Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitmodules +10 -0
- latency_breakdown_diskann_20250219_033737.json +0 -0
- rag-evaluation-harness/.ruff_cache/0.9.3/11003261178682080991 +0 -0
- rag-evaluation-harness/.ruff_cache/0.9.3/1195792812016165223 +0 -0
- rag-evaluation-harness/.ruff_cache/0.9.3/12014129994672639323 +0 -0
- rag-evaluation-harness/.ruff_cache/0.9.3/12288333375405380992 +0 -0
- rag-evaluation-harness/.ruff_cache/0.9.3/12495519353814268830 +0 -0
- rag-evaluation-harness/.ruff_cache/0.9.3/13179638047834592586 +0 -0
- rag-evaluation-harness/.ruff_cache/0.9.3/13594465565451147476 +0 -0
- rag-evaluation-harness/.ruff_cache/0.9.3/13996579915424681555 +0 -0
- rag-evaluation-harness/.ruff_cache/0.9.3/16061065282831403620 +0 -0
- rag-evaluation-harness/.ruff_cache/0.9.3/16593127969924090722 +0 -0
- rag-evaluation-harness/.ruff_cache/0.9.3/16992967298380143688 +0 -0
- rag-evaluation-harness/.ruff_cache/0.9.3/18243468368813636277 +0 -0
- rag-evaluation-harness/.ruff_cache/0.9.3/2719175708618349960 +0 -0
- rag-evaluation-harness/.ruff_cache/0.9.3/474605506059877149 +0 -0
- rag-evaluation-harness/.ruff_cache/0.9.3/546521684010417666 +0 -0
- rag-evaluation-harness/.ruff_cache/0.9.3/6007768929244549241 +0 -0
- rag-evaluation-harness/.ruff_cache/0.9.3/7177632790420859335 +0 -0
- rag-evaluation-harness/.ruff_cache/0.9.3/7685340309003606770 +0 -0
- rag-evaluation-harness/.ruff_cache/0.9.3/789121911436317890 +0 -0
- rag-evaluation-harness/.ruff_cache/0.9.3/8058834852024398863 +0 -0
- rag-evaluation-harness/.ruff_cache/0.9.3/8864226155108425509 +0 -0
- rag-evaluation-harness/.ruff_cache/0.9.3/9882451912837559226 +0 -0
- rag-evaluation-harness/lm_eval/__init__.py +1 -0
- rag-evaluation-harness/lm_eval/__main__.py +511 -0
- rag-evaluation-harness/lm_eval/decontamination/janitor.py +328 -0
- rag-evaluation-harness/lm_eval/tasks/__init__.py +449 -0
- rag-evaluation-harness/lm_eval/tasks/anli/README.md +56 -0
- rag-evaluation-harness/lm_eval/tasks/anli/anli_r3.yaml +5 -0
- rag-evaluation-harness/lm_eval/tasks/csatqa/_generate_configs.py +51 -0
- rag-evaluation-harness/lm_eval/tasks/csatqa/csatqa_gr.yaml +3 -0
- rag-evaluation-harness/lm_eval/tasks/csatqa/csatqa_rch.yaml +3 -0
- rag-evaluation-harness/lm_eval/tasks/csatqa/csatqa_rcss.yaml +3 -0
- rag-evaluation-harness/lm_eval/tasks/french_bench/_default_template_yaml +4 -0
- rag-evaluation-harness/lm_eval/tasks/french_bench/french_bench_arc_challenge.yaml +21 -0
- rag-evaluation-harness/lm_eval/tasks/french_bench/french_bench_boolqa.yaml +23 -0
- rag-evaluation-harness/lm_eval/tasks/french_bench/french_bench_fquadv2_genq.yaml +31 -0
- rag-evaluation-harness/lm_eval/tasks/french_bench/french_bench_hellaswag.yaml +20 -0
- rag-evaluation-harness/lm_eval/tasks/french_bench/french_bench_opus_perplexity.yaml +23 -0
- rag-evaluation-harness/lm_eval/tasks/french_bench/french_bench_orangesum_title.yaml +28 -0
- rag-evaluation-harness/lm_eval/tasks/french_bench/french_bench_wikitext_fr.yaml +25 -0
- rag-evaluation-harness/lm_eval/tasks/french_bench/preprocess_wikitext.py +48 -0
- rag-evaluation-harness/lm_eval/tasks/french_bench/utils.py +102 -0
- rag-evaluation-harness/lm_eval/tasks/kobest/README.md +37 -0
- rag-evaluation-harness/lm_eval/tasks/kobest/kobest_boolq.yaml +23 -0
- rag-evaluation-harness/lm_eval/tasks/kobest/utils.py +48 -0
- rag-evaluation-harness/lm_eval/tasks/okapi/arc_multilingual/arc_ar.yaml +7 -0
- rag-evaluation-harness/lm_eval/tasks/okapi/arc_multilingual/arc_nl.yaml +7 -0
- rag-evaluation-harness/lm_eval/tasks/okapi/hellaswag_multilingual/README.md +48 -0
.gitmodules
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[submodule "sglang_repo"]
|
2 |
+
path = sglang_repo
|
3 |
+
url = https://github.com/yichuan520030910320/sglang.git
|
4 |
+
branch = usedinPowerRAG
|
5 |
+
[submodule "DiskANN"]
|
6 |
+
path = DiskANN
|
7 |
+
url = https://github.com/yichuan520030910320/DiskANN.git
|
8 |
+
[submodule "SPANN"]
|
9 |
+
path = SPANN
|
10 |
+
url = https://github.com/yichuan520030910320/SPANN.git
|
latency_breakdown_diskann_20250219_033737.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
rag-evaluation-harness/.ruff_cache/0.9.3/11003261178682080991
ADDED
Binary file (134 Bytes). View file
|
|
rag-evaluation-harness/.ruff_cache/0.9.3/1195792812016165223
ADDED
Binary file (132 Bytes). View file
|
|
rag-evaluation-harness/.ruff_cache/0.9.3/12014129994672639323
ADDED
Binary file (134 Bytes). View file
|
|
rag-evaluation-harness/.ruff_cache/0.9.3/12288333375405380992
ADDED
Binary file (136 Bytes). View file
|
|
rag-evaluation-harness/.ruff_cache/0.9.3/12495519353814268830
ADDED
Binary file (150 Bytes). View file
|
|
rag-evaluation-harness/.ruff_cache/0.9.3/13179638047834592586
ADDED
Binary file (132 Bytes). View file
|
|
rag-evaluation-harness/.ruff_cache/0.9.3/13594465565451147476
ADDED
Binary file (129 Bytes). View file
|
|
rag-evaluation-harness/.ruff_cache/0.9.3/13996579915424681555
ADDED
Binary file (136 Bytes). View file
|
|
rag-evaluation-harness/.ruff_cache/0.9.3/16061065282831403620
ADDED
Binary file (143 Bytes). View file
|
|
rag-evaluation-harness/.ruff_cache/0.9.3/16593127969924090722
ADDED
Binary file (144 Bytes). View file
|
|
rag-evaluation-harness/.ruff_cache/0.9.3/16992967298380143688
ADDED
Binary file (138 Bytes). View file
|
|
rag-evaluation-harness/.ruff_cache/0.9.3/18243468368813636277
ADDED
Binary file (170 Bytes). View file
|
|
rag-evaluation-harness/.ruff_cache/0.9.3/2719175708618349960
ADDED
Binary file (195 Bytes). View file
|
|
rag-evaluation-harness/.ruff_cache/0.9.3/474605506059877149
ADDED
Binary file (156 Bytes). View file
|
|
rag-evaluation-harness/.ruff_cache/0.9.3/546521684010417666
ADDED
Binary file (188 Bytes). View file
|
|
rag-evaluation-harness/.ruff_cache/0.9.3/6007768929244549241
ADDED
Binary file (146 Bytes). View file
|
|
rag-evaluation-harness/.ruff_cache/0.9.3/7177632790420859335
ADDED
Binary file (189 Bytes). View file
|
|
rag-evaluation-harness/.ruff_cache/0.9.3/7685340309003606770
ADDED
Binary file (145 Bytes). View file
|
|
rag-evaluation-harness/.ruff_cache/0.9.3/789121911436317890
ADDED
Binary file (139 Bytes). View file
|
|
rag-evaluation-harness/.ruff_cache/0.9.3/8058834852024398863
ADDED
Binary file (143 Bytes). View file
|
|
rag-evaluation-harness/.ruff_cache/0.9.3/8864226155108425509
ADDED
Binary file (176 Bytes). View file
|
|
rag-evaluation-harness/.ruff_cache/0.9.3/9882451912837559226
ADDED
Binary file (163 Bytes). View file
|
|
rag-evaluation-harness/lm_eval/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .evaluator import evaluate, simple_evaluate
|
rag-evaluation-harness/lm_eval/__main__.py
ADDED
@@ -0,0 +1,511 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
import sys
|
6 |
+
from functools import partial
|
7 |
+
from typing import Union
|
8 |
+
|
9 |
+
from lm_eval import evaluator, utils
|
10 |
+
from lm_eval.evaluator import request_caching_arg_to_dict
|
11 |
+
from lm_eval.loggers import EvaluationTracker, WandbLogger
|
12 |
+
from lm_eval.tasks import TaskManager
|
13 |
+
from lm_eval.utils import handle_non_serializable, make_table, simple_parse_args_string
|
14 |
+
|
15 |
+
|
16 |
+
def _int_or_none_list_arg_type(
|
17 |
+
min_len: int, max_len: int, defaults: str, value: str, split_char: str = ","
|
18 |
+
):
|
19 |
+
def parse_value(item):
|
20 |
+
item = item.strip().lower()
|
21 |
+
if item == "none":
|
22 |
+
return None
|
23 |
+
try:
|
24 |
+
return int(item)
|
25 |
+
except ValueError:
|
26 |
+
raise argparse.ArgumentTypeError(f"{item} is not an integer or None")
|
27 |
+
|
28 |
+
items = [parse_value(v) for v in value.split(split_char)]
|
29 |
+
num_items = len(items)
|
30 |
+
|
31 |
+
if num_items == 1:
|
32 |
+
# Makes downstream handling the same for single and multiple values
|
33 |
+
items = items * max_len
|
34 |
+
elif num_items < min_len or num_items > max_len:
|
35 |
+
raise argparse.ArgumentTypeError(
|
36 |
+
f"Argument requires {max_len} integers or None, separated by '{split_char}'"
|
37 |
+
)
|
38 |
+
elif num_items != max_len:
|
39 |
+
logging.warning(
|
40 |
+
f"Argument requires {max_len} integers or None, separated by '{split_char}'. "
|
41 |
+
"Missing values will be filled with defaults."
