float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
220
+
221
+ float gb_per_sec = num_btype / 1.E6 / ave_time;
222
+
223
+ std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
224
+ << std::endl;
225
+
226
+ e_device_buf.FromDevice(e_m_n_device_result.mData.data());
227
+
228
+ if(do_verification)
229
+ {
230
+ Tensor<CShuffleDataType> c_m_n({M, N});
231
+
232
+ Tensor<A0DataType> a_m_k({M, K});
233
+
234
+ Tensor<B1DataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, B0Layout{}));
235
+
236
+ for(int n = 0; n < N; ++n)
237
+ {
238
+ for(int k = 0; k < K; ++k)
239
+ {
240
+ b_element_op(b_k_n(k, n), b0_k_n(k, n), b1_k_n(k, n));
241
+ }
242
+ }
243
+
244
+ using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<A0DataType,
245
+ B1DataType,
246
+ CShuffleDataType,
247
+ AccDataType,
248
+ PassThrough,
249
+ PassThrough,
250
+ PassThrough>;
251
+ auto ref_gemm = ReferenceGemmInstance{};
252
+ auto ref_invoker = ref_gemm.MakeInvoker();
253
+
254
+ auto ref_argument = ref_gemm.MakeArgument(
255
+ a0_m_k, b_k_n, c_m_n, PassThrough{}, PassThrough{}, PassThrough{});
256
+
257
+ ref_invoker.Run(ref_argument);
258
+
259
+ for(int m = 0; m < M; ++m)
260
+ {
261
+ for(int n = 0; n < N; ++n)
262
+ {
263
+ cde_element_op(e_m_n_host_result(m, n), c_m_n(m, n));
264
+ }
265
+ }
266
+
267
+ e_device_buf.FromDevice(e_m_n_device_result.mData.data());
268
+
269
+ return ck::utils::check_err(e_m_n_device_result, e_m_n_host_result) ? 0 : 1;
270
+ }
271
+
272
+ return 0;
273
+ }
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_fp16.cpp ADDED
@@ -0,0 +1,363 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #include <iostream>
5
+ #include <numeric>
6
+ #include <initializer_list>
7
+ #include <cstdlib>
8
+
9
+ #include "ck/ck.hpp"
10
+ #include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
11
+ #include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_abd_xdl_cshuffle.hpp"
12
+ #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
13
+
14
+ #include "ck/library/utility/device_memory.hpp"
15
+ #include "ck/library/utility/host_tensor.hpp"
16
+ #include "ck/library/utility/host_tensor_generator.hpp"
17
+ #include "ck/library/utility/literals.hpp"
18
+ #include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
19
+ #include "ck/library/utility/check_err.hpp"
20
+
21
+ template <ck::index_t... Is>
22
+ using S = ck::Sequence<Is...>;
23
+
24
+ using F16 = ck::half_t;
25
+ using F32 = float;
26
+
27
+ using Row = ck::tensor_layout::gemm::RowMajor;
28
+ using Col = ck::tensor_layout::gemm::ColumnMajor;
29
+
30
+ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
31
+
32
+ using ADataType = F16;
33
+ using BDataType = F16;
34
+ using AccDataType = F32;
35
+ using CShuffleDataType = F32;
36
+ using DDataType = F16;
37
+ using EDataType = F16;
38
+
39
+ using ALayout = Row;
40
+ using BLayout = Row;
41
+ using DLayout = Row;
42
+ using ELayout = Row;
43
+
44
+ struct AddScale
45
+ {
46
+ static constexpr auto I0 = ck::Number<0>{};
47
+ static constexpr auto I1 = ck::Number<1>{};
48
+ static constexpr auto I2 = ck::Number<2>{};
49
+ static constexpr auto I3 = ck::Number<3>{};
50
+
51
+ __host__ __device__ constexpr void
52
+ operator()(ck::half4_t& a, const ck::half4_t& a0, const ck::half4_t& a1) const
53
+ {
54
+ const auto a0_v_t = ck::vector_type<ck::half_t, 4>{a0};
55
+ const auto a1_v_t = ck::vector_type<ck::half_t, 4>{a1};
56
+
57
+ auto r_v_t = ck::vector_type<ck::half_t, 4>{};
58
+
59
+ r_v_t.AsType<ck::half_t>()(I0) =
60
+ scale * (a0_v_t.AsType<ck::half_t>()[I0] + a1_v_t.AsType<ck::half_t>()[I0]);
61
+ r_v_t.AsType<ck::half_t>()(I1) =
62
+ scale * (a0_v_t.AsType<ck::half_t>()[I1] + a1_v_t.AsType<ck::half_t>()[I1]);
63
+ r_v_t.AsType<ck::half_t>()(I2) =
64
+ scale * (a0_v_t.AsType<ck::half_t>()[I2] + a1_v_t.AsType<ck::half_t>()[I2]);
65
+ r_v_t.AsType<ck::half_t>()(I3) =
66
+ scale * (a0_v_t.AsType<ck::half_t>()[I3] + a1_v_t.AsType<ck::half_t>()[I3]);
67
+
68
+ a = r_v_t.AsType<ck::half4_t>()[I0];
69
+ }
70
+
71
+ __host__ __device__ constexpr void
72
+ operator()(ck::half_t& a, const ck::half_t& a0, const ck::half_t& a1) const
73
+ {
74
+ a = scale * (a0 + a1);
75
+ }
76
+
77
+ // this attribute controls the copy_function applying element_wise_op with
78
+ // pack4_data
79
+ constexpr const static bool is_pack4_invocable = true;
80
+
81
+ float scale = 1.0;
82
+ };
83
+
84
+ struct AlphaBetaAdd
85
+ {
86
+ AlphaBetaAdd(float alpha, float beta) : alpha_(alpha), beta_(beta){};
87
+
88
+ template <typename E, typename C, typename D>
89
+ __host__ __device__ constexpr void operator()(E& e, const C& c, const D& d) const;
90
+
91
+ template <>
92
+ __host__ __device__ constexpr void operator()<ck::half_t, float, ck::half_t>(
93
+ ck::half_t& e, const float& c, const ck::half_t& d) const
94
+ {
95
+ e = ck::type_convert<ck::half_t>(alpha_ * c + beta_ * ck::type_convert<float>(d));
96
+ };
97
+
98
+ float alpha_;
99
+ float beta_;
100
+ };
101
+
102
+ using AElementOp = AddScale;
103
+ using BElementOp = PassThrough;
104
+ using CDEElementOp = AlphaBetaAdd;
105
+
106
+ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
107
+
108
+ using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleABD_Xdl_CShuffle<
109
+ ck::Tuple<ALayout, ALayout>,
110
+ ck::Tuple<BLayout>,
111
+ ck::Tuple<DLayout>,
112
+ ELayout,
113
+ ck::Tuple<ADataType, ADataType>,
114
+ ck::Tuple<BDataType>,
115
+ AccDataType,
116
+ CShuffleDataType,
117
+ ck::Tuple<DDataType>,
118
+ EDataType,
119
+ AElementOp,
120
+ BElementOp,
121
+ CDEElementOp,
122
+ GemmSpec,
123
+ 1,
124
+ 256,
125
+ 256,
126
+ 128,
127
+ 32,
128
+ 8,
129
+ 8,
130
+ 32,
131
+ 32,
132
+ 4,
133
+ 2,
134
+ S<4, 64, 1>,
135
+ S<1, 0, 2>,
136
+ S<1, 0, 2>,
137
+ 2,
138
+ 8,
139
+ 8,
140
+ 1,
141
+ S<4, 64, 1>,
142
+ S<1, 0, 2>,
143
+ S<1, 0, 2>,
144
+ 1,
145
+ 2,
146
+ 8,
147
+ 1,
148
+ 1,
149
+ 1,
150
+ S<1, 32, 1, 8>,
151
+ 8>;
152
+
153
+ int main(int argc, char* argv[])
154
+ {
155
+ bool do_verification = true;
156
+ int init_method = 1;
157
+ bool time_kernel = false;
158
+
159
+ // GEMM shape
160
+ ck::index_t M = 3840;
161
+ ck::index_t N = 4096;
162
+ ck::index_t K = 4096;
163
+
164
+ ck::index_t StrideA = K;
165
+ ck::index_t StrideB = N;
166
+ ck::index_t StrideD = N;
167
+ ck::index_t StrideE = N;
168
+
169
+ float alpha = 1.0f;
170
+ float beta = 1.0f;
171
+
172
+ if(argc == 1)
173
+ {
174
+ // use default case
175
+ }
176
+ else if(argc == 4)
177
+ {
178
+ do_verification = std::stoi(argv[1]);
179
+ init_method = std::stoi(argv[2]);
180
+ time_kernel = std::stoi(argv[3]);
181
+ }
182
+ else if(argc == 6)
183
+ {
184
+ do_verification = std::stoi(argv[1]);
185
+ init_method = std::stoi(argv[2]);
186
+ time_kernel = std::stoi(argv[3]);
187
+
188
+ alpha = std::stof(argv[4]);
189
+ beta = std::stof(argv[5]);
190
+ }
191
+ else if(argc == 13)
192
+ {
193
+ do_verification = std::stoi(argv[1]);
194
+ init_method = std::stoi(argv[2]);
195
+ time_kernel = std::stoi(argv[3]);
196
+
197
+ M = std::stoi(argv[4]);
198
+ N = std::stoi(argv[5]);
199
+ K = std::stoi(argv[6]);
200
+
201
+ StrideA = std::stoi(argv[7]);
202
+ StrideB = std::stoi(argv[8]);
203
+ StrideD = std::stoi(argv[9]);
204
+ StrideE = std::stoi(argv[10]);
205
+
206
+ alpha = std::stof(argv[11]);
207
+ beta = std::stof(argv[12]);
208
+ }
209
+ else
210
+ {
211
+ printf("arg1: verification (0=no, 1=yes)\n");
212
+ printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
213
+ printf("arg3: time kernel (0=no, 1=yes)\n");
214
+ printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE, alpha, "
215
+ "beta\n");
216
+ exit(0);
217
+ }
218
+
219
+ auto f_host_tensor_descriptor =
220
+ [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
221
+ using namespace ck::literals;
222
+
223
+ if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
224
+ {
225
+ return HostTensorDescriptor({row, col}, {stride, 1_uz});
226
+ }
227
+ else
228
+ {
229
+ return HostTensorDescriptor({row, col}, {1_uz, stride});
230
+ }
231
+ };
232
+
233
+ Tensor<ADataType> a0_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
234
+ Tensor<ADataType> a1_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
235
+ Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
236
+ Tensor<DDataType> d_m_n(f_host_tensor_descriptor(M, N, StrideD, DLayout{}));
237
+ Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
238
+ Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
239
+
240
+ std::cout << "a0_m_k: " << a0_m_k.mDesc << std::endl;
241
+ std::cout << "a1_m_k: " << a1_m_k.mDesc << std::endl;
242
+ std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
243
+ std::cout << "d_m_n: " << d_m_n.mDesc << std::endl;
244