|
42 |
+
)
|
43 |
+
default_items = [parse_value(v) for v in defaults.split(split_char)]
|
44 |
+
items.extend(
|
45 |
+
default_items[num_items:]
|
46 |
+
) # extend items list with missing defaults
|
47 |
+
|
48 |
+
return items
|
49 |
+
|
50 |
+
|
51 |
+
def check_argument_types(parser: argparse.ArgumentParser):
|
52 |
+
"""
|
53 |
+
Check to make sure all CLI args are typed, raises error if not
|
54 |
+
"""
|
55 |
+
for action in parser._actions:
|
56 |
+
if action.dest != "help" and not action.const:
|
57 |
+
if action.type is None:
|
58 |
+
raise ValueError(
|
59 |
+
f"Argument '{action.dest}' doesn't have a type specified."
|
60 |
+
)
|
61 |
+
else:
|
62 |
+
continue
|
63 |
+
|
64 |
+
|
65 |
+
def setup_parser() -> argparse.ArgumentParser:
|
66 |
+
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)
|
67 |
+
parser.add_argument(
|
68 |
+
"--model", "-m", type=str, default="hf", help="Name of model e.g. `hf`"
|
69 |
+
)
|
70 |
+
parser.add_argument(
|
71 |
+
"--tasks",
|
72 |
+
"-t",
|
73 |
+
default=None,
|
74 |
+
type=str,
|
75 |
+
metavar="task1,task2",
|
76 |
+
help="To get full list of tasks, use the command lm-eval --tasks list",
|
77 |
+
)
|
78 |
+
parser.add_argument(
|
79 |
+
"--model_args",
|
80 |
+
"-a",
|
81 |
+
default="",
|
82 |
+
type=str,
|
83 |
+
help="Comma separated string arguments for model, e.g. `pretrained=EleutherAI/pythia-160m,dtype=float32`",
|
84 |
+
)
|
85 |
+
parser.add_argument(
|
86 |
+
"--num_fewshot",
|
87 |
+
"-f",
|
88 |
+
type=int,
|
89 |
+
default=None,
|
90 |
+
metavar="N",
|
91 |
+
help="Number of examples in few-shot context",
|
92 |
+
)
|
93 |
+
parser.add_argument(
|
94 |
+
"--batch_size",
|
95 |
+
"-b",
|
96 |
+
type=str,
|
97 |
+
default=1,
|
98 |
+
metavar="auto|auto:N|N",
|
99 |
+
help="Acceptable values are 'auto', 'auto:N' or N, where N is an integer. Default 1.",
|
100 |
+
)
|
101 |
+
parser.add_argument(
|
102 |
+
"--max_batch_size",
|
103 |
+
type=int,
|
104 |
+
default=None,
|
105 |
+
metavar="N",
|
106 |
+
help="Maximal batch size to try with --batch_size auto.",
|
107 |
+
)
|
108 |
+
parser.add_argument(
|
109 |
+
"--device",
|
110 |
+
type=str,
|
111 |
+
default=None,
|
112 |
+
help="Device to use (e.g. cuda, cuda:0, cpu).",
|
113 |
+
)
|
114 |
+
parser.add_argument(
|
115 |
+
"--output_path",
|
116 |
+
"-o",
|
117 |
+
default=None,
|
118 |
+
type=str,
|
119 |
+
metavar="DIR|DIR/file.json",
|
120 |
+
help="The path to the output file where the result metrics will be saved. If the path is a directory and log_samples is true, the results will be saved in the directory. Else the parent directory will be used.",
|
121 |
+
)
|
122 |
+
parser.add_argument(
|
123 |
+
"--limit",
|
124 |
+
"-L",
|
125 |
+
type=float,
|
126 |
+
default=None,
|
127 |
+
metavar="N|0<N<1",
|
128 |
+
help="Limit the number of examples per task. "
|
129 |
+
"If <1, limit is a percentage of the total number of examples.",
|
130 |
+
)
|
131 |
+
parser.add_argument(
|
132 |
+
"--use_cache",
|
133 |
+
"-c",
|
134 |
+
type=str,
|
135 |
+
default=None,
|
136 |
+
metavar="DIR",
|
137 |
+
help="A path to a sqlite db file for caching model responses. `None` if not caching.",
|
138 |
+
)
|
139 |
+
parser.add_argument(
|
140 |
+
"--cache_requests",
|
141 |
+
type=str,
|
142 |
+
default=None,
|
143 |
+
choices=["true", "refresh", "delete"],
|
144 |
+
help="Speed up evaluation by caching the building of dataset requests. `None` if not caching.",
|
145 |
+
)
|
146 |
+
parser.add_argument(
|
147 |
+
"--check_integrity",
|
148 |
+
action="store_true",
|
149 |
+
help="Whether to run the relevant part of the test suite for the tasks.",
|
150 |
+
)
|
151 |
+
parser.add_argument(
|
152 |
+
"--write_out",
|
153 |
+
"-w",
|
154 |
+
action="store_true",
|
155 |
+
default=False,
|
156 |
+
help="Prints the prompt for the first few documents.",
|
157 |
+
)
|
158 |
+
parser.add_argument(
|
159 |
+
"--log_samples",
|
160 |
+
"-s",
|
161 |
+
action="store_true",
|
162 |
+
default=False,
|
163 |
+
help="If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis. Use with --output_path.",
|
164 |
+
)
|
165 |
+
parser.add_argument(
|
166 |
+
"--system_instruction",
|
167 |
+
type=str,
|
168 |
+
default=None,
|
169 |
+
help="System instruction to be used in the prompt",
|
170 |
+
)
|
171 |
+
parser.add_argument(
|
172 |
+
"--apply_chat_template",
|
173 |
+
action="store_true",
|
174 |
+
default=False,
|
175 |
+
help="If True, applies the chat template to the prompt",
|
176 |
+
)
|
177 |
+
parser.add_argument(
|
178 |
+
"--fewshot_as_multiturn",
|
179 |
+
action="store_true",
|
180 |
+
default=False,
|
181 |
+
help="If True, uses the fewshot as a multi-turn conversation",
|
182 |
+
)
|
183 |
+
parser.add_argument(
|
184 |
+
"--show_config",
|
185 |
+
action="store_true",
|
186 |
+
default=False,
|
187 |
+
help="If True, shows the the full config of all tasks at the end of the evaluation.",
|
188 |
+
)
|
189 |
+
parser.add_argument(
|
190 |
+
"--include_path",
|
191 |
+
type=str,
|
192 |
+
default=None,
|
193 |
+
metavar="DIR",
|
194 |
+
help="Additional path to include if there are external tasks to include.",
|
195 |
+
)
|
196 |
+
parser.add_argument(
|
197 |
+
"--gen_kwargs",
|
198 |
+
type=str,
|
199 |
+
default=None,
|
200 |
+
help=(
|
201 |
+
"String arguments for model generation on greedy_until tasks,"
|
202 |
+
" e.g. `temperature=0,top_k=0,top_p=0`."
|
203 |
+
),
|
204 |
+
)
|
205 |
+
parser.add_argument(
|
206 |
+
"--verbosity",
|
207 |
+
"-v",
|
208 |
+
type=str.upper,
|
209 |
+
default="INFO",
|
210 |
+
metavar="CRITICAL|ERROR|WARNING|INFO|DEBUG",
|
211 |
+
help="Controls the reported logging error level. Set to DEBUG when testing + adding new task configurations for comprehensive log output.",
|
212 |
+
)
|
213 |
+
parser.add_argument(
|
214 |
+
"--wandb_args",
|
215 |
+
type=str,
|
216 |
+
default="",
|
217 |
+
help="Comma separated string arguments passed to wandb.init, e.g. `project=lm-eval,job_type=eval",
|
218 |
+
)
|
219 |
+
parser.add_argument(
|
220 |
+
"--hf_hub_log_args",
|
221 |
+
type=str,
|
222 |
+
default="",
|
223 |
+
help="Comma separated string arguments passed to Hugging Face Hub's log function, e.g. `hub_results_org=EleutherAI,hub_repo_name=lm-eval-results`",
|
224 |
+
)
|
225 |
+
parser.add_argument(
|
226 |
+
"--predict_only",
|
227 |
+
"-x",
|
228 |
+
action="store_true",
|
229 |
+
default=False,
|
230 |
+
help="Use with --log_samples. Only model outputs will be saved and metrics will not be evaluated.",
|
231 |
+
)
|
232 |
+
default_seed_string = "0,1234,1234,1234"
|
233 |
+
parser.add_argument(
|
234 |
+
"--seed",
|
235 |
+
type=partial(_int_or_none_list_arg_type, 3, 4, default_seed_string),
|
236 |
+
default=default_seed_string, # for backward compatibility
|
237 |
+
help=(
|
238 |
+
"Set seed for python's random, numpy, torch, and fewshot sampling.\n"
|
239 |
+
"Accepts a comma-separated list of 4 values for python's random, numpy, torch, and fewshot sampling seeds, "
|
240 |
+
"respectively, or a single integer to set the same seed for all four.\n"
|
241 |
+
f"The values are either an integer or 'None' to not set the seed. Default is `{default_seed_string}` "
|
242 |
+
"(for backward compatibility).\n"
|
243 |
+
"E.g. `--seed 0,None,8,52` sets `random.seed(0)`, `torch.manual_seed(8)`, and fewshot sampling seed to 52. "
|
244 |
+
"Here numpy's seed is not set since the second value is `None`.\n"
|
245 |
+
"E.g, `--seed 42` sets all four seeds to 42."
|
246 |
+
),
|
247 |
+
)
|
248 |
+
parser.add_argument(
|
249 |
+
"--trust_remote_code",
|
250 |
+
action="store_true",
|
251 |
+
help="Sets trust_remote_code to True to execute code to create HF Datasets from the Hub",
|
252 |
+
)
|
253 |
+
parser.add_argument(
|
254 |
+
"--save_inputs_only",
|
255 |
+
action="store_true",
|
256 |
+
help="Sets save_inputs_only to True to only save the evaluation data without actually running any evaluation.",
|
257 |
+
)
|
258 |
+
parser.add_argument(
|
259 |
+
"--inputs_save_dir",
|
260 |
+
type=str,
|
261 |
+
default="lm-eval-data",
|
262 |
+
help="Path to save the evaluation data as the queries for retrieval.",
|
263 |
+
)
|
264 |
+
parser.add_argument(
|
265 |
+
"--answer_save_dir",
|
266 |
+
type=str,
|
267 |
+
default=None,
|
268 |
+
help="Path to save the evaluation data with answers for analysis.",
|
269 |
+
)
|
270 |
+
parser.add_argument(
|
271 |
+
"--overwrite_saved_inputs",
|
272 |
+
action="store_true",
|
273 |
+
help="Set overwrite_saved_inputs to True to overwrite the previously saved files.",
|
274 |
+
)
|
275 |
+
parser.add_argument(
|
276 |
+
"--retrieval_file",
|
277 |
+
type=str,
|
278 |
+
default="",
|
279 |
+
help="The retrieval documents for the current task.",
|
280 |
+
)
|
281 |
+
parser.add_argument(
|
282 |
+
"--retrieval_dir",
|
283 |
+
type=str,
|
284 |
+
default="",
|
285 |
+
help="The retrieval directory for the current task - currently ONLY supported for MMLU.",
|
286 |
+
)
|
287 |
+
parser.add_argument(
|
288 |
+
"--concat_k",
|
289 |
+
type=int,
|
290 |
+
default=0,
|
291 |
+
help="The number of retrieved documents to be prepended to the original input.",
|
292 |
+
)
|
293 |
+
parser.add_argument(
|
294 |
+
"--results_only_save_path",
|
295 |
+
type=str,
|
296 |
+
default=None,
|
297 |
+
help="A JSONL path to save the final results.",
|
298 |
+
)
|
299 |
+
parser.add_argument(
|
300 |
+
"--additional_system_prompt",
|
301 |
+
type=str,
|
302 |
+
default="",
|
303 |
+
help="An additional system prompt to prepend in the inputs.",
|
304 |
+
)
|
305 |
+
return parser
|
306 |
+
|
307 |
+
|
308 |
+
def parse_eval_args(parser: argparse.ArgumentParser) -> argparse.Namespace:
|
309 |
+
check_argument_types(parser)
|
310 |
+
return parser.parse_args()
|
311 |
+
|
312 |
+
|
313 |
+
def cli_evaluate(args: Union[argparse.Namespace, None] = None) -> None:
|
314 |
+
if not args:
|
315 |
+
# we allow for args to be passed externally, else we parse them ourselves
|
316 |
+
parser = setup_parser()
|
317 |
+
args = parse_eval_args(parser)
|
318 |
+
|
319 |
+
if args.wandb_args:
|
320 |
+
wandb_logger = WandbLogger(**simple_parse_args_string(args.wandb_args))
|
321 |
+
|
322 |
+
eval_logger = utils.eval_logger
|
323 |
+
eval_logger.setLevel(getattr(logging, f"{args.verbosity}"))
|
324 |
+
eval_logger.info(f"Verbosity set to {args.verbosity}")
|
325 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
326 |
+
|
327 |
+
# update the evaluation tracker args with the output path and the HF token
|
328 |
+
if args.output_path:
|
329 |
+
args.hf_hub_log_args += f",output_path={args.output_path}"
|
330 |
+
if os.environ.get("HF_TOKEN", None):
|
331 |
+
args.hf_hub_log_args += f",token={os.environ.get('HF_TOKEN')}"
|
332 |
+
evaluation_tracker_args = simple_parse_args_string(args.hf_hub_log_args)
|
333 |
+
evaluation_tracker = EvaluationTracker(**evaluation_tracker_args)
|
334 |
+
|
335 |
+
if args.predict_only:
|
336 |
+
args.log_samples = True
|
337 |
+
if (args.log_samples or args.predict_only) and not args.output_path:
|
338 |
+
raise ValueError(
|
339 |
+
"Specify --output_path if providing --log_samples or --predict_only"
|
340 |
+
)
|
341 |
+
|
342 |
+
if args.fewshot_as_multiturn and args.apply_chat_template is False:
|
343 |
+
raise ValueError(
|
344 |
+
"If fewshot_as_multiturn is set, apply_chat_template must be set to True."
|
345 |
+
)
|
346 |
+
|
347 |
+
if (
|
348 |
+
args.num_fewshot is None or args.num_fewshot == 0
|
349 |
+
) and args.fewshot_as_multiturn:
|
350 |
+
raise ValueError(
|
351 |
+
"If fewshot_as_multiturn is set, num_fewshot must be greater than 0."
|
352 |
+
)
|
353 |
+
|
354 |
+
if args.include_path is not None:
|
355 |
+
eval_logger.info(f"Including path: {args.include_path}")
|
356 |
+
task_manager = TaskManager(args.verbosity, include_path=args.include_path)
|
357 |
+
|
358 |
+
if "push_samples_to_hub" in evaluation_tracker_args and not args.log_samples:
|
359 |
+
eval_logger.warning(
|
360 |
+
"Pushing samples to the Hub requires --log_samples to be set. Samples will not be pushed to the Hub."
|
361 |
+
)
|
362 |
+
|
363 |
+
if args.limit:
|
364 |
+
eval_logger.warning(
|
365 |
+
" --limit SHOULD ONLY BE USED FOR TESTING."
|
366 |
+
"REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
|
367 |
+
)
|
368 |
+
|
369 |
+
if args.tasks is None:
|
370 |
+
eval_logger.error("Need to specify task to evaluate.")
|
371 |
+
sys.exit()
|
372 |
+
elif args.tasks == "list":
|
373 |
+
eval_logger.info(
|
374 |
+
"Available Tasks:\n - {}".format("\n - ".join(task_manager.all_tasks))
|
375 |
+
)
|
376 |
+
sys.exit()
|
377 |
+
else:
|
378 |
+
if os.path.isdir(args.tasks):
|
379 |
+
import glob
|
380 |
+
|
381 |
+
task_names = []
|
382 |
+
yaml_path = os.path.join(args.tasks, "*.yaml")
|
383 |
+
for yaml_file in glob.glob(yaml_path):
|
384 |
+
config = utils.load_yaml_config(yaml_file)
|
385 |
+
task_names.append(config)
|
386 |
+
else:
|
387 |
+
task_list = args.tasks.split(",")
|
388 |
+
task_names = task_manager.match_tasks(task_list)
|
389 |
+
for task in [task for task in task_list if task not in task_names]:
|
390 |
+
if os.path.isfile(task):
|
391 |
+
config = utils.load_yaml_config(task)
|
392 |
+
task_names.append(config)
|
393 |
+
task_missing = [
|
394 |
+
task for task in task_list if task not in task_names and "*" not in task
|
395 |
+
] # we don't want errors if a wildcard ("*") task name was used
|
396 |
+
|
397 |
+
if task_missing:
|
398 |
+
missing = ", ".join(task_missing)
|
399 |
+
eval_logger.error(
|
400 |
+
f"Tasks were not found: {missing}\n"
|
401 |
+
f"{utils.SPACING}Try `lm-eval --tasks list` for list of available tasks",
|
402 |
+
)
|
403 |
+
raise ValueError(
|
404 |
+
f"Tasks not found: {missing}. Try `lm-eval --tasks list` for list of available tasks, or '--verbosity DEBUG' to troubleshoot task registration issues."