+ std::cout << "e_m_n: " << e_m_n_host_result.mDesc << std::endl;
245
+
246
+ switch(init_method)
247
+ {
248
+ case 0: break;
249
+ case 1:
250
+ a0_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
251
+ a1_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
252
+ b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
253
+ d_m_n.GenerateTensorValue(GeneratorTensor_2<DDataType>{-5, 5});
254
+ break;
255
+ default:
256
+ a0_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
257
+ a1_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
258
+ b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
259
+ d_m_n.GenerateTensorValue(GeneratorTensor_3<DDataType>{-0.5, 0.5});
260
+ }
261
+
262
+ DeviceMem a0_device_buf(sizeof(ADataType) * a0_m_k.mDesc.GetElementSpaceSize());
263
+ DeviceMem a1_device_buf(sizeof(ADataType) * a1_m_k.mDesc.GetElementSpaceSize());
264
+ DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
265
+ DeviceMem d_device_buf(sizeof(DDataType) * d_m_n.mDesc.GetElementSpaceSize());
266
+ DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
267
+
268
+ a0_device_buf.ToDevice(a0_m_k.mData.data());
269
+ a1_device_buf.ToDevice(a1_m_k.mData.data());
270
+ b_device_buf.ToDevice(b_k_n.mData.data());
271
+ d_device_buf.ToDevice(d_m_n.mData.data());
272
+ e_device_buf.ToDevice(e_m_n_device_result.mData.data());
273
+
274
+ auto a_element_op = AElementOp{0.2};
275
+ auto b_element_op = BElementOp{};
276
+ auto cde_element_op = CDEElementOp{alpha, beta};
277
+
278
+ // do GEMM
279
+ auto device_op = DeviceOpInstance{};
280
+ auto invoker = device_op.MakeInvoker();
281
+ auto argument =
282
+ device_op.MakeArgument(std::array<const void*, 2>{a0_device_buf.GetDeviceBuffer(),
283
+ a1_device_buf.GetDeviceBuffer()},
284
+ std::array<const void*, 1>{b_device_buf.GetDeviceBuffer()},
285
+ std::array<const void*, 1>{d_device_buf.GetDeviceBuffer()},
286
+ e_device_buf.GetDeviceBuffer(),
287
+ M,
288
+ N,
289
+ K,
290
+ std::array<ck::index_t, 2>{StrideA, StrideA},
291
+ std::array<ck::index_t, 1>{StrideB},
292
+ std::array<ck::index_t, 1>{StrideD},
293
+ StrideE,
294
+ a_element_op,
295
+ b_element_op,
296
+ cde_element_op);
297
+
298
+ if(!device_op.IsSupportedArgument(argument))
299
+ {
300
+ throw std::runtime_error(
301
+ "wrong! device_gemm with the specified compilation parameters does "
302
+ "not support this GEMM problem");
303
+ }
304
+
305
+ float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
306
+
307
+ std::size_t flop = std::size_t(2) * M * N * K;
308
+ std::size_t num_btype =
309
+ sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(EDataType) * M * N;
310
+
311
+ float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
312
+
313
+ float gb_per_sec = num_btype / 1.E6 / ave_time;
314
+
315
+ std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
316
+ << std::endl;
317
+
318
+ e_device_buf.FromDevice(e_m_n_device_result.mData.data());
319
+
320
+ if(do_verification)
321
+ {
322
+ Tensor<CShuffleDataType> c_m_n({M, N});
323
+
324
+ Tensor<ADataType> a_m_k({M, K});
325
+
326
+ for(int m = 0; m < M; ++m)
327
+ {
328
+ for(int k = 0; k < K; ++k)
329
+ {
330
+ a_element_op(a_m_k(m, k), a0_m_k(m, k), a1_m_k(m, k));
331
+ }
332
+ }
333
+
334
+ using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
335
+ BDataType,
336
+ CShuffleDataType,
337
+ AccDataType,
338
+ PassThrough,
339
+ BElementOp,
340
+ PassThrough>;
341
+ auto ref_gemm = ReferenceGemmInstance{};
342
+ auto ref_invoker = ref_gemm.MakeInvoker();
343
+
344
+ auto ref_argument =
345
+ ref_gemm.MakeArgument(a_m_k, b_k_n, c_m_n, PassThrough{}, b_element_op, PassThrough{});
346
+
347
+ ref_invoker.Run(ref_argument);
348
+
349
+ for(int m = 0; m < M; ++m)
350
+ {
351
+ for(int n = 0; n < N; ++n)
352
+ {
353
+ cde_element_op(e_m_n_host_result(m, n), c_m_n(m, n), d_m_n(m, n));
354
+ }
355
+ }
356
+
357
+ e_device_buf.FromDevice(e_m_n_device_result.mData.data());
358
+
359
+ return ck::utils::check_err(e_m_n_device_result, e_m_n_host_result) ? 0 : 1;
360
+ }
361
+
362
+ return 0;
363
+ }
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_multiply_bias_fastgelu_bf16_i8.cpp ADDED
@@ -0,0 +1,274 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #include <iostream>
5
+ #include <numeric>
6
+ #include <initializer_list>
7
+ #include <cstdlib>
8
+
9
+ #include "ck/ck.hpp"
10
+ #include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
11
+ #include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_abd_xdl_cshuffle.hpp"
12
+ #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
13
+
14
+ #include "ck/library/utility/device_memory.hpp"
15
+ #include "ck/library/utility/host_tensor.hpp"
16
+ #include "ck/library/utility/host_tensor_generator.hpp"
17
+ #include "ck/library/utility/literals.hpp"
18
+ #include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
19
+ #include "ck/library/utility/check_err.hpp"
20
+
21
+ #include "ck/utility/blkgemmpipe_scheduler.hpp"
22
+
23
+ template <ck::index_t... Is>
24
+ using S = ck::Sequence<Is...>;
25
+
26
+ using F16 = ck::half_t;
27
+ using BF16 = ck::bhalf_t;
28
+ using I8 = int8_t;
29
+ using F32 = float;
30
+
31
+ using Row = ck::tensor_layout::gemm::RowMajor;
32
+ using Col = ck::tensor_layout::gemm::ColumnMajor;
33
+
34
+ using A0DataType = BF16;
35
+ using AsDataType = ck::Tuple<A0DataType>;
36
+ using B0DataType = I8;
37
+ using B1DataType = BF16;
38
+ using BsDataType = ck::Tuple<B0DataType>;
39
+ using AccDataType = F32;
40
+ using CShuffleDataType = F32;
41
+ using D0DataType = BF16;
42
+ using DsDataType = ck::Tuple<B1DataType, D0DataType>;
43
+ using EDataType = BF16;
44
+
45
+ using A0Layout = Row;
46
+ using AsLayout = ck::Tuple<A0Layout>;
47
+ using B0Layout = Row;
48
+ using B1Layout = B0Layout;
49
+ using BsLayout = ck::Tuple<B0Layout>;
50
+ using D0Layout = Row;
51
+ using DsLayout = ck::Tuple<B1Layout, D0Layout>;
52
+ using ELayout = Row;
53
+
54
+ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
55
+ using MultiplyAddFastGelu = ck::tensor_operation::element_wise::MultiplyAddFastGelu;
56
+
57
+ using AElementOp = PassThrough;
58
+ using BElementOp = PassThrough;
59
+ using CDEElementOp = MultiplyAddFastGelu;
60
+
61
+ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::Default;
62
+
63
+ using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleABD_Xdl_CShuffle
64
+ // clang-format off
65
+ ///######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
66
+ ///######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
67
+ ///######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
68
+ ///######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
69
+ < AsLayout, BsLayout, DsLayout, ELayout, AsDataType, BsDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, ck::BlockGemmPipelineScheduler::Intrawave, ck::BlockGemmPipelineVersion::v4>;
70
+ // clang-format on
71
+
72
+ int main(int argc, char* argv[])
73
+ {
74
+ bool do_verification = true;
75
+ int init_method = 1;
76
+ bool time_kernel = false;
77
+
78
+ // GEMM shape
79
+ ck::index_t M = 4096;
80
+ ck::index_t N = 768;
81
+ ck::index_t K = 6144;
82
+
83
+ ck::index_t StrideA = K;
84
+ ck::index_t StrideB = N;
85
+ ck::index_t StrideD = 0;
86
+ ck::index_t StrideE = N;
87
+
88
+ if(argc == 1)
89
+ {
90
+ // use default case
91
+ }
92
+ else if(argc == 4)
93
+ {
94
+ do_verification = std::stoi(argv[1]);
95
+ init_method = std::stoi(argv[2]);
96
+ time_kernel = std::stoi(argv[3]);
97
+ }
98
+ else if(argc == 11)
99
+ {
100
+ do_verification = std::stoi(argv[1]);
101
+ init_method = std::stoi(argv[2]);
102
+ time_kernel = std::stoi(argv[3]);
103
+
104
+ M = std::stoi(argv[4]);
105
+ N = std::stoi(argv[5]);
106
+ K = std::stoi(argv[6]);
107
+
108
+ StrideA = std::stoi(argv[7]);
109
+ StrideB = std::stoi(argv[8]);
110
+ StrideD = std::stoi(argv[9]);
111
+ StrideE = std::stoi(argv[10]);
112
+ }
113
+ else
114
+ {
115
+ printf("arg1: verification (0=no, 1=yes)\n");
116
+ printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
117
+ printf("arg3: time kernel (0=no, 1=yes)\n");
118
+ printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE\n");
119
+ exit(0);
120
+ }
121
+
122
+ auto f_host_tensor_descriptor =
123
+ [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
124
+ using namespace ck::literals;
125
+
126
+ if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
127
+ {
128
+ return HostTensorDescriptor({row, col}, {stride, 1_uz});
129
+ }
130
+ else
131
+ {
132
+ return HostTensorDescriptor({row, col}, {1_uz, stride});
133
+ }
134
+ };
135
+
136
+ Tensor<A0DataType> a0_m_k(f_host_tensor_descriptor(M, K, StrideA, A0Layout{}));
137
+ Tensor<B0DataType> b0_k_n(f_host_tensor_descriptor(K, N, StrideB, B0Layout{}));