|
405 |
+
)
|
406 |
+
|
407 |
+
# Respect user's value passed in via CLI, otherwise default to True and add to comma-separated model args
|
408 |
+
if args.trust_remote_code:
|
409 |
+
os.environ["HF_DATASETS_TRUST_REMOTE_CODE"] = str(args.trust_remote_code)
|
410 |
+
args.model_args = (
|
411 |
+
args.model_args
|
412 |
+
+ f",trust_remote_code={os.environ['HF_DATASETS_TRUST_REMOTE_CODE']}"
|
413 |
+
)
|
414 |
+
|
415 |
+
eval_logger.info(f"Selected Tasks: {task_names}")
|
416 |
+
|
417 |
+
request_caching_args = request_caching_arg_to_dict(
|
418 |
+
cache_requests=args.cache_requests
|
419 |
+
)
|
420 |
+
|
421 |
+
results = evaluator.simple_evaluate(
|
422 |
+
model=args.model,
|
423 |
+
model_args=args.model_args,
|
424 |
+
tasks=task_names,
|
425 |
+
num_fewshot=args.num_fewshot,
|
426 |
+
batch_size=args.batch_size,
|
427 |
+
max_batch_size=args.max_batch_size,
|
428 |
+
device=args.device,
|
429 |
+
use_cache=args.use_cache,
|
430 |
+
limit=args.limit,
|
431 |
+
check_integrity=args.check_integrity,
|
432 |
+
write_out=args.write_out,
|
433 |
+
log_samples=args.log_samples,
|
434 |
+
evaluation_tracker=evaluation_tracker,
|
435 |
+
system_instruction=args.system_instruction,
|
436 |
+
apply_chat_template=args.apply_chat_template,
|
437 |
+
fewshot_as_multiturn=args.fewshot_as_multiturn,
|
438 |
+
gen_kwargs=args.gen_kwargs,
|
439 |
+
task_manager=task_manager,
|
440 |
+
verbosity=args.verbosity,
|
441 |
+
predict_only=args.predict_only,
|
442 |
+
random_seed=args.seed[0],
|
443 |
+
numpy_random_seed=args.seed[1],
|
444 |
+
torch_random_seed=args.seed[2],
|
445 |
+
fewshot_random_seed=args.seed[3],
|
446 |
+
retrieval_args={
|
447 |
+
"save_inputs_only": args.save_inputs_only,
|
448 |
+
"inputs_save_dir": args.inputs_save_dir,
|
449 |
+
"answer_save_dir": args.answer_save_dir,
|
450 |
+
"overwrite_saved_inputs": args.overwrite_saved_inputs,
|
451 |
+
"retrieval_file": args.retrieval_file,
|
452 |
+
"retrieval_dir": args.retrieval_dir,
|
453 |
+
"concat_k": args.concat_k,
|
454 |
+
"additional_system_prompt": args.additional_system_prompt,
|
455 |
+
},
|
456 |
+
**request_caching_args,
|
457 |
+
)
|
458 |
+
|
459 |
+
if results is not None:
|
460 |
+
if args.log_samples:
|
461 |
+
samples = results.pop("samples")
|
462 |
+
dumped = json.dumps(
|
463 |
+
results, indent=2, default=handle_non_serializable, ensure_ascii=False
|
464 |
+
)
|
465 |
+
if args.show_config:
|
466 |
+
print(dumped)
|
467 |
+
|
468 |
+
batch_sizes = ",".join(map(str, results["config"]["batch_sizes"]))
|
469 |
+
|
470 |
+
# Add W&B logging
|
471 |
+
if args.wandb_args:
|
472 |
+
try:
|
473 |
+
wandb_logger.post_init(results)
|
474 |
+
wandb_logger.log_eval_result()
|
475 |
+
if args.log_samples:
|
476 |
+
wandb_logger.log_eval_samples(samples)
|
477 |
+
except Exception as e:
|
478 |
+
eval_logger.info(f"Logging to Weights and Biases failed due to {e}")
|
479 |
+
|
480 |
+
evaluation_tracker.save_results_aggregated(
|
481 |
+
results=results, samples=samples if args.log_samples else None
|
482 |
+
)
|
483 |
+
|
484 |
+
if args.log_samples:
|
485 |
+
for task_name, config in results["configs"].items():
|
486 |
+
evaluation_tracker.save_results_samples(
|
487 |
+
task_name=task_name, samples=samples[task_name]
|
488 |
+
)
|
489 |
+
|
490 |
+
if (
|
491 |
+
evaluation_tracker.push_results_to_hub
|
492 |
+
or evaluation_tracker.push_samples_to_hub
|
493 |
+
):
|
494 |
+
evaluation_tracker.recreate_metadata_card()
|
495 |
+
|
496 |
+
print(
|
497 |
+
f"{args.model} ({args.model_args}), gen_kwargs: ({args.gen_kwargs}), limit: {args.limit}, num_fewshot: {args.num_fewshot}, num_docs: {args.concat_k} "
|
498 |
+
f"batch_size: {args.batch_size}{f' ({batch_sizes})' if batch_sizes else ''}"
|
499 |
+
)
|
500 |
+
|
501 |
+
print(make_table(results, log_path=args.results_only_save_path))
|
502 |
+
if "groups" in results:
|
503 |
+
print(make_table(results, "groups", log_path=args.results_only_save_path))
|
504 |
+
|
505 |
+
if args.wandb_args:
|
506 |
+
# Tear down wandb run once all the logging is done.
|
507 |
+
wandb_logger.run.finish()
|
508 |
+
|
509 |
+
|
510 |
+
if __name__ == "__main__":
|
511 |
+
cli_evaluate()
|
rag-evaluation-harness/lm_eval/decontamination/janitor.py
ADDED
@@ -0,0 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
import re
|
3 |
+
import string
|
4 |
+
import traceback
|
5 |
+
from typing import Iterator, List, Sequence, Tuple, TypeVar
|
6 |
+
|
7 |
+
|
8 |
+
# This is a cpp module. Compile janitor_util.cpp with:
|
9 |
+
# c++ -O3 -Wall -shared -std=c++11 -fPIC $(python3 -m pybind11 --includes) janitor_util.cpp -o janitor_util$(python3-config --extension-suffix) -undefined dynamic_lookup
|
10 |
+
try:
|
11 |
+
import janitor_util
|
12 |
+
|
13 |
+
JANITOR_CPP = True
|
14 |
+
except Exception:
|
15 |
+
print("WARNING: C++ module could not be loaded. Janitor running in python mode")
|
16 |
+
traceback.print_exc()
|
17 |
+
JANITOR_CPP = False
|
18 |
+
|
19 |
+
T = TypeVar("T")
|
20 |
+
|
21 |
+
|
22 |
+
# Implementation from nltk source
|
23 |
+
# https://www.nltk.org/_modules/nltk/util.html
|
24 |
+
def form_ngrams(sequence: Iterator[T], n: int) -> Iterator[Tuple[T, ...]]:
|
25 |
+
history = []
|
26 |
+
while n > 1:
|
27 |
+
# PEP 479, prevent RuntimeError from being raised when StopIteration bubbles out of generator
|
28 |
+
try:
|
29 |
+
next_item = next(sequence)
|
30 |
+
except StopIteration:
|
31 |
+
# no more data, terminate the generator
|
32 |
+
return
|
33 |
+
history.append(next_item)
|
34 |
+
n -= 1
|
35 |
+
for item in sequence:
|
36 |
+
history.append(item)
|
37 |
+
yield tuple(history)
|
38 |
+
del history[0]
|
39 |
+
|
40 |
+
|
41 |
+
def word_ngrams(s: str, n: int) -> Iterator[str]:
|
42 |
+
"""Splits a string into ngram words"""
|
43 |
+
tokens = s.split() # not a generator :(
|
44 |
+
ngram_seqs = form_ngrams(iter(tokens), n)
|
45 |
+
return (" ".join(ngram) for ngram in ngram_seqs)
|
46 |
+
|
47 |
+
|
48 |
+
# Does character sequences only - combined faster function to play around with later
|
49 |
+
# def word_ngrams_indices_combined(sequence, n):
|
50 |
+
# current_word = ""
|
51 |
+
# history = []
|
52 |
+
# gap = False;
|
53 |
+
# start = 0
|
54 |
+
# end = 0
|
55 |
+
# for character in sequence:
|
56 |
+
# if character == " ":
|
57 |
+
# if not gap:
|
58 |
+
# gap = True
|
59 |
+
# history.append(current_word)
|
60 |
+
# end += len(current_word) - 1
|
61 |
+
# current_word = ""
|
62 |
+
# if len(history) == n:
|
63 |
+
# yield (tuple(history), start, end)
|
64 |
+
# del history[0]
|
65 |
+
# start = end + 1
|
66 |
+
# end = start
|
67 |
+
# else:
|
68 |
+
# gap = False
|
69 |
+
# current_word += character
|
70 |
+
|
71 |
+
|
72 |
+
# https://stackoverflow.com/questions/13734451/string-split-with-indices-in-python
|
73 |
+
def split_indices(s: str) -> Iterator[Tuple[str, Tuple[int, int]]]:
|
74 |
+
"""Splits a string on whitespaces and records the indices of each in the original string.
|
75 |
+
@:return generator((word, (start_idx, end_idx)), ...)
|
76 |
+
"""
|
77 |
+
return ((m.group(0), (m.start(), m.end() - 1)) for m in re.finditer(r"\S+", s))
|
78 |
+
|
79 |
+
|
80 |
+
def word_ngrams_indices(s: str, n: int) -> Iterator[Tuple[str, Tuple[int, int]]]:
|
81 |
+
"""Splits a string into pairs of (ngram words, their start/end indices)"""
|
82 |
+
tokens_with_indices = split_indices(s)
|
83 |
+
|
84 |
+
# Generator of ngrams of (word, idx_pairs)
|
85 |
+
# (
|
86 |
+
# [(word, (start,end)), (word, (start, end))...],
|
87 |
+
# [(word, (start, end)), ...],
|
88 |
+
# ...
|
89 |
+
# )
|
90 |
+
ngram_seqs_with_indices = form_ngrams(tokens_with_indices, n)
|
91 |
+
|
92 |
+
# Generator of pairs of word and index ngrams
|
93 |
+
# (
|
94 |
+
# ([word, word, ...], [(start,end), (start,end), ...]),
|
95 |
+
# ...
|
96 |
+
# )
|
97 |
+
ngram_indices_pairs = (
|
98 |
+
zip(*ngram_with_indices) for ngram_with_indices in ngram_seqs_with_indices
|
99 |
+
)
|
100 |
+
|
101 |
+
# Generator of ( (word_ngram, (start, end)), (word_ngram, start, end)), ...)
|
102 |
+
return (
|
103 |
+
(" ".join(ngram_seq), (indices[0][0], indices[-1][1]))
|
104 |
+
for ngram_seq, indices in ngram_indices_pairs
|
105 |
+
)
|
106 |
+
|
107 |
+
|
108 |
+
class Janitor:
|
109 |
+
# FIXME delete_chars: Should anything else go here? Special chars?
|
110 |
+
def __init__(
|
111 |
+
self,
|
112 |
+
ngram_n: int = 13,
|
113 |
+
window_to_remove: int = 200,
|
114 |
+
too_dirty_cutoff: int = 10,
|
115 |
+
minimum_slice_length: int = 200,
|
116 |
+
delete_chars: str = string.punctuation,
|
117 |
+
) -> None:
|
118 |
+
self.ngram_n = ngram_n
|
119 |
+
self.window_to_remove = window_to_remove
|
120 |
+
self.too_dirty_cutoff = too_dirty_cutoff
|
121 |
+
self.minimum_slice_length = minimum_slice_length
|
122 |
+
self.delete_chars = delete_chars
|
123 |
+
|
124 |
+
self.dirt_ngrams = set()
|
125 |
+
|
126 |
+
# If in python, we'll translate uppercase to lowercase and delete naughty characters.
|
127 |
+
# This is fast by python standards
|
128 |
+
# https://stackoverflow.com/questions/638893/what-is-the-most-efficient-way-in-python-to-convert-a-string-to-all-lowercase-st
|
129 |
+
self.translation_table = str.maketrans(
|
130 |
+
string.ascii_lowercase + string.ascii_uppercase, # These characters
|
131 |
+
string.ascii_lowercase * 2, # Become these characters
|
132 |
+
self.delete_chars, # These are deleted
|
133 |
+
)
|
134 |
+
|
135 |
+
##############
|
136 |
+
# I/O for saving contamination ngrams
|
137 |
+
##############
|
138 |
+
|
139 |
+
def save_contamination_ngrams(self, filename: str) -> None:
|
140 |
+
with open(filename, "wb") as fp:
|
141 |
+
pickle.dump(filename, fp)
|
142 |
+
|
143 |
+
def load_contamination_ngrams(self, filename: str) -> None:
|
144 |
+
with open(filename, "rb") as fp:
|
145 |
+
self.dirt_ngrams = pickle.load(fp)
|
146 |
+
|
147 |
+
##############
|
148 |
+
# Call these :)
|
149 |
+
##############
|
150 |
+
|
151 |
+
def register_contaminant(self, dirt_string: str) -> None:
|
152 |
+
"""Register a string as contamination to be removed, e.g. a test set
|
153 |
+
This breaks the dirt_string into ngrams to store for future cleaning"""
|
154 |
+
if JANITOR_CPP:
|
155 |
+
return self.register_contaminant_cpp(dirt_string)
|
156 |
+
else:
|
157 |
+
print("WARNING: Janitor running in python mode")
|
158 |
+
return self.register_contaminant_python(dirt_string)
|
159 |
+
|
160 |
+
def clean(self, dirty_string: str) -> List[str]:
|
161 |
+
"""Clean a string (e.g. a training set) by removing all ngrams previously
|
162 |
+
registered as contaminants. Returns a list of clean chunks, or empty if
|
163 |
+
the string was too dirty"""
|
164 |
+
if JANITOR_CPP:
|
165 |
+
return self.clean_cpp(dirty_string)
|
166 |
+
else:
|
167 |
+
print("WARNING: Janitor running in python mode")
|
168 |
+
return self.clean_python(dirty_string)
|
169 |
+
|
170 |
+
def _split_chunks(
|
171 |
+
self, dirty_string: str, dirty_parts: Sequence[Tuple]
|
172 |
+
) -> List[str]:
|
173 |
+
clean_chunks = []
|
174 |
+
splice_idx = 0
|
175 |
+
end = -1
|
176 |
+
for i, (ngram, start, end) in enumerate(dirty_parts):
|
177 |
+
if i >= self.too_dirty_cutoff:
|
178 |
+
return []
|
179 |
+
start = max(0, start - self.window_to_remove)
|
180 |
+
end = min(len(dirty_string), end + self.window_to_remove)
|
181 |
+
|
182 |
+
if start - splice_idx > self.minimum_slice_length:
|
183 |
+
clean_chunks.append(dirty_string[splice_idx:start])
|
184 |
+
splice_idx = end
|
185 |
+
|
186 |
+
if end < len(dirty_string) - self.minimum_slice_length:
|
187 |
+
clean_chunks.append(dirty_string[end + 1 :])
|
188 |
+
|
189 |
+
return clean_chunks
|
190 |
+
|
191 |
+
##############
|
192 |
+
# Fast C++
|
193 |
+
##############
|
194 |
+
|
195 |
+
def register_contaminant_cpp(self, dirt_string) -> None:
|
196 |
+
self.dirt_ngrams.update(
|
197 |
+
janitor_util.clean_ngram(dirt_string, self.delete_chars, self.ngram_n)
|
198 |
+
)
|
199 |
+
|
200 |
+
def clean_cpp(self, dirty_string: str) -> List[str]:
|
201 |
+
contamination_indices = janitor_util.clean_ngram_with_indices(
|
202 |
+
dirty_string, self.delete_chars, self.ngram_n
|
203 |
+
)
|
204 |
+
return self._split_chunks(dirty_string, contamination_indices)
|
205 |
+
|
206 |
+
##############
|
207 |
+
# Slow python
|
208 |
+
##############
|
209 |
+
|
210 |
+
def normalize_string(self, s: str) -> str:
|
211 |
+
return s.translate(self.translation_table)
|
212 |
+
|
213 |
+
def register_contaminant_python(self, dirt_string: str) -> None:
|
214 |
+
self.dirt_ngrams.update(
|
215 |
+
word_ngrams(self.normalize_string(dirt_string), self.ngram_n)
|
216 |
+
)
|
217 |
+
|
218 |
+
def clean_python(self, dirty_string: str) -> List[str]:
|
219 |
+
contamination_indices = (
|
220 |
+
(None, *idx_pair)
|
221 |
+
for dirty_ngram, idx_pair in word_ngrams_indices(dirty_string, self.ngram_n)
|
222 |
+
if self.normalize_string(dirty_ngram) in self.dirt_ngrams
|
223 |
+
)
|
224 |
+
return self._split_chunks(dirty_string, contamination_indices)