138
+ Tensor<B1DataType> b1_k_n(f_host_tensor_descriptor(K, N, 0, B1Layout{}));
139
+ Tensor<D0DataType> d_m_n(f_host_tensor_descriptor(M, N, StrideD, D0Layout{}));
140
+ Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
141
+ Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
142
+
143
+ std::cout << "a0_m_k: " << a0_m_k.mDesc << std::endl;
144
+ std::cout << "b0_k_n: " << b0_k_n.mDesc << std::endl;
145
+ std::cout << "b1_k_n: " << b1_k_n.mDesc << std::endl;
146
+ std::cout << "d_m_n: " << d_m_n.mDesc << std::endl;
147
+ std::cout << "e_m_n: " << e_m_n_host_result.mDesc << std::endl;
148
+
149
+ switch(init_method)
150
+ {
151
+ case 0: break;
152
+ case 1:
153
+ a0_m_k.GenerateTensorValue(GeneratorTensor_2<A0DataType>{-5, 5});
154
+ b0_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
155
+ b1_k_n.GenerateTensorValue(GeneratorTensor_2<B1DataType>{0, 5});
156
+ d_m_n.GenerateTensorValue(GeneratorTensor_2<D0DataType>{-5, 5});
157
+ break;
158
+ default:
159
+ a0_m_k.GenerateTensorValue(GeneratorTensor_3<A0DataType>{0.0, 1.0});
160
+ b0_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
161
+ b1_k_n.GenerateTensorValue(GeneratorTensor_3<B1DataType>{0, 5});
162
+ d_m_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{-0.5, 0.5});
163
+ }
164
+
165
+ DeviceMem a0_device_buf(sizeof(A0DataType) * a0_m_k.mDesc.GetElementSpaceSize());
166
+ DeviceMem b0_device_buf(sizeof(B0DataType) * b0_k_n.mDesc.GetElementSpaceSize());
167
+ DeviceMem b1_device_buf(sizeof(B1DataType) * b1_k_n.mDesc.GetElementSpaceSize());
168
+ DeviceMem d_device_buf(sizeof(D0DataType) * d_m_n.mDesc.GetElementSpaceSize());
169
+ DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
170
+
171
+ a0_device_buf.ToDevice(a0_m_k.mData.data());
172
+ b0_device_buf.ToDevice(b0_k_n.mData.data());
173
+ b1_device_buf.ToDevice(b1_k_n.mData.data());
174
+ d_device_buf.ToDevice(d_m_n.mData.data());
175
+ e_device_buf.ToDevice(e_m_n_device_result.mData.data());
176
+
177
+ auto a_element_op = AElementOp{};
178
+ auto b_element_op = BElementOp{};
179
+ auto cde_element_op = CDEElementOp{};
180
+
181
+ constexpr ck::index_t NumATensor = 1;
182
+ constexpr ck::index_t NumBTensor = 1;
183
+ constexpr ck::index_t NumDTensor = 2;
184
+
185
+ // do GEMM
186
+ auto device_op = DeviceOpInstance{};
187
+ auto invoker = device_op.MakeInvoker();
188
+ auto argument =
189
+ device_op.MakeArgument(std::array<const void*, NumATensor>{a0_device_buf.GetDeviceBuffer()},
190
+ std::array<const void*, NumBTensor>{b0_device_buf.GetDeviceBuffer()},
191
+ std::array<const void*, NumDTensor>{b1_device_buf.GetDeviceBuffer(),
192
+ d_device_buf.GetDeviceBuffer()},
193
+ e_device_buf.GetDeviceBuffer(),
194
+ M,
195
+ N,
196
+ K,
197
+ std::array<ck::index_t, NumATensor>{StrideA},
198
+ std::array<ck::index_t, NumBTensor>{StrideB},
199
+ std::array<ck::index_t, NumDTensor>{0, StrideD},
200
+ StrideE,
201
+ a_element_op,
202
+ b_element_op,
203
+ cde_element_op);
204
+
205
+ if(!device_op.IsSupportedArgument(argument))
206
+ {
207
+ throw std::runtime_error(
208
+ "wrong! device_gemm with the specified compilation parameters does "
209
+ "not support this GEMM problem");
210
+ }
211
+
212
+ float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
213
+
214
+ std::size_t flop = std::size_t(2) * M * N * K;
215
+ std::size_t num_btype =
216
+ sizeof(A0DataType) * M * K + sizeof(B0DataType) * K * N + sizeof(EDataType) * M * N;
217
+
218
+ float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
219
+
220
+ float gb_per_sec = num_btype / 1.E6 / ave_time;
221
+
222
+ std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
223
+ << std::endl;
224
+
225
+ e_device_buf.FromDevice(e_m_n_device_result.mData.data());
226
+
227
+ if(do_verification)
228
+ {
229
+ Tensor<CShuffleDataType> c_m_n({M, N});
230
+
231
+ Tensor<A0DataType> a_m_k({M, K});
232
+
233
+ Tensor<B1DataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, B0Layout{}));
234
+
235
+ #if 0
236
+ for(int n = 0; n < N; ++n)
237
+ {
238
+ for(int k = 0; k < K; ++k)
239
+ {
240
+ b_element_op(b_k_n(k, n), b0_k_n(k, n), b1_k_n(k, n));
241
+ }
242
+ }
243
+ #endif
244
+
245
+ using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<A0DataType,
246
+ B0DataType,
247
+ CShuffleDataType,
248
+ AccDataType,
249
+ PassThrough,
250
+ PassThrough,
251
+ PassThrough>;
252
+ auto ref_gemm = ReferenceGemmInstance{};
253
+ auto ref_invoker = ref_gemm.MakeInvoker();
254
+
255
+ auto ref_argument = ref_gemm.MakeArgument(
256
+ a0_m_k, b0_k_n, c_m_n, PassThrough{}, PassThrough{}, PassThrough{});
257
+
258
+ ref_invoker.Run(ref_argument);
259
+
260
+ for(int m = 0; m < M; ++m)
261
+ {
262
+ for(int n = 0; n < N; ++n)
263
+ {
264
+ cde_element_op(e_m_n_host_result(m, n), c_m_n(m, n), b1_k_n(0, n), d_m_n(m, n));
265
+ }
266
+ }
267
+
268
+ e_device_buf.FromDevice(e_m_n_device_result.mData.data());
269
+
270
+ return ck::utils::check_err(e_m_n_device_result, e_m_n_host_result) ? 0 : 1;
271
+ }
272
+
273
+ return 0;
274
+ }
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/profiler/include/profiler/data_type_enum.hpp ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #pragma once
5
+
6
+ namespace ck {
7
+
8
+ enum struct DataTypeEnum
9
+ {
10
+ Half = 0,
11
+ Float = 1,
12
+ Int32 = 2,
13
+ Int8 = 3,
14
+ Int8x4 = 4,
15
+ BFloat16 = 5,
16
+ Double = 6,
17
+ Unknown = 100,
18
+ };
19
+
20
+ } // namespace ck
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/profiler/include/profiler/profile_batched_gemm_add_relu_gemm_add_impl.hpp ADDED
@@ -0,0 +1,360 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #pragma once
5
+
6
+ #include <memory>
7
+
8
+ #include "ck/ck.hpp"
9
+ #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
10
+ #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
11
+ #include "ck/library/tensor_operation_instance/gpu/batched_gemm_add_relu_gemm_add.hpp"
12
+
13
+ #include "ck/library/utility/check_err.hpp"
14
+ #include "ck/library/utility/device_memory.hpp"
15
+ #include "ck/library/utility/host_tensor.hpp"
16
+ #include "ck/library/utility/host_tensor_generator.hpp"
17
+ #include "ck/library/utility/literals.hpp"
18
+ #include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
19
+
20
+ namespace ck {
21
+ namespace profiler {
22
+
23
+ template <typename A0Layout,
24
+ typename B0Layout,
25
+ typename D0sLayout,
26
+ typename B1Layout,
27
+ typename D1sLayout,
28
+ typename E1Layout,
29
+ typename A0DataType,
30
+ typename B0DataType,
31
+ typename D0sDataType,
32
+ typename B1DataType,
33
+ typename D1sDataType,
34
+ typename E1DataType>
35
+ bool profile_batched_gemm_add_relu_gemm_add_impl(bool do_verification,
36
+ int init_method,
37
+ bool do_log,
38
+ bool time_kernel,
39
+ int M,
40
+ int N,
41
+ int K,
42
+ int O,
43
+ int BatchCount = 1,
44
+ int StrideA0 = -1,
45
+ int StrideB0 = -1,
46
+ int StrideD0 = -1,
47
+ int StrideB1 = -1,
48
+ int StrideD1 = -1,
49
+ int StrideE1 = -1,
50
+ int BatchStrideA0 = -1,
51
+ int BatchStrideB0 = -1,
52
+ int BatchStrideD0 = -1,
53
+ int BatchStrideB1 = -1,
54
+ int BatchStrideD1 = -1,
55
+ int BatchStrideE1 = -1)
56
+
57
+ {
58
+ using Row = tensor_layout::gemm::RowMajor;
59
+ using Col = tensor_layout::gemm::ColumnMajor;
60
+
61
+ using PassThrough = tensor_operation::element_wise::PassThrough;
62
+
63
+ using A0ElementOp = PassThrough;
64
+ using B0ElementOp = PassThrough;
65
+ using CDE0ElementOp = ck::tensor_operation::element_wise::AddRelu;
66
+ using B1ElementOp = PassThrough;
67
+ using CDE1ElementOp = ck::tensor_operation::element_wise::Add;
68
+
69
+ using D0DataType = remove_cvref_t<tuple_element_t<0, D0sDataType>>;
70
+
71
+ using D0Layout = remove_cvref_t<tuple_element_t<0, D0sLayout>>;
72
+ using D1DataType = remove_cvref_t<tuple_element_t<0, D1sDataType>>;
73
+ using D1Layout = remove_cvref_t<tuple_element_t<0, D1sLayout>>;
74
+
75
+ // for reference
76
+ using RefAcc0DataType = float;
77
+ using RefAcc1DataType = float;
78
+
79
+ bool pass = true;
80
+
81
+ const int DefaultStrideA0 = ck::is_same_v<A0Layout, Row> ? K : M;
82
+ const int DefaultStrideB0 = ck::is_same_v<B0Layout, Row> ? N : K;
83
+ const int DefaultStrideD0 = ck::is_same_v<D0Layout, Row> ? N : M;
84
+ const int DefaultStrideB1 = ck::is_same_v<B1Layout, Row> ? O : N;
85
+ const int DefaultStrideD1 = ck::is_same_v<D1Layout, Row> ? O : M;
86
+ const int DefaultStrideE1 = ck::is_same_v<E1Layout, Row> ? O : M;
87
+
88
+ StrideA0 = (StrideA0 < 0) ? DefaultStrideA0 : StrideA0;
89
+ StrideB0 = (StrideB0 < 0) ? DefaultStrideB0 : StrideB0;
90
+ StrideD0 = (StrideD0 < 0) ? DefaultStrideD0 : StrideD0;
91
+ StrideB1 = (StrideB1 < 0) ? DefaultStrideB1 : StrideB1;
92