|
225 |
+
|
226 |
+
|
227 |
+
##################################################################
|
228 |
+
# Tests
|
229 |
+
#################################################################
|
230 |
+
|
231 |
+
# def print_cpp():
|
232 |
+
# source = """ ,, I'm a very !dirty,, ,, dirty boy. Clean me daddy. \n\nhe he he hehe heh. lastword """ * 2
|
233 |
+
|
234 |
+
# for i in range(1, 10, 2):
|
235 |
+
# pprint(janitor_util.clean_ngram(source, string.punctuation, i))
|
236 |
+
# for ngram, start, end in \
|
237 |
+
# janitor_util.clean_ngram_with_indices(source, string.punctuation, i):
|
238 |
+
# print(ngram, "\t", start, end, source[start:end].replace("\n", "\\n"))
|
239 |
+
|
240 |
+
|
241 |
+
# def test_cpp():
|
242 |
+
# source = """ ,, I'm a very !dirty,, ,, dirty boy. Clean me daddy. \n\nhe he he hehe heh. lastword """ * 2
|
243 |
+
# contaminant = "dirty boy. Clean he he"
|
244 |
+
|
245 |
+
# jan_python = Janitor()
|
246 |
+
# jan_cpp = Janitor()
|
247 |
+
|
248 |
+
# jan_python.register_contaminant_python(contaminant)
|
249 |
+
# jan_cpp.register_contaminant(contaminant)
|
250 |
+
|
251 |
+
# assert jan_python.dirt_ngrams == jan_cpp.dirt_ngrams, (jan_python.dirt_ngrams, jan_cpp.dirt_ngrams)
|
252 |
+
|
253 |
+
# assert jan_python.clean_python(source) == jan_cpp.clean(source), \
|
254 |
+
# (jan_python.clean_python(source), jan_cpp.clean(source))
|
255 |
+
|
256 |
+
# print("Passed test, python==cpp")
|
257 |
+
|
258 |
+
|
259 |
+
# def benchmark():
|
260 |
+
# # Download and put in data folder: enwik8 (100 MB) from https://cs.fit.edu/~mmahoney/compression/textdata.html
|
261 |
+
# setup = \
|
262 |
+
# """
|
263 |
+
# with open("data/enwik8", "r") as f:
|
264 |
+
# data = f.read()
|
265 |
+
# jan = Janitor(too_dirty_cutoff=1000)
|
266 |
+
# jan.register_contaminant('''
|
267 |
+
# theories is that there is a connection between "geekdom" and autism.
|
268 |
+
# This is hinted, for instance, by a ''Wired Magazine'' article in 2001 entitled "
|
269 |
+
# The [[Geek]] Syndrome", which is a point argued by many in the autism rights
|
270 |
+
# movement{{ref|Wired}}. This article, many professionals assert, is just one example of
|
271 |
+
# the media's application of mental disease labels to what is actually variant normal behavior
|
272 |
+
# &mdash;they argue that shyness, lack of athletic ability or social skills, and intellectual
|
273 |
+
# interests, even when they seem unusual to others, are not in themselves signs of autism or
|
274 |
+
# Asperger's syndrome. Others assert that it is actually the medical profession which is applying
|
275 |
+
# mental disease labels to children who in the past would have simply been accepted as a little
|
276 |
+
# different or even labeled 'gifted'. See [[clinomorphism]] for further discussion of this issue.
|
277 |
+
# Due to the recent publicity surrounding autism and autis
|
278 |
+
# ultan Al Nahyan]] granted [[Petroleum]] concessions, and oil was first found in 1958. At first,
|
279 |
+
# oil money had a marginal impact. A few lowrise concete buildings were erected, and the first
|
280 |
+
# paved road was completed in 1961, but Sheikh Shakbut, uncertain whether the new oil royalties
|
281 |
+
# would last, took a cautious approach, preferring to save the revenue rather than investing it in
|
282 |
+
# development. His brother, [[Zayed bin Sultan Al Nahayan]], saw that oil wealth had the potential
|
283 |
+
# to transform Abu Dhabi. The ruling Al Nahayan family decided that Sheikh Zayed should replace his
|
284 |
+
# brother as Ruler and carry out his vision of developing the country. On [[August 6]], [[1966]],
|
285 |
+
# with the assistance of the British, Sheikh Zayed became the new ruler. See generally, Al-Fahim, M,
|
286 |
+
# ''From Rags to Riches: A Story of Abu Dhabi'', Chapter Six (London Centre of Arab Studies, 1995),
|
287 |
+
# ISBN 1 900404 00 1. With the announcement by Britain in 1968 that it would withdraw from the
|
288 |
+
# Gulf area by 1971, Sheikh Zayed became the main driving force behind the formation of the
|
289 |
+
# [[United Arab Emirates]]. After the Emirates gained independence in 1971,
|
290 |
+
# ''')
|
291 |
+
# """
|
292 |
+
|
293 |
+
# n = 1
|
294 |
+
# print(f"Timing {n} run on 100 MB")
|
295 |
+
# print("Register contaminant")
|
296 |
+
# # print("\tPython", timeit.timeit("jan.register_contaminant_python(data)", setup=setup, globals=globals(), number=n))
|
297 |
+
# print("\tCpp", timeit.timeit("jan.register_contaminant(data)", setup=setup, globals=globals(), number=n))
|
298 |
+
|
299 |
+
# print("Clean")
|
300 |
+
# # print("\tPython", timeit.timeit("jan.clean_python(data)", setup=setup, globals=globals(), number=n))
|
301 |
+
# print("\tCpp", timeit.timeit("jan.clean(data)", setup=setup, globals=globals(), number=n))
|
302 |
+
|
303 |
+
|
304 |
+
# def test_janitor_general():
|
305 |
+
# source = """ ,, I'm a very !dirty,, ,, dirty boy. Clean me daddy. \n\nhe he he hehe heh. lastword """ * 2
|
306 |
+
# contaminant = "dirty boy. Clean he he"
|
307 |
+
|
308 |
+
# jan = Janitor(ngram_n=3)
|
309 |
+
# jan.register_contaminant(contaminant)
|
310 |
+
# cleaned = " ".join(jan.clean(source))
|
311 |
+
# for contam in jan.dirt_ngrams:
|
312 |
+
# assert contam not in cleaned, contam
|
313 |
+
|
314 |
+
# filename = "data/saved_contam"
|
315 |
+
# jan.save_contamination_ngrams(filename)
|
316 |
+
|
317 |
+
# jan = Janitor(ngram_n=3)
|
318 |
+
# jan.load_contamination_ngrams(filename)
|
319 |
+
# cleaned = " ".join(jan.clean(source))
|
320 |
+
# for contam in jan.dirt_ngrams:
|
321 |
+
# assert contam not in cleaned, contam
|
322 |
+
|
323 |
+
|
324 |
+
# if __name__ == "__main__":
|
325 |
+
# test()
|
326 |
+
# # print_cpp()
|
327 |
+
# # test_cpp()
|
328 |
+
# # benchmark()
|
rag-evaluation-harness/lm_eval/tasks/__init__.py
ADDED
@@ -0,0 +1,449 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
from functools import partial
|
5 |
+
from typing import Dict, List, Mapping, Optional, Union
|
6 |
+
|
7 |
+
from lm_eval import utils
|
8 |
+
from lm_eval.api.task import ConfigurableTask, Task
|
9 |
+
|
10 |
+
|
11 |
+
class TaskManager:
|
12 |
+
"""TaskManager indexes all tasks from the default `lm_eval/tasks/`
|
13 |
+
and an optional directory if provided.
|
14 |
+
|
15 |
+
"""
|
16 |
+
|
17 |
+
def __init__(self, verbosity="INFO", include_path: Optional[str] = None) -> None:
|
18 |
+
self.verbosity = verbosity
|
19 |
+
self.include_path = include_path
|
20 |
+
self.logger = utils.eval_logger
|
21 |
+
self.logger.setLevel(getattr(logging, f"{verbosity}"))
|
22 |
+
|
23 |
+
self._task_index = self.initialize_tasks(include_path=include_path)
|
24 |
+
self._all_tasks = sorted(list(self._task_index.keys()))
|
25 |
+
|
26 |
+
self.task_group_map = collections.defaultdict(list)
|
27 |
+
|
28 |
+
def initialize_tasks(self, include_path: Optional[str] = None):
|
29 |
+
"""Creates a dictionary of tasks index.
|
30 |
+
|
31 |
+
:param include_path: str = None
|
32 |
+
An additional path to be searched for tasks
|
33 |
+
|
34 |
+
:return
|
35 |
+
Dictionary of task names as key and task metadata
|
36 |
+
"""
|
37 |
+
all_paths = [os.path.dirname(os.path.abspath(__file__)) + "/"]
|
38 |
+
if include_path is not None:
|
39 |
+
if isinstance(include_path, str):
|
40 |
+
include_path = [include_path]
|
41 |
+
all_paths.extend(include_path)
|
42 |
+
|
43 |
+
task_index = {}
|
44 |
+
for task_dir in all_paths:
|
45 |
+
tasks = self._get_task_and_group(task_dir)
|
46 |
+
task_index = {**tasks, **task_index}
|
47 |
+
|
48 |
+
return task_index
|
49 |
+
|
50 |
+
@property
|
51 |
+
def all_tasks(self):
|
52 |
+
return self._all_tasks
|
53 |
+
|
54 |
+
@property
|
55 |
+
def task_index(self):
|
56 |
+
return self._task_index
|
57 |
+
|
58 |
+
def match_tasks(self, task_list):
|
59 |
+
return utils.pattern_match(task_list, self.all_tasks)
|
60 |
+
|
61 |
+
def _name_is_registered(self, name) -> bool:
|
62 |
+
if name in self.all_tasks:
|
63 |
+
return True
|
64 |
+
return False
|
65 |
+
|
66 |
+
def _name_is_task(self, name) -> bool:
|
67 |
+
if self._name_is_registered(name) and ("task" in self.task_index[name]["type"]):
|
68 |
+
return True
|
69 |
+
return False
|
70 |
+
|
71 |
+
def _name_is_group(self, name) -> bool:
|
72 |
+
if self._name_is_registered(name) and (
|
73 |
+
self.task_index[name]["type"] == "group"
|
74 |
+
):
|
75 |
+
return True
|
76 |
+
return False
|
77 |
+
|
78 |
+
def _name_is_python_task(self, name):
|
79 |
+
if self._name_is_registered(name) and (
|
80 |
+
self.task_index[name]["type"] == "python_task"
|
81 |
+
):
|
82 |
+
return True
|
83 |
+
return False
|
84 |
+
|
85 |
+
def _config_is_task(self, config) -> bool:
|
86 |
+
if ("task" in config) and isinstance(config["task"], str):
|
87 |
+
return True
|
88 |
+
return False
|
89 |
+
|
90 |
+
def _config_is_group(self, config) -> bool:
|
91 |
+
if ("task" in config) and isinstance(config["task"], list):
|
92 |
+
return True
|
93 |
+
return False
|
94 |
+
|
95 |
+
def _config_is_python_task(self, config) -> bool:
|
96 |
+
if "class" in config:
|
97 |
+
return True
|
98 |
+
return False
|
99 |
+
|
100 |
+
def _get_yaml_path(self, name):
|
101 |
+
if name not in self.task_index:
|
102 |
+
raise ValueError
|
103 |
+
return self.task_index[name]["yaml_path"]
|
104 |
+
|
105 |
+
def _get_config(self, name):
|
106 |
+
if name not in self.task_index:
|
107 |
+
raise ValueError
|
108 |
+
yaml_path = self._get_yaml_path(name)
|
109 |
+
if yaml_path == -1:
|
110 |
+
return {}
|
111 |
+
else:
|
112 |
+
return utils.load_yaml_config(yaml_path, mode="full")
|
113 |
+
|
114 |
+
def _get_tasklist(self, name):
|
115 |
+
if self._name_is_task(name):
|
116 |
+
raise ValueError
|
117 |
+
return self.task_index[name]["task"]
|
118 |
+
|
119 |
+
def _process_alias(self, config, group=None):