+ StrideD1 = (StrideD1 < 0) ? DefaultStrideD1 : StrideD1;
93
+ StrideE1 = (StrideE1 < 0) ? DefaultStrideE1 : StrideE1;
94
+
95
+ const int DefaultBatchStrideA0 = (ck::is_same_v<A0Layout, Col> ? K : M) * StrideA0;
96
+ const int DefaultBatchStrideB0 = (ck::is_same_v<B0Layout, Col> ? N : K) * StrideB0;
97
+ const int DefaultBatchStrideD0 = (ck::is_same_v<D0Layout, Col> ? N : M) * StrideD0;
98
+ const int DefaultBatchStrideB1 = (ck::is_same_v<B1Layout, Col> ? O : N) * StrideB1;
99
+ const int DefaultBatchStrideD1 = (ck::is_same_v<D1Layout, Col> ? O : M) * StrideD1;
100
+ const int DefaultBatchStrideE1 = (ck::is_same_v<E1Layout, Col> ? O : M) * StrideE1;
101
+
102
+ BatchStrideA0 = BatchStrideA0 < 0 ? DefaultBatchStrideA0 : BatchStrideA0;
103
+ BatchStrideB0 = BatchStrideB0 < 0 ? DefaultBatchStrideB0 : BatchStrideB0;
104
+ BatchStrideD0 = BatchStrideD0 < 0 ? DefaultBatchStrideD0 : BatchStrideD0;
105
+ BatchStrideB1 = BatchStrideB1 < 0 ? DefaultBatchStrideB1 : BatchStrideB1;
106
+ BatchStrideD1 = BatchStrideD1 < 0 ? DefaultBatchStrideD1 : BatchStrideD1;
107
+ BatchStrideE1 = BatchStrideE1 < 0 ? DefaultBatchStrideE1 : BatchStrideE1;
108
+
109
+ auto f_host_tensor_descriptor = [](std::size_t batch_count,
110
+ std::size_t row,
111
+ std::size_t col,
112
+ std::size_t stride,
113
+ std::size_t batch_stride,
114
+ auto layout) {
115
+ using namespace ck::literals;
116
+
117
+ if(std::is_same<decltype(layout), Row>::value)
118
+ {
119
+ return HostTensorDescriptor({batch_count, row, col}, {batch_stride, stride, 1_uz});
120
+ }
121
+ else
122
+ {
123
+ return HostTensorDescriptor({batch_count, row, col}, {batch_stride, 1_uz, stride});
124
+ }
125
+ };
126
+
127
+ // E_m_o = A_m_k * B0_k_n * B1_n_o
128
+ Tensor<A0DataType> a0_g_m_k(
129
+ f_host_tensor_descriptor(BatchCount, M, K, StrideA0, BatchStrideA0, A0Layout{}));
130
+ Tensor<B0DataType> b0_g_k_n(
131
+ f_host_tensor_descriptor(BatchCount, K, N, StrideB0, BatchStrideB0, B0Layout{}));
132
+ Tensor<D0DataType> d0_g_m_n(
133
+ f_host_tensor_descriptor(BatchCount, M, N, StrideD0, BatchStrideD0, D0Layout{}));
134
+ Tensor<B1DataType> b1_g_n_o(
135
+ f_host_tensor_descriptor(BatchCount, N, O, StrideB1, BatchStrideB1, B1Layout{}));
136
+ Tensor<D1DataType> d1_g_m_o(
137
+ f_host_tensor_descriptor(BatchCount, M, O, StrideD1, BatchStrideD1, D1Layout{}));
138
+ Tensor<E1DataType> e1_g_m_o_host_result(
139
+ f_host_tensor_descriptor(BatchCount, M, O, StrideE1, BatchStrideE1, E1Layout{}));
140
+ Tensor<E1DataType> e1_g_m_o_device_result(
141
+ f_host_tensor_descriptor(BatchCount, M, O, StrideE1, BatchStrideE1, E1Layout{}));
142
+
143
+ // Host verification: Output of Gemm0 is input A of Gemm1
144
+ Tensor<RefAcc0DataType> c0_g_m_n(f_host_tensor_descriptor(BatchCount, M, N, N, M * N, Row{}));
145
+ Tensor<RefAcc0DataType> e0_g_m_n(f_host_tensor_descriptor(BatchCount, M, N, N, M * N, Row{}));
146
+ Tensor<RefAcc1DataType> c1_g_m_o(f_host_tensor_descriptor(BatchCount, M, O, O, M * O, Row{}));
147
+
148
+ std::cout << "a0_g_m_k: " << a0_g_m_k.mDesc << std::endl;
149
+ std::cout << "b0_g_k_n: " << b0_g_k_n.mDesc << std::endl;
150
+ std::cout << "d0_g_m_n: " << d0_g_m_n.mDesc << std::endl;
151
+ std::cout << "b1_g_n_o: " << b1_g_n_o.mDesc << std::endl;
152
+ std::cout << "d1_g_m_o: " << d1_g_m_o.mDesc << std::endl;
153
+ std::cout << "e1_g_m_o: " << e1_g_m_o_host_result.mDesc << std::endl;
154
+
155
+ switch(init_method)
156
+ {
157
+ case 0: break;
158
+ case 1:
159
+ a0_g_m_k.GenerateTensorValue(GeneratorTensor_2<A0DataType>{-2, 3});
160
+ b0_g_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 3});
161
+ d0_g_m_n.GenerateTensorValue(GeneratorTensor_2<D0DataType>{-2, 3});
162
+ b1_g_n_o.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 3});
163
+ d1_g_m_o.GenerateTensorValue(GeneratorTensor_2<D1DataType>{-2, 3});
164
+ break;
165
+ default:
166
+ a0_g_m_k.GenerateTensorValue(GeneratorTensor_3<A0DataType>{0.0, 1.0});
167
+ b0_g_k_n.GenerateTensorValue(GeneratorTensor_3<B0DataType>{-0.5, 0.5});
168
+ d0_g_m_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{0.0, 1.0});
169
+ b1_g_n_o.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
170
+ d1_g_m_o.GenerateTensorValue(GeneratorTensor_3<D1DataType>{0.0, 1.0});
171
+ }
172
+
173
+ DeviceMem a0_g_m_k_device_buf(sizeof(A0DataType) * a0_g_m_k.mDesc.GetElementSize());
174
+ DeviceMem b0_g_k_n_device_buf(sizeof(B0DataType) * b0_g_k_n.mDesc.GetElementSize());
175
+ DeviceMem d0_g_m_n_device_buf(sizeof(D0DataType) * d0_g_m_n.mDesc.GetElementSpaceSize());
176
+ DeviceMem b1_g_n_o_device_buf(sizeof(B1DataType) * b1_g_n_o.mDesc.GetElementSize());
177
+ DeviceMem d1_g_m_o_device_buf(sizeof(D1DataType) * d1_g_m_o.mDesc.GetElementSpaceSize());
178
+ DeviceMem e1_g_m_o_device_buf(sizeof(E1DataType) *
179
+ e1_g_m_o_device_result.mDesc.GetElementSize());
180
+
181
+ a0_g_m_k_device_buf.ToDevice(a0_g_m_k.mData.data());
182
+ b0_g_k_n_device_buf.ToDevice(b0_g_k_n.mData.data());
183
+ d0_g_m_n_device_buf.ToDevice(d0_g_m_n.mData.data());
184
+ b1_g_n_o_device_buf.ToDevice(b1_g_n_o.mData.data());
185
+ d1_g_m_o_device_buf.ToDevice(d1_g_m_o.mData.data());
186
+
187
+ auto a0_element_op = A0ElementOp{};
188
+ auto b0_element_op = B0ElementOp{};
189
+ auto cde0_element_op = CDE0ElementOp{};
190
+ auto b1_element_op = B1ElementOp{};
191
+ auto cde1_element_op = CDE1ElementOp{};
192
+
193
+ using DeviceOp =
194
+ tensor_operation::device::DeviceBatchedGemmMultipleDGemmMultipleD<A0Layout,
195
+ B0Layout,
196
+ D0sLayout,
197
+ B1Layout,
198
+ D1sLayout,
199
+ E1Layout,
200
+ A0DataType,
201
+ B0DataType,
202
+ D0sDataType,
203
+ B1DataType,
204
+ D1sDataType,
205
+ E1DataType,
206
+ A0ElementOp,
207
+ B0ElementOp,
208
+ CDE0ElementOp,
209
+ B1ElementOp,
210
+ CDE1ElementOp>;
211
+
212
+ // get device op instances
213
+ const auto op_ptrs = tensor_operation::device::instance::DeviceOperationInstanceFactory<
214
+ DeviceOp>::GetInstances();
215
+
216
+ std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
217
+
218
+ if(do_verification)
219
+ {
220
+ // Ref Gemm0
221
+ using ReferenceGemm0Instance = tensor_operation::host::ReferenceBatchedGemm<A0DataType,
222
+ B0DataType,
223
+ RefAcc0DataType,
224
+ RefAcc0DataType,
225
+ A0ElementOp,
226
+ B0ElementOp,
227
+ PassThrough>;
228
+
229
+ // Ref Gemm1
230
+ using ReferenceGemm1Instance = tensor_operation::host::ReferenceBatchedGemm<RefAcc0DataType,
231
+ B1DataType,
232
+ RefAcc1DataType,
233
+ RefAcc1DataType,
234
+ PassThrough,
235
+ B1ElementOp,
236
+ PassThrough>;
237
+
238
+ auto ref_gemm0 = ReferenceGemm0Instance{};
239
+ auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
240
+ auto ref_gemm0_argument = ref_gemm0.MakeArgument(
241
+ a0_g_m_k, b0_g_k_n, c0_g_m_n, a0_element_op, b0_element_op, PassThrough{});
242
+
243
+ ref_gemm0_invoker.Run(ref_gemm0_argument);
244
+
245
+ // cde0_elementwise
246
+ e0_g_m_n.ForEach(
247
+ [&](auto&, auto idx) { cde0_element_op(e0_g_m_n(idx), c0_g_m_n(idx), d0_g_m_n(idx)); });
248
+
249
+ auto ref_gemm1 = ReferenceGemm1Instance{};
250
+ auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
251
+ auto ref_gemm1_argument = ref_gemm1.MakeArgument(
252
+ e0_g_m_n, b1_g_n_o, c1_g_m_o, PassThrough{}, b1_element_op, PassThrough{});
253
+
254
+ ref_gemm1_invoker.Run(ref_gemm1_argument);
255
+
256
+ // cde1_elementwise
257
+ e1_g_m_o_host_result.ForEach([&](auto&, auto idx) {
258
+ cde1_element_op(e1_g_m_o_host_result(idx), c1_g_m_o(idx), d1_g_m_o(idx));
259
+ });
260
+ }
261
+
262
+ std::string best_op_name;
263
+ float best_ave_time = 0;
264
+ float best_tflops = 0;
265
+ float best_gb_per_sec = 0;
266
+
267
+ // profile device op instances
268
+ for(auto& op_ptr : op_ptrs)
269
+ {
270
+ auto argument_ptr = op_ptr->MakeArgumentPointer(
271
+ static_cast<A0DataType*>(a0_g_m_k_device_buf.GetDeviceBuffer()),
272
+ static_cast<B0DataType*>(b0_g_k_n_device_buf.GetDeviceBuffer()),
273
+ std::array<const void*, 1>{d0_g_m_n_device_buf.GetDeviceBuffer()},
274
+ static_cast<B1DataType*>(b1_g_n_o_device_buf.GetDeviceBuffer()),
275
+ std::array<const void*, 1>{d1_g_m_o_device_buf.GetDeviceBuffer()},
276
+ static_cast<E1DataType*>(e1_g_m_o_device_buf.GetDeviceBuffer()),
277
+ M,
278
+ N,
279
+ K,
280
+ O,
281
+ BatchCount,
282
+ StrideA0,
283
+ StrideB0,
284
+ std::array<ck::index_t, 1>{StrideD0},
285
+ StrideB1,
286
+ std::array<ck::index_t, 1>{StrideD1},
287
+ StrideE1,
288
+ BatchStrideA0,
289
+ BatchStrideB0,
290
+ std::array<ck::index_t, 1>{BatchStrideD0},
291
+ BatchStrideB1,
292
+ std::array<ck::index_t, 1>{BatchStrideD1},
293
+ BatchStrideE1,
294
+ a0_element_op,
295
+ b0_element_op,
296
+ cde0_element_op,
297
+ b1_element_op,
298
+ cde1_element_op);
299
+
300