|
120 |
+
# If the group is not the same as the original
|
121 |
+
# group which the group alias was intended for,
|
122 |
+
# Set the group_alias to None instead.
|
123 |
+
if ("group_alias" in config) and ("group" in config) and group is not None:
|
124 |
+
if config["group"] != group:
|
125 |
+
config["group_alias"] = None
|
126 |
+
return config
|
127 |
+
|
128 |
+
def _load_individual_task_or_group(
|
129 |
+
self,
|
130 |
+
name_or_config: Optional[Union[str, dict]] = None,
|
131 |
+
parent_name: Optional[str] = None,
|
132 |
+
update_config: Optional[dict] = None,
|
133 |
+
yaml_path: Optional[str] = None,
|
134 |
+
) -> Mapping:
|
135 |
+
def load_task(config, task, group=None, yaml_path=None):
|
136 |
+
if "include" in config:
|
137 |
+
if yaml_path is None:
|
138 |
+
raise ValueError
|
139 |
+
config = {
|
140 |
+
**utils.load_yaml_config(
|
141 |
+
yaml_path,
|
142 |
+
yaml_config={"include": config.pop("include")},
|
143 |
+
mode="full",
|
144 |
+
),
|
145 |
+
**config,
|
146 |
+
}
|
147 |
+
if self._config_is_python_task(config):
|
148 |
+
task_object = config["class"]()
|
149 |
+
else:
|
150 |
+
config = self._process_alias(config, group=group)
|
151 |
+
task_object = ConfigurableTask(config=config)
|
152 |
+
if group is not None:
|
153 |
+
task_object = (group, task_object)
|
154 |
+
return {task: task_object}
|
155 |
+
|
156 |
+
if isinstance(name_or_config, str):
|
157 |
+
if update_config is not None:
|
158 |
+
# Process name_or_config as a dict instead
|
159 |
+
name_or_config = {"task": name_or_config, **update_config}
|
160 |
+
elif self._name_is_task(name_or_config):
|
161 |
+
task_config = self._get_config(name_or_config)
|
162 |
+
return load_task(task_config, task=name_or_config, group=parent_name)
|
163 |
+
else:
|
164 |
+
group_name = name_or_config
|
165 |
+
subtask_list = self._get_tasklist(name_or_config)
|
166 |
+
if subtask_list == -1:
|
167 |
+
group_config = self._get_config(name_or_config)
|
168 |
+
subtask_list = group_config["task"]
|
169 |
+
|
170 |
+
# This checks if we're at the root.
|
171 |
+
if parent_name is None:
|
172 |
+
group_config = self._get_config(name_or_config)
|
173 |
+
if set(group_config.keys()) > {"task", "group"}:
|
174 |
+
update_config = {
|
175 |
+
k: v
|
176 |
+
for k, v in group_config.items()
|
177 |
+
if k not in ["task", "group"]
|
178 |
+
}
|
179 |
+
yaml_path = self._get_yaml_path(group_name)
|
180 |
+
|
181 |
+
if (update_config is not None) and ("group_alias" in update_config):
|
182 |
+
group_name = update_config["group_alias"]
|
183 |
+
update_config.pop("group_alias")
|
184 |
+
|
185 |
+
if isinstance(name_or_config, dict):
|
186 |
+
if update_config is not None:
|
187 |
+
name_or_config = {
|
188 |
+
**name_or_config,
|
189 |
+
**update_config,
|
190 |
+
}
|
191 |
+
|
192 |
+
if self._config_is_task(name_or_config):
|
193 |
+
name = name_or_config["task"]
|
194 |
+
# If the name is registered as a group
|
195 |
+
# if self._name_is_task(name) is False:
|
196 |
+
if self._name_is_group(name):
|
197 |
+
group_name = name
|
198 |
+
update_config = {
|
199 |
+
k: v for k, v in name_or_config.items() if k != "task"
|
200 |
+
}
|
201 |
+
subtask_list = self._get_tasklist(name)
|
202 |
+
if subtask_list == -1:
|
203 |
+
subtask_list = self._get_config(name)["task"]
|
204 |
+
else:
|
205 |
+
if self._name_is_registered(name):
|
206 |
+
base_task_config = self._get_config(name)
|
207 |
+
|
208 |
+
# Check if this is a duplicate.
|
209 |
+
if parent_name is not None:
|
210 |
+
name_or_config["group"] = parent_name
|
211 |
+
num_duplicate = len(
|
212 |
+
list(
|
213 |
+
filter(
|
214 |
+
lambda x: x.startswith(name),
|
215 |
+
self.task_group_map[parent_name],
|
216 |
+
)
|
217 |
+
)
|
218 |
+
)
|
219 |
+
if num_duplicate > 0:
|
220 |
+
name = f"{name}-{num_duplicate}"
|
221 |
+
self.task_group_map[parent_name].append(name)
|
222 |
+
|
223 |
+
task_config = {
|
224 |
+
**base_task_config,
|
225 |
+
**name_or_config,
|
226 |
+
}
|
227 |
+
else:
|
228 |
+
task_config = name_or_config
|
229 |
+
return load_task(
|
230 |
+
task_config, task=name, group=parent_name, yaml_path=yaml_path
|
231 |
+
)
|
232 |
+
else:
|
233 |
+
group_name = name_or_config["group"]
|
234 |
+
subtask_list = name_or_config["task"]
|
235 |
+
if set(name_or_config.keys()) > {"task", "group"}:
|
236 |
+
update_config = {
|
237 |
+
k: v
|
238 |
+
for k, v in name_or_config.items()
|
239 |
+
if k not in ["task", "group"]
|
240 |
+
}
|
241 |
+
|
242 |
+
all_subtasks = {}
|
243 |
+
if parent_name is not None:
|
244 |
+
all_subtasks = {group_name: (parent_name, None)}
|
245 |
+
|
246 |
+
fn = partial(
|
247 |
+
self._load_individual_task_or_group,
|
248 |
+
parent_name=group_name,
|
249 |
+
update_config=update_config,
|
250 |
+
yaml_path=yaml_path,
|
251 |
+
)
|
252 |
+
all_subtasks = {
|
253 |
+
**all_subtasks,
|
254 |
+
**dict(collections.ChainMap(*map(fn, subtask_list))),
|
255 |
+
}
|
256 |
+
return all_subtasks
|
257 |
+
|
258 |
+
def load_task_or_group(self, task_list: Optional[Union[str, list]] = None) -> dict:
|
259 |
+
"""Loads a dictionary of task objects from a list
|
260 |
+
|
261 |
+
:param task_list: Union[str, list] = None
|
262 |
+
Single string or list of string of task names to be loaded
|
263 |
+
|
264 |
+
:return
|
265 |
+
Dictionary of task objects
|
266 |
+
"""
|
267 |
+
if isinstance(task_list, str):
|
268 |
+
task_list = [task_list]
|
269 |
+
|
270 |
+
all_loaded_tasks = dict(
|
271 |
+
collections.ChainMap(*map(self._load_individual_task_or_group, task_list))
|
272 |
+
)
|
273 |
+
return all_loaded_tasks
|
274 |
+
|
275 |
+
def load_config(self, config: Dict):
|
276 |
+
return self._load_individual_task_or_group(config)
|
277 |
+
|
278 |
+
def _get_task_and_group(self, task_dir: str):
|
279 |
+
"""Creates a dictionary of tasks index with the following metadata,
|
280 |
+
- `type`, that can be either `task`, `python_task`, or `group`.
|
281 |
+
`task` refer to regular task configs, `python_task` are special
|
282 |
+
yaml files that only consists of `task` and `class` parameters.
|
283 |
+
`group` are group configs.
|
284 |
+
- `yaml_path`, path to the yaml file. If the entry is a `group` that
|
285 |
+
was configured through a task config, the yaml_path will be -1
|
286 |
+
and all subtasks will be listed in `task` (see below)
|
287 |
+
- `task`, reserved for entries with `type` as `group`. This will list
|
288 |
+
all subtasks. When a group config is created (as opposed to task
|
289 |
+
config having `group` parameter set), this will be set to -1 to
|
290 |
+
avoid recursive indexing. The whole list of subtasks will be loaded
|
291 |
+
at evaluation.