+ auto invoker_ptr = op_ptr->MakeInvokerPointer();
301
+
302
+ if(op_ptr->IsSupportedArgument(argument_ptr.get()))
303
+ {
304
+ std::string op_name = op_ptr->GetTypeString();
305
+
306
+ float ave_time =
307
+ invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
308
+
309
+ std::size_t flop = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * BatchCount;
310
+ std::size_t num_btype =
311
+ (sizeof(A0DataType) * M * K + sizeof(B0DataType) * K * N + sizeof(D0DataType) * N +
312
+ sizeof(B1DataType) * N * O + sizeof(E1DataType) * M * O + sizeof(D1DataType) * O) *
313
+ BatchCount;
314
+
315
+ float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
316
+
317
+ float gb_per_sec = num_btype / 1.E6 / ave_time;
318
+
319
+ std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
320
+ << " GB/s, " << op_name << std::endl;
321
+
322
+ if(tflops > best_tflops)
323
+ {
324
+ best_op_name = op_name;
325
+ best_tflops = tflops;
326
+ best_ave_time = ave_time;
327
+ best_gb_per_sec = gb_per_sec;
328
+ }
329
+
330
+ if(do_verification)
331
+ {
332
+ e1_g_m_o_device_buf.FromDevice(e1_g_m_o_device_result.mData.data());
333
+
334
+ pass = pass & ck::utils::check_err(e1_g_m_o_device_result, e1_g_m_o_host_result);
335
+
336
+ if(do_log)
337
+ {
338
+ LogRangeAsType<float>(
339
+ std::cout << "e1_g_m_o_host_result : ", e1_g_m_o_host_result.mData, ",")
340
+ << std::endl;
341
+ LogRangeAsType<float>(
342
+ std::cout << "e1_g_m_o_device_result : ", e1_g_m_o_device_result.mData, ",")
343
+ << std::endl;
344
+ }
345
+ }
346
+ }
347
+ else
348
+ {
349
+ std::cout << op_ptr->GetTypeString() << " does not support this problem" << std::endl;
350
+ }
351
+ }
352
+
353
+ std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
354
+ << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
355
+
356
+ return pass;
357
+ }
358
+
359
+ } // namespace profiler
360
+ } // namespace ck
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/profiler/include/profiler/profile_batched_gemm_gemm_impl.hpp ADDED
@@ -0,0 +1,319 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #pragma once
5
+
6
+ #include <memory>
7
+
8
+ #include "ck/ck.hpp"
9
+ #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
10
+ #include "ck/tensor_operation/gpu/device/device_batched_gemm_gemm.hpp"
11
+ #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
12
+
13
+ #include "ck/library/tensor_operation_instance/gpu/batched_gemm_gemm.hpp"
14
+
15
+ #include "ck/library/utility/check_err.hpp"
16
+ #include "ck/library/utility/device_memory.hpp"
17
+ #include "ck/library/utility/host_tensor.hpp"
18
+ #include "ck/library/utility/host_tensor_generator.hpp"
19
+ #include "ck/library/utility/literals.hpp"
20
+ #include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
21
+
22
+ namespace ck {
23
+ namespace profiler {
24
+
25
+ template <typename ADataType,
26
+ typename B0DataType,
27
+ typename B1DataType,
28
+ typename CDataType,
29
+ typename ALayout,
30
+ typename B0Layout,
31
+ typename B1Layout,
32
+ typename CLayout>
33
+ bool profile_batched_gemm_gemm_impl(bool do_verification,
34
+ int init_method,
35
+ bool do_log,
36
+ bool time_kernel,
37
+ int M,
38
+ int N,
39
+ int K,
40
+ int O,
41
+ int BatchCount = 1,
42
+ int StrideA = -1,
43
+ int StrideB0 = -1,
44
+ int StrideB1 = -1,
45
+ int StrideC = -1,
46
+ int BatchStrideA = -1,
47
+ int BatchStrideB0 = -1,
48
+ int BatchStrideB1 = -1,
49
+ int BatchStrideC = -1)
50
+
51
+ {
52
+
53
+ using Row = tensor_layout::gemm::RowMajor;
54
+ using Col = tensor_layout::gemm::ColumnMajor;
55
+ using PassThrough = tensor_operation::element_wise::PassThrough;
56
+ using AElementOp = PassThrough;
57
+ using B0ElementOp = PassThrough;
58
+ using B1ElementOp = PassThrough;
59
+ using Acc0ElementOp = PassThrough;
60
+ using CElementOp = PassThrough;
61
+ using AccDataType = float;
62
+
63
+ // Ref Gemm0
64
+ using ReferenceGemm0Instance = tensor_operation::host::ReferenceBatchedGemm<ADataType,
65
+ B0DataType,
66
+ ADataType,
67
+ AccDataType,
68
+ AElementOp,
69
+ B0ElementOp,
70
+ CElementOp>;
71
+
72
+ // Ref Gemm
73
+ using ReferenceGemm1Instance = tensor_operation::host::ReferenceBatchedGemm<ADataType,
74
+ B1DataType,
75
+ CDataType,
76
+ AccDataType,
77
+ AElementOp,
78
+ B1ElementOp,
79
+ CElementOp>;
80
+
81
+ bool pass = true;
82
+
83
+ const int DefaultStrideA = ck::is_same_v<ALayout, Row> ? K : M;
84
+ const int DefaultStrideB0 = ck::is_same_v<B0Layout, Row> ? N : K;
85
+ const int DefaultStrideB1 = ck::is_same_v<B1Layout, Row> ? O : N;
86
+ const int DefaultStrideC = ck::is_same_v<CLayout, Row> ? O : M;
87
+
88
+ StrideA = (StrideA < 0) ? DefaultStrideA : StrideA;
89
+ StrideB0 = (StrideB0 < 0) ? DefaultStrideB0 : StrideB0;
90
+ StrideB1 = (StrideB1 < 0) ? DefaultStrideB1 : StrideB1;
91
+ StrideC = (StrideC < 0) ? DefaultStrideC : StrideC;
92
+
93
+ const int DefaultBatchStrideA = (ck::is_same_v<ALayout, Col> ? K : M) * StrideA;
94
+ const int DefaultBatchStrideB0 = (ck::is_same_v<B0Layout, Col> ? N : K) * StrideB0;
95
+ const int DefaultBatchStrideB1 = (ck::is_same_v<B1Layout, Col> ? O : N) * StrideB1;
96
+ const int DefaultBatchStrideC = (ck::is_same_v<CLayout, Col> ? O : M) * StrideC;
97
+
98
+ BatchStrideA = BatchStrideA < 0 ? DefaultBatchStrideA : BatchStrideA;
99
+ BatchStrideB0 = BatchStrideB0 < 0 ? DefaultBatchStrideB0 : BatchStrideB0;
100
+ BatchStrideB1 = BatchStrideB1 < 0 ? DefaultBatchStrideB1 : BatchStrideB1;
101
+ BatchStrideC = BatchStrideC < 0 ? DefaultBatchStrideC : BatchStrideC;
102
+
103
+ auto f_host_tensor_descriptor = [](std::size_t batch_count,
104
+ std::size_t row,
105
+ std::size_t col,
106
+ std::size_t stride,
107
+ std::size_t batch_stride,
108
+ auto layout) {
109
+ using namespace ck::literals;
110
+
111
+ if(std::is_same<decltype(layout), Row>::value)
112
+ {
113
+ return HostTensorDescriptor({batch_count, row, col}, {batch_stride, stride, 1_uz});
114
+ }
115
+ else
116
+ {
117
+ return HostTensorDescriptor({batch_count, row, col}, {batch_stride, 1_uz, stride});
118
+ }
119
+ };
120
+
121
+ // C_m_o = A_m_k * B0_k_n * B1_n_o
122
+ Tensor<ADataType> a_g_m_k(
123
+ f_host_tensor_descriptor(BatchCount, M, K, StrideA, BatchStrideA, ALayout{}));
124
+ Tensor<B0DataType> b0_g_k_n(
125
+ f_host_tensor_descriptor(BatchCount, K, N, StrideB0, BatchStrideB0, B0Layout{}));
126
+ Tensor<B1DataType> b1_g_n_o(
127
+ f_host_tensor_descriptor(BatchCount, N, O, StrideB1, BatchStrideB1, B1Layout{}));
128
+ Tensor<CDataType> c_g_m_o_host_result(
129
+ f_host_tensor_descriptor(BatchCount, M, O, StrideC, BatchStrideC, CLayout{}));
130
+ Tensor<CDataType> c_g_m_o_device_result(
131
+ f_host_tensor_descriptor(BatchCount, M, O, StrideC, BatchStrideC, CLayout{}));
132
+ // Host verification: Output of Gemm0 is input A of Gemm1
133
+ Tensor<ADataType> acc0_g_m_n(f_host_tensor_descriptor(BatchCount, M, N, N, M * N, Row{}));
134
+
135
+ std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
136
+ std::cout << "b0_g_k_n: " << b0_g_k_n.mDesc << std::endl;
137
+ std::cout << "b1_g_n_o: " << b1_g_n_o.mDesc << std::endl;
138
+ std::cout << "c_g_m_o: " << c_g_m_o_host_result.mDesc << std::endl;
139
+
140
+ switch(init_method)
141
+ {
142
+ case 0: break;
143
+ case 1:
144
+ a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 3});
145
+ b0_g_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 3});
146
+ b1_g_n_o.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 3});
147
+ break;
148
+ case 2:
149
+ a_g_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
150
+ b0_g_k_n.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
151
+ b1_g_n_o.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
152
+ break;
153
+ case 3:
154
+ a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
155
+ b0_g_k_n.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
156
+ b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
157
+ break;
158
+ default:
159
+ a_g_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
160
+ b0_g_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
161
+ b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
162
+ }
163
+
164
+ DeviceMem a_g_m_k_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSize());
165
+ DeviceMem b0_g_k_n_device_buf(sizeof(B0DataType) * b0_g_k_n.mDesc.GetElementSize());
166
+ DeviceMem b1_g_n_o_device_buf(sizeof(B1DataType) * b1_g_n_o.mDesc.GetElementSize());
167
+ DeviceMem c_g_m_o_device_buf(sizeof(CDataType) * c_g_m_o_device_result.mDesc.GetElementSize());
168
+
169
+ a_g_m_k_device_buf.ToDevice(a_g_m_k.mData.data());
170
+ b0_g_k_n_device_buf.ToDevice(b0_g_k_n.mData.data());
171
+ b1_g_n_o_device_buf.ToDevice(b1_g_n_o.mData.data());
172
+
173
+ auto a_element_op = AElementOp{};
174
+ auto b0_element_op = B0ElementOp{};
175
+ auto acc0_element_op = Acc0ElementOp{};
176
+ auto b1_element_op = B1ElementOp{};
177
+ auto c_element_op = CElementOp{};
178
+
179
+ using DeviceOp = tensor_operation::device::DeviceBatchedGemmGemm<ALayout,
180
+ B0Layout,
181
+ B1Layout,
182
+ CLayout,
183
+ ADataType,
184
+ B0DataType,
185
+ B1DataType,
186
+ CDataType,
187
+ AElementOp,
188
+ B0ElementOp,
189
+ Acc0ElementOp,
190
+ B1ElementOp,
191
+ CElementOp>;
192
+
193
+ // get device op instances
194
+ const auto op_ptrs = tensor_operation::device::instance::DeviceOperationInstanceFactory<
195
+ DeviceOp>::GetInstances();
196
+
197
+ std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
198
+
199
+ // early fail when no instances are found
200
+ if(op_ptrs.size() == 0)
201
+ {
202
+ return false;
203
+ }
204
+
205
+ if(do_verification)
206
+ {
207
+ auto ref_gemm0 = ReferenceGemm0Instance{};
208
+ auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
209
+ auto ref_gemm0_argument = ref_gemm0.MakeArgument(
210
+ a_g_m_k, b0_g_k_n, acc0_g_m_n, a_element_op, b0_element_op, PassThrough{});
211
+
212
+ ref_gemm0_invoker.Run(ref_gemm0_argument);
213
+
214
+ auto ref_gemm1 = ReferenceGemm1Instance{};
215
+ auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
216
+ auto ref_gemm1_argument = ref_gemm1.MakeArgument(
217
+ acc0_g_m_n, b1_g_n_o, c_g_m_o_host_result, PassThrough{}, b1_element_op, c_element_op);
218
+
219
+ ref_gemm1_invoker.Run(ref_gemm1_argument);
220
+ }
221
+
222
+ std::string best_op_name;
223
+ float best_ave_time = 0;
224
+ float best_tflops = 0;
225
+ float best_gb_per_sec = 0;
226
+
227
+ // profile device op instances
228
+ for(auto& op_ptr : op_ptrs)
229
+ {
230
+ auto argument_ptr = op_ptr->MakeArgumentPointer(
231
+ static_cast<ADataType*>(a_g_m_k_device_buf.GetDeviceBuffer()),
232
+ static_cast<B0DataType*>(b0_g_k_n_device_buf.GetDeviceBuffer()),
233
+ static_cast<B1DataType*>(b1_g_n_o_device_buf.GetDeviceBuffer()),
234
+ static_cast<CDataType*>(c_g_m_o_device_buf.GetDeviceBuffer()),
235
+ M,
236
+ N,
237
+ K,
238
+ O,
239
+ BatchCount,
240
+ StrideA,
241
+ StrideB0,
242
+ StrideB1,
243
+ StrideC,
244
+ BatchStrideA,
245
+ BatchStrideB0,
246
+ BatchStrideB1,
247
+ BatchStrideC,
248
+ a_element_op,
249
+ b0_element_op,
250
+ acc0_element_op,
251
+ b1_element_op,
252
+ c_element_op);
253
+
254
+ auto invoker_ptr = op_ptr->MakeInvokerPointer();
255
+
256
+ if(op_ptr->IsSupportedArgument(argument_ptr.get()))
257
+ {
258
+ std::string op_name = op_ptr->GetTypeString();
259
+
260
+ float ave_time =
261
+ invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
262
+
263
+ std::size_t flop = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * BatchCount;
264
+ std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(B0DataType) * K * N +
265
+ sizeof(B1DataType) * N * O + sizeof(CDataType) * M * O) *
266
+ BatchCount;
267
+
268
+ float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
269
+
270
+ float gb_per_sec = num_btype / 1.E6 / ave_time;
271
+
272
+ std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
273
+ << " GB/s, " << op_name << std::endl;
274
+
275
+ if(tflops > best_tflops)
276
+ {
277
+ best_op_name = op_name;
278
+ best_tflops = tflops;
279
+ best_ave_time = ave_time;
280
+ best_gb_per_sec = gb_per_sec;
281
+ }
282
+
283
+ if(do_verification)
284
+ {
285
+ c_g_m_o_device_buf.FromDevice(c_g_m_o_device_result.mData.data());
286
+
287
+ pass = pass & ck::utils::check_err(c_g_m_o_device_result, c_g_m_o_host_result);
288
+
289
+ if(do_log)
290
+ {
291
+ LogRangeAsType<float>(std::cout << "a_g_m_k: ", a_g_m_k.mData, ",")
292
+ << std::endl;
293
+ LogRangeAsType<float>(std::cout << "b0_g_k_n : ", b0_g_k_n.mData, ",")
294
+ << std::endl;
295
+ LogRangeAsType<float>(std::cout << "b1_g_n_o : ", b1_g_n_o.mData, ",")
296
+ << std::endl;
297
+ LogRangeAsType<float>(
298
+ std::cout << "c_g_m_o_host_result : ", c_g_m_o_host_result.mData, ",")
299
+ << std::endl;
300
+ LogRangeAsType<float>(
301
+ std::cout << "c_g_m_o_device_result : ", c_g_m_o_device_result.mData, ",")
302
+ << std::endl;
303
+ }
304
+ }
305
+ }
306
+ else
307
+ {
308
+ std::cout << op_ptr->GetTypeString() << " does not support this problem" << std::endl;
309
+ }
310
+ }
311
+
312
+ std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
313
+ << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
314
+
315
+ return pass;
316
+ }
317
+
318
+ } // namespace profiler
319
+ } // namespace ck
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/profiler/include/profiler/profile_batched_gemm_impl.hpp ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #pragma once
5
+
6
+ #include <memory>
7
+
8
+ #include "ck/ck.hpp"
9
+ #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
10
+ #include "ck/tensor_operation/gpu/device/device_batched_gemm.hpp"
11
+ #include "ck/tensor_operation/gpu/device/device_batched_gemm_multi_d.hpp"
12
+ #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
13
+
14
+ #include "ck/library/tensor_operation_instance/gpu/batched_gemm.hpp"
15
+ #include "ck/library/tensor_operation_instance/gpu/batched_gemm_multi_d.hpp"
16
+
17
+ #include "ck/library/utility/check_err.hpp"
18
+ #include "ck/library/utility/device_memory.hpp"
19
+ #include "ck/library/utility/host_tensor.hpp"
20
+ #include "ck/library/utility/host_tensor_generator.hpp"
21
+ #include "ck/library/utility/literals.hpp"
22
+ #include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
23
+
24
+ namespace ck {
25
+ namespace profiler {
26
+
27
+ template <typename ADataType,
28
+ typename BDataType,
29
+ typename CDataType,
30
+ typename ALayout,
31
+ typename BLayout,
32
+ typename CLayout,
33
+ typename AElementOp,
34
+ typename BElementOp,
35
+ typename CElementOp,
36
+ typename DeviceOp>
37
+ bool profile_batched_gemm_impl(int do_verification,
38
+ int init_method,
39
+ bool do_log,
40
+ bool time_kernel,
41
+ int M,
42
+ int N,
43
+ int K,
44
+ int BatchStrideA,
45
+ int BatchStrideB,
46
+ int BatchStrideC,
47
+ int StrideA,
48
+ int StrideB,
49
+ int StrideC,
50
+ int BatchCount)
51
+ {
52
+ bool pass = true;
53
+
54
+ auto f_host_tensor_descriptor = [](std::size_t batch_count,
55
+ std::size_t row,
56
+ std::size_t col,
57
+ std::size_t stride,
58
+ std::size_t batch_stride,
59
+ auto layout) {
60
+ using namespace ck::literals;
61
+
62
+ if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
63
+ {
64
+ return HostTensorDescriptor({batch_count, row, col}, {batch_stride, stride, 1_uz});
65
+ }
66
+ else
67
+ {
68
+ return HostTensorDescriptor({batch_count, row, col}, {batch_stride, 1_uz, stride});
69
+ }
70
+ };
71
+
72
+ Tensor<ADataType> a_g_m_k(
73
+ f_host_tensor_descriptor(BatchCount, M, K, StrideA, BatchStrideA, ALayout{}));
74
+ Tensor<BDataType> b_g_k_n(
75
+ f_host_tensor_descriptor(BatchCount, K, N, StrideB, BatchStrideB, BLayout{}));
76
+ Tensor<CDataType> c_g_m_n_host_result(
77
+ f_host_tensor_descriptor(BatchCount, M, N, StrideC, BatchStrideC, CLayout{}));
78
+ Tensor<CDataType> c_g_m_n_device_result(
79
+ f_host_tensor_descriptor(BatchCount, M, N, StrideC, BatchStrideC, CLayout{}));
80
+
81
+ std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
82
+ std::cout << "b_g_k_n: " << b_g_k_n.mDesc << std::endl;
83
+ std::cout << "c_g_m_n: " << c_g_m_n_host_result.mDesc << std::endl;
84
+
85
+ switch(init_method)
86
+ {
87
+ case 0: break;
88
+ case 1:
89
+ a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
90
+ b_g_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
91
+ break;
92
+ default:
93
+ a_g_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
94
+ b_g_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
95
+ }
96
+
97
+ const auto a_element_op = AElementOp{};
98
+ const auto b_element_op = BElementOp{};
99
+ const auto c_element_op = CElementOp{};
100
+
101
+ if(do_verification)
102
+ {
103
+ using ReferenceBatchedGemmInstance =
104
+ ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
105
+ BDataType,
106
+ CDataType,
107
+ float,
108
+ AElementOp,
109
+ BElementOp,
110
+ CElementOp>;
111
+
112
+ auto ref_batched_gemm = ReferenceBatchedGemmInstance{};
113
+ auto ref_invoker = ref_batched_gemm.MakeInvoker();
114
+
115
+ auto ref_argument = ref_batched_gemm.MakeArgument(
116
+ a_g_m_k, b_g_k_n, c_g_m_n_host_result, a_element_op, b_element_op, c_element_op);
117
+
118
+ ref_invoker.Run(ref_argument);
119
+ }
120
+
121
+ DeviceMem a_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSpaceSize());
122
+ DeviceMem b_device_buf(sizeof(BDataType) * b_g_k_n.mDesc.GetElementSpaceSize());
123
+ DeviceMem c_device_buf(sizeof(CDataType) * c_g_m_n_device_result.mDesc.GetElementSpaceSize());
124
+
125
+ a_device_buf.ToDevice(a_g_m_k.mData.data());
126
+ b_device_buf.ToDevice(b_g_k_n.mData.data());
127
+ c_device_buf.ToDevice(c_g_m_n_device_result.mData.data());
128
+
129
+ // get device op instances
130
+ const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
131
+ DeviceOp>::GetInstances();
132
+
133
+ std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
134
+
135
+ std::string best_op_name;
136
+ float best_ave_time = 0;
137
+ float best_tflops = 0;
138
+ float best_gb_per_sec = 0;
139
+
140
+ // profile device op instances
141
+ for(auto& op_ptr : op_ptrs)
142
+ {
143
+ std::unique_ptr<tensor_operation::device::BaseArgument> argument_ptr;
144
+ // false branch for multi d dl kernel
145
+ if constexpr(std::is_same<
146
+ DeviceOp,
147
+ ck::tensor_operation::device::DeviceBatchedGemm<ALayout,
148
+ BLayout,
149
+ CLayout,
150
+ ADataType,
151
+ BDataType,
152
+ CDataType,
153
+ AElementOp,
154
+ BElementOp,
155
+ CElementOp>>::value)
156
+ {
157
+
158
+ argument_ptr =
159
+ op_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
160
+ static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
161
+ static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
162
+ M,
163
+ N,
164
+ K,
165
+ StrideA,
166
+ StrideB,
167
+ StrideC,
168
+ BatchStrideA,
169
+ BatchStrideB,
170
+ BatchStrideC,
171
+ BatchCount,
172
+ ck::tensor_operation::element_wise::PassThrough{},
173
+ ck::tensor_operation::element_wise::PassThrough{},
174
+ ck::tensor_operation::element_wise::PassThrough{});
175
+ }
176
+ else
177
+ {
178
+ argument_ptr =
179
+ op_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
180
+ static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
181
+ {},
182
+ static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
183
+ M,
184
+ N,
185
+ K,
186
+ BatchCount,
187
+ StrideA,
188
+ StrideB,
189
+ {},
190
+ StrideC,
191
+ BatchStrideA,
192
+ BatchStrideB,
193
+ {},
194
+ BatchStrideC,
195
+ ck::tensor_operation::element_wise::PassThrough{},
196
+ ck::tensor_operation::element_wise::PassThrough{},
197
+ ck::tensor_operation::element_wise::PassThrough{});
198
+ }
199
+
200
+ auto invoker_ptr = op_ptr->MakeInvokerPointer();
201
+
202
+ if(op_ptr->IsSupportedArgument(argument_ptr.get()))
203
+ {
204
+ // re-init C to zero before profiling next kernel
205
+ c_device_buf.SetZero();
206
+
207
+ std::string op_name = op_ptr->GetTypeString();
208
+
209
+ float ave_time =
210
+ invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
211
+
212
+ std::size_t flop = std::size_t(2) * BatchCount * M * N * K;
213
+
214
+ std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
215
+ sizeof(CDataType) * M * N) *
216
+ BatchCount;
217
+
218
+ float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
219
+
220
+ float gb_per_sec = num_btype / 1.E6 / ave_time;
221
+
222
+ std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
223
+ << " GB/s, " << op_name << std::endl;
224
+
225
+ if(tflops > best_tflops)
226
+ {
227
+ best_op_name = op_name;
228
+ best_tflops = tflops;
229
+ best_ave_time = ave_time;
230
+ best_gb_per_sec = gb_per_sec;
231
+ }
232
+
233
+ if(do_verification)
234
+ {
235
+ c_device_buf.FromDevice(c_g_m_n_device_result.mData.data());
236
+
237
+ pass = pass & ck::utils::check_err(c_g_m_n_device_result, c_g_m_n_host_result);
238
+
239
+ if(do_log)
240
+ {
241
+ LogRangeAsType<float>(std::cout << "a : ", a_g_m_k.mData, ",") << std::endl;
242
+ LogRangeAsType<float>(std::cout << "b: ", b_g_k_n.mData, ",") << std::endl;
243
+ LogRangeAsType<float>(std::cout << "c_host: ", c_g_m_n_host_result.mData, ",")
244
+ << std::endl;
245
+ LogRangeAsType<float>(
246
+ std::cout << "c_device: ", c_g_m_n_device_result.mData, ",")
247
+ << std::endl;
248
+ }
249
+ }
250
+ }
251
+ else
252
+ {
253
+ std::cout << op_ptr->GetTypeString() << " does not support this problem" << std::endl;
254
+ }
255
+ }
256
+
257
+ std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
258
+ << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
259
+
260
+ return pass;
261
+ }
262
+
263
+ } // namespace profiler
264
+ } // namespace ck
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/composable_kernels/profiler/include/profiler/profile_batched_gemm_reduce_impl.hpp ADDED
@@ -0,0 +1,362 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // SPDX-License-Identifier: MIT
2
+ // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
3
+
4
+ #pragma once
5
+
6
+ #include "ck/ck.hpp"
7
+ #include "ck/utility/reduction_operator.hpp"
8
+ #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
9
+ #include "ck/tensor_operation/gpu/device/device_gemm_reduce.hpp"
10
+ #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
11
+
12
+ #include "ck/library/utility/check_err.hpp"
13
+ #include "ck/library/utility/convolution_parameter.hpp"
14
+ #include "ck/library/utility/device_memory.hpp"
15
+ #include "ck/library/utility/host_tensor.hpp"
16
+ #include "ck/library/utility/host_tensor_generator.hpp"
17
+ #include "ck/library/utility/literals.hpp"
18
+ #include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
19
+
20
+ namespace ck {
21
+ namespace tensor_operation {
22
+ namespace device {
23
+ namespace instance {
24
+
25
+ using F32 = float;
26
+ using F16 = ck::half_t;
27
+ using ReducePtrsGlobal = ck::Tuple<F32*, F32*>;
28
+ using Identity = ck::tensor_operation::element_wise::PassThrough;
29
+ using Square = ck::tensor_operation::element_wise::UnarySquare;
30
+ using ReduceInElementOps = ck::Tuple<Identity, Square>;
31
+ using ReduceOutElementOps = ck::Tuple<Identity, Identity>;
32
+
33
+ using DeviceGemmReduceNoOpPtr =
34
+ ck::tensor_operation::device::DeviceGemmReducePtr<0, ReducePtrsGlobal::Size()>;
35
+
36
+ void add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_instances(
37
+ std::vector<DeviceGemmReduceNoOpPtr>&);
38
+
39
+ void add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gnk_gmn_instances(
40
+ std::vector<DeviceGemmReduceNoOpPtr>&);
41
+
42
+ void add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gkn_gmn_instances(
43
+ std::vector<DeviceGemmReduceNoOpPtr>&);
44
+
45
+ void add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gnk_gmn_instances(
46
+ std::vector<DeviceGemmReduceNoOpPtr>&);
47
+
48
+ } // namespace instance
49
+ } // namespace device
50
+ } // namespace tensor_operation
51
+ } // namespace ck
52
+
53
+ namespace ck {
54
+ namespace profiler {
55
+
56
+ template <typename ADataType,
57
+ typename BDataType,
58
+ typename CDataType,
59
+ typename ReduceDataType,
60
+ typename ALayout,
61
+ typename BLayout,
62
+ typename CLayout>
63
+ bool profile_batched_gemm_reduce_impl(int do_verification,
64
+ int init_method,
65
+ bool do_log,
66
+ bool time_kernel,
67
+ int M,
68
+ int N,
69
+ int K,
70
+ int StrideA,
71
+ int StrideB,
72
+ int StrideC,
73
+ int BatchCount)
74
+ {
75
+ bool pass = true;
76
+
77
+ auto f_host_tensor_descriptor = [](std::size_t batch_count,
78
+ std::size_t row,
79
+ std::size_t col,
80
+ std::size_t stride,
81
+ auto layout) {
82
+ using namespace ck::literals;
83
+
84
+ if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
85
+ {
86
+ return HostTensorDescriptor({batch_count, row, col}, {row * stride, stride, 1_uz});
87
+ }
88
+ else
89
+ {
90
+ return HostTensorDescriptor({batch_count, row, col}, {col * stride, 1_uz, stride});
91
+ }
92
+ };
93
+
94
+ Tensor<ADataType> a_g_m_k(f_host_tensor_descriptor(BatchCount, M, K, StrideA, ALayout{}));
95
+ Tensor<BDataType> b_g_k_n(f_host_tensor_descriptor(BatchCount, K, N, StrideB, BLayout{}));
96
+
97
+ Tensor<CDataType> c_g_m_n_host_result(
98
+ f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{}));
99
+ Tensor<ReduceDataType> d0_g_m_host_result({BatchCount, M});
100
+ Tensor<ReduceDataType> d1_g_m_host_result({BatchCount, M});
101
+
102
+ Tensor<CDataType> c_g_m_n_device_result(
103
+ f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{}));
104
+ Tensor<ReduceDataType> d0_g_m_device_result({BatchCount, M});
105
+ Tensor<ReduceDataType> d1_g_m_device_result({BatchCount, M});
106
+
107
+ std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
108
+ std::cout << "b_g_k_n: " << b_g_k_n.mDesc << std::endl;
109
+ std::cout << "c_g_m_n: " << c_g_m_n_host_result.mDesc << std::endl;
110
+ std::cout << "d0_g_m: " << d0_g_m_host_result.mDesc << std::endl;
111
+ std::cout << "d1_g_m: " << d1_g_m_host_result.mDesc << std::endl;
112
+
113
+ std::size_t num_thread = std::thread::hardware_concurrency();
114
+ switch(init_method)
115
+ {
116
+ case 0: break;
117
+ case 1:
118
+ std::srand(0);
119
+ a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
120
+ b_g_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
121
+ break;
122
+ default:
123
+ std::srand(0);
124
+ a_g_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
125
+ b_g_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
126
+ }
127
+
128
+ using AElementOp = ck::tensor_operation::element_wise::PassThrough;
129
+ using BElementOp = ck::tensor_operation::element_wise::PassThrough;
130
+ using CElementOp = ck::tensor_operation::element_wise::PassThrough;
131
+ using ReduceOp0 = ck::reduce::Add;
132
+ using ReduceOp1 = ck::reduce::Add;
133
+ using UnaryIdenticElementOp = ck::tensor_operation::element_wise::PassThrough;
134
+ using UnarySquareElementOp = ck::tensor_operation::element_wise::UnarySquare;
135
+
136
+ auto a_element_op = AElementOp{};
137
+ auto b_element_op = BElementOp{};
138
+ auto c_element_op = CElementOp{};
139
+ std::array<void*, 3> gemm_element_ops = {&a_element_op, &b_element_op, &c_element_op};
140
+
141
+ const auto reduce0_op = ReduceOp0{};
142
+ const auto reduce1_op = ReduceOp1{};
143
+
144
+ auto passthrough = UnaryIdenticElementOp{};
145
+ auto square = UnarySquareElementOp{};
146
+ std::array<void*, 2> reduce_in_element_ops = {&passthrough, &square};
147
+ std::array<void*, 2> reduce_out_element_ops = {&passthrough, &passthrough};
148
+
149
+ if(do_verification)
150
+ {
151
+ using ReferenceBatchedGemmInstance =
152
+ ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
153
+ BDataType,
154
+ CDataType,
155
+ float,
156
+ AElementOp,
157
+ BElementOp,
158
+ CElementOp>;
159
+
160
+ using ReduceAccDataType = ReduceDataType;
161
+
162
+ auto ref_batched_gemm = ReferenceBatchedGemmInstance{};
163
+ auto ref_invoker = ref_batched_gemm.MakeInvoker();
164
+
165
+ auto ref_argument = ref_batched_gemm.MakeArgument(
166
+ a_g_m_k, b_g_k_n, c_g_m_n_host_result, a_element_op, b_element_op, c_element_op);
167
+
168
+ ref_invoker.Run(ref_argument);
169
+
170
+ for(int batch = 0; batch < BatchCount; ++batch)
171
+ {
172
+ for(int m = 0; m < M; ++m)
173
+ {
174
+ auto reduce0_acc = reduce0_op.GetIdentityValue<ReduceAccDataType>();
175
+ auto reduce1_acc = reduce1_op.GetIdentityValue<ReduceAccDataType>();
176
+
177
+ for(int n = 0; n < N; ++n)
178
+ {
179
+ ReduceAccDataType d0_val =
180
+ ck::type_convert<ReduceAccDataType>(c_g_m_n_host_result(batch, m, n));
181
+ ReduceAccDataType d1_val;
182
+
183
+ square(d1_val, d0_val);
184
+ reduce0_op(reduce0_acc, d0_val);
185
+ reduce1_op(reduce1_acc, d1_val);
186
+ }
187
+
188
+ d0_g_m_host_result(batch, m) = ck::type_convert<ReduceDataType>(reduce0_acc);
189
+ d1_g_m_host_result(batch, m) = ck::type_convert<ReduceDataType>(reduce1_acc);
190
+ }
191
+ }
192
+ }
193
+
194
+ DeviceMem a_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSpaceSize());
195
+ DeviceMem b_device_buf(sizeof(BDataType) * b_g_k_n.mDesc.GetElementSpaceSize());
196
+ DeviceMem c_device_buf(sizeof(CDataType) * c_g_m_n_device_result.mDesc.GetElementSpaceSize());
197
+ DeviceMem reduce0_device_buf(sizeof(ReduceDataType) *
198
+ d0_g_m_device_result.mDesc.GetElementSpaceSize());
199
+ DeviceMem reduce1_device_buf(sizeof(ReduceDataType) *
200
+ d1_g_m_device_result.mDesc.GetElementSpaceSize());
201
+
202
+ std::array<void*, 2> p_reduces = {reduce0_device_buf.GetDeviceBuffer(),
203
+ reduce1_device_buf.GetDeviceBuffer()};
204
+
205
+ a_device_buf.ToDevice(a_g_m_k.mData.data());
206
+ b_device_buf.ToDevice(b_g_k_n.mData.data());
207
+
208
+ // add device GEMM instances
209
+ std::vector<ck::tensor_operation::device::instance::DeviceGemmReduceNoOpPtr> gemm_ptrs;
210
+
211
+ if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
212
+ is_same<CDataType, half_t>::value)
213
+ {
214
+ if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
215
+ is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
216
+ is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
217
+ {
218
+ ck::tensor_operation::device::instance::
219
+ add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_instances(
220
+ gemm_ptrs);
221
+ }
222
+ else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
223
+ is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
224
+ is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
225
+ {
226
+ ck::tensor_operation::device::instance::
227
+ add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gnk_gmn_instances(
228
+ gemm_ptrs);
229
+ }
230
+ else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
231
+ is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
232
+ is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
233
+ {
234
+ ck::tensor_operation::device::instance::
235
+ add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gkn_gmn_instances(
236
+ gemm_ptrs);
237
+ }
238
+ else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
239
+ is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
240
+ is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
241
+ {
242
+ ck::tensor_operation::device::instance::
243
+ add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gnk_gmn_instances(
244
+ gemm_ptrs);
245
+ }
246
+ }
247
+
248
+ if(gemm_ptrs.size() <= 0)
249
+ {
250
+ throw std::runtime_error("wrong! no device GEMM instance found");
251
+ }
252
+
253
+ std::string best_gemm_name;
254
+ float best_ave_time = 0;
255
+ float best_tflops = 0;
256
+ float best_gb_per_sec = 0;
257
+
258
+ // profile device GEMM instances
259
+ for(auto& gemm_ptr : gemm_ptrs)
260
+ {
261
+ auto argument_ptr = gemm_ptr->MakeArgumentPointer(a_device_buf.GetDeviceBuffer(),
262
+ b_device_buf.GetDeviceBuffer(),
263
+ nullptr,
264
+ {},
265
+ c_device_buf.GetDeviceBuffer(),
266
+ p_reduces,
267
+ M,
268
+ N,
269
+ K,
270
+ StrideA,
271
+ StrideB,
272
+ StrideC,
273
+ {},
274
+ gemm_element_ops,
275
+ {},
276
+ reduce_in_element_ops,
277
+ reduce_out_element_ops,
278
+ BatchCount);
279
+
280
+ auto invoker_ptr = gemm_ptr->MakeInvokerPointer();
281
+
282
+ if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
283
+ {
284
+ // init DO, D1 to 0
285
+ reduce0_device_buf.SetZero();
286
+ reduce1_device_buf.SetZero();
287
+
288
+ float ave_time =
289
+ invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
290
+
291
+ std::string gemm_name = gemm_ptr->GetTypeString();
292
+
293
+ std::size_t flop = std::size_t(2) * BatchCount * M * N * K;
294
+ std::size_t num_btype = sizeof(ADataType) * BatchCount * M * K +
295
+ sizeof(BDataType) * BatchCount * K * N +
296
+ sizeof(CDataType) * BatchCount * M * N;
297
+
298
+ float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
299
+
300
+ float gb_per_sec = num_btype / 1.E6 / ave_time;
301
+
302
+ std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
303
+ << " GB/s, " << gemm_name << std::endl;
304
+
305
+ if(tflops > best_tflops)
306
+ {
307
+ best_gemm_name = gemm_name;
308
+ best_tflops = tflops;
309
+ best_ave_time = ave_time;
310
+ best_gb_per_sec = gb_per_sec;
311
+ }
312
+
313
+ if(do_verification)
314
+ {
315
+ c_device_buf.FromDevice(c_g_m_n_device_result.mData.data());
316
+ reduce0_device_buf.FromDevice(d0_g_m_device_result.mData.data());
317
+ reduce1_device_buf.FromDevice(d1_g_m_device_result.mData.data());
318
+
319
+ bool c_error = ck::utils::check_err(c_g_m_n_device_result, c_g_m_n_host_result);
320
+ bool d0_error = ck::utils::check_err(d0_g_m_device_result, d0_g_m_host_result);
321
+ bool d1_error = ck::utils::check_err(d1_g_m_device_result, d1_g_m_host_result);
322
+
323
+ pass = pass && (c_error == true);
324
+ pass = pass && (d0_error == true);
325
+ pass = pass && (d1_error == true);
326
+
327
+ if(do_log)
328
+ {
329
+ LogRangeAsType<float>(std::cout << "a : ", a_g_m_k.mData, ",") << std::endl;
330
+ LogRangeAsType<float>(std::cout << "b: ", b_g_k_n.mData, ",") << std::endl;
331
+ LogRangeAsType<float>(std::cout << "c_host: ", c_g_m_n_host_result.mData, ",")
332
+ << std::endl;
333
+ LogRangeAsType<float>(
334
+ std::cout << "c_device: ", c_g_m_n_device_result.mData, ",")
335
+ << std::endl;
336
+ LogRangeAsType<float>(std::cout << "d0_host: ", d0_g_m_host_result.mData, ",")
337
+ << std::endl;
338
+ LogRangeAsType<float>(
339
+ std::cout << "d0_device: ", d0_g_m_device_result.mData, ",")
340
+ << std::endl;
341
+ LogRangeAsType<float>(std::cout << "d1_host: ", d1_g_m_host_result.mData, ",")
342
+ << std::endl;
343
+ LogRangeAsType<float>(
344
+ std::cout << "d1_device: ", d1_g_m_device_result.mData, ",")
345
+ << std::endl;
346
+ }
347
+ }
348
+ }
349
+ else
350
+ {
351
+ std::cout << "does not support this GEMM problem" << std::endl;
352
+ }
353
+ }
354
+
355
+ std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
356
+ << best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;
357
+
358
+ return pass;
359
+ }
360
+
361
+ } // namespace profiler
362
+ } // namespace ck