|
292 |
+
|
293 |
+
:param task_dir: str
|
294 |
+
A directory to check for tasks
|
295 |
+
|
296 |
+
:return
|
297 |
+
Dictionary of task names as key and task metadata
|
298 |
+
"""
|
299 |
+
tasks_and_groups = collections.defaultdict()
|
300 |
+
for root, _, file_list in os.walk(task_dir):
|
301 |
+
for f in file_list:
|
302 |
+
if f.endswith(".yaml"):
|
303 |
+
yaml_path = os.path.join(root, f)
|
304 |
+
config = utils.load_yaml_config(yaml_path, mode="simple")
|
305 |
+
if self._config_is_python_task(config):
|
306 |
+
# This is a python class config
|
307 |
+
tasks_and_groups[config["task"]] = {
|
308 |
+
"type": "python_task",
|
309 |
+
"yaml_path": yaml_path,
|
310 |
+
}
|
311 |
+
elif self._config_is_group(config):
|
312 |
+
# This is a group config
|
313 |
+
tasks_and_groups[config["group"]] = {
|
314 |
+
"type": "group",
|
315 |
+
"task": -1, # This signals that
|
316 |
+
# we don't need to know
|
317 |
+
# the task list for indexing
|
318 |
+
# as it can be loaded
|
319 |
+
# when called.
|
320 |
+
"yaml_path": yaml_path,
|
321 |
+
}
|
322 |
+
|
323 |
+
# # Registered the level 1 tasks from a group config
|
324 |
+
# for config in config["task"]:
|
325 |
+
# if isinstance(config, dict) and self._config_is_task(config):
|
326 |
+
# task = config["task"]
|
327 |
+
# tasks_and_groups[task] = {
|
328 |
+
# "type": "task",
|
329 |
+
# "yaml_path": yaml_path,
|
330 |
+
# }
|
331 |
+
|
332 |
+
elif self._config_is_task(config):
|
333 |
+
# This is a task config
|
334 |
+
task = config["task"]
|
335 |
+
tasks_and_groups[task] = {
|
336 |
+
"type": "task",
|
337 |
+
"yaml_path": yaml_path,
|
338 |
+
}
|
339 |
+
|
340 |
+
if "group" in config:
|
341 |
+
groups = config["group"]
|
342 |
+
if isinstance(config["group"], str):
|
343 |
+
groups = [groups]
|
344 |
+
|
345 |
+
for group in groups:
|
346 |
+
if group not in tasks_and_groups:
|
347 |
+
tasks_and_groups[group] = {
|
348 |
+
"type": "group",
|
349 |
+
"task": [task],
|
350 |
+
"yaml_path": -1,
|
351 |
+
}
|
352 |
+
else:
|
353 |
+
tasks_and_groups[group]["task"].append(task)
|
354 |
+
else:
|
355 |
+
self.logger.debug(f"File {f} in {root} could not be loaded")
|
356 |
+
|
357 |
+
return tasks_and_groups
|
358 |
+
|
359 |
+
|
360 |
+
def get_task_name_from_config(task_config: Dict[str, str]) -> str:
|
361 |
+
if "task" in task_config:
|
362 |
+
return task_config["task"]
|
363 |
+
if "dataset_name" in task_config:
|
364 |
+
return "{dataset_path}_{dataset_name}".format(**task_config)
|
365 |
+
else:
|
366 |
+
return "{dataset_path}".format(**task_config)
|
367 |
+
|
368 |
+
|
369 |
+
def get_task_name_from_object(task_object):
|
370 |
+
if hasattr(task_object, "config"):
|
371 |
+
return task_object._config["task"]
|
372 |
+
|
373 |
+
# TODO: scrap this
|
374 |
+
# this gives a mechanism for non-registered tasks to have a custom name anyways when reporting
|
375 |
+
return (
|
376 |
+
task_object.EVAL_HARNESS_NAME
|
377 |
+
if hasattr(task_object, "EVAL_HARNESS_NAME")
|
378 |
+
else type(task_object).__name__
|
379 |
+
)
|
380 |
+
|
381 |
+
|
382 |
+
def get_task_dict(
|
383 |
+
task_name_list: Union[str, List[Union[str, Dict, Task]]],
|
384 |
+
task_manager: Optional[TaskManager] = None,
|
385 |
+
):
|
386 |
+
"""Creates a dictionary of task objects from either a name of task, config, or prepared Task object.
|
387 |
+
|
388 |
+
:param task_name_list: List[Union[str, Dict, Task]]
|
389 |
+
Name of model or LM object, see lm_eval.models.get_model
|
390 |
+
:param task_manager: TaskManager = None
|
391 |
+
A TaskManager object that stores indexed tasks. If not set,
|
392 |
+
task_manager will load one. This should be set by the user
|
393 |
+
if there are additional paths that want to be included
|
394 |
+
via `include_path`
|
395 |
+
|
396 |
+
:return
|
397 |
+
Dictionary of task objects
|
398 |
+
"""
|
399 |
+
task_name_from_string_dict = {}
|
400 |
+
task_name_from_config_dict = {}
|
401 |
+
task_name_from_object_dict = {}
|
402 |
+
|
403 |
+
if isinstance(task_name_list, str):
|
404 |
+
task_name_list = [task_name_list]
|
405 |
+
elif isinstance(task_name_list, list):
|
406 |
+
if not all([isinstance(task, (str, dict, Task)) for task in task_name_list]):
|
407 |
+
raise TypeError(
|
408 |
+
"Expected all list items to be of types 'str', 'dict', or 'Task', but at least one entry did not match."
|
409 |
+
)
|
410 |
+
else:
|
411 |
+
raise TypeError(
|
412 |
+
f"Expected a 'str' or 'list' but received {type(task_name_list)}."
|
413 |
+
)
|
414 |
+
|
415 |
+
string_task_name_list = [task for task in task_name_list if isinstance(task, str)]
|
416 |
+
others_task_name_list = [
|
417 |
+
task for task in task_name_list if not isinstance(task, str)
|
418 |
+
]
|
419 |
+
if len(string_task_name_list) > 0:
|
420 |
+
if task_manager is None:
|
421 |
+
task_manager = TaskManager()
|
422 |
+
|
423 |
+
task_name_from_string_dict = task_manager.load_task_or_group(
|
424 |
+
string_task_name_list
|
425 |
+
)
|
426 |
+
|
427 |
+
for task_element in others_task_name_list:
|
428 |
+
if isinstance(task_element, dict):
|
429 |
+
task_name_from_config_dict = {
|
430 |
+
**task_name_from_config_dict,
|
431 |
+
**task_manager.load_config(config=task_element),
|
432 |
+
}
|
433 |
+
|
434 |
+
elif isinstance(task_element, Task):
|
435 |
+
task_name_from_object_dict = {
|
436 |
+
**task_name_from_object_dict,
|
437 |
+
get_task_name_from_object(task_element): task_element,
|
438 |
+
}
|
439 |
+
|
440 |
+
if not set(task_name_from_string_dict.keys()).isdisjoint(
|
441 |
+
set(task_name_from_object_dict.keys())
|
442 |
+
):
|
443 |
+
raise ValueError
|
444 |
+
|
445 |
+
return {
|
446 |
+
**task_name_from_string_dict,
|
447 |
+
**task_name_from_config_dict,
|
448 |
+
**task_name_from_object_dict,
|
449 |
+
}
|
rag-evaluation-harness/lm_eval/tasks/anli/README.md
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ANLI
|
2 |
+
|
3 |
+
### Paper
|
4 |
+
|
5 |
+
Title: `Adversarial NLI: A New Benchmark for Natural Language Understanding`
|
6 |
+
|
7 |
+
Paper Link: https://arxiv.org/abs/1910.14599
|
8 |
+
|
9 |
+
Adversarial NLI (ANLI) is a dataset collected via an iterative, adversarial
|
10 |
+
human-and-model-in-the-loop procedure. It consists of three rounds that progressively
|
11 |
+
increase in difficulty and complexity, and each question-answer includes annotator-
|
12 |
+
provided explanations.
|
13 |
+
|
14 |
+
Homepage: https://github.com/facebookresearch/anli
|
15 |
+
|
16 |
+
### Citation
|
17 |
+
|
18 |
+
```
|
19 |
+
@inproceedings{nie-etal-2020-adversarial,
|
20 |
+
title = "Adversarial {NLI}: A New Benchmark for Natural Language Understanding",
|
21 |
+
author = "Nie, Yixin and
|
22 |
+
Williams, Adina and
|
23 |
+
Dinan, Emily and
|
24 |
+
Bansal, Mohit and
|
25 |
+
Weston, Jason and
|
26 |
+
Kiela, Douwe",
|
27 |
+
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
|
28 |
+
year = "2020",
|
29 |
+
publisher = "Association for Computational Linguistics",
|
30 |
+
}
|
31 |
+
```
|
32 |
+
|
33 |
+
### Groups and Tasks
|
34 |
+
|
35 |
+
#### Groups
|
36 |
+
|
37 |
+
* `anli`: Evaluates `anli_r1`, `anli_r2`, and `anli_r3`
|
38 |
+
|
39 |
+
#### Tasks
|
40 |
+
* `anli_r1`: The data collected adversarially in the first round.
|
41 |
+
* `anli_r2`: The data collected adversarially in the second round, after training on the previous round's data.
|
42 |
+
* `anli_r3`: The data collected adversarially in the third round, after training on the previous multiple rounds of data.
|
43 |
+
|
44 |
+
|
45 |
+
### Checklist
|
46 |
+
|
47 |
+
For adding novel benchmarks/datasets to the library:
|
48 |
+
* [x] Is the task an existing benchmark in the literature?
|
49 |
+
* [x] Have you referenced the original paper that introduced the task?
|
50 |
+
* [ ] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
|
51 |
+
|
52 |
+
|
53 |
+
If other tasks on this dataset are already supported:
|
54 |
+
* [ ] Is the "Main" variant of this task clearly denoted?
|
55 |
+
* [x] Have you provided a short sentence in a README on what each new variant adds / evaluates?
|
56 |
+
* [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
|
rag-evaluation-harness/lm_eval/tasks/anli/anli_r3.yaml
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: anli_r1.yaml
|
2 |
+
task: anli_r3
|
3 |
+
training_split: train_r3
|
4 |
+
validation_split: dev_r3
|
5 |
+
test_split: test_r3
|
rag-evaluation-harness/lm_eval/tasks/csatqa/_generate_configs.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Take in a YAML, and output all other splits with this YAML
|
3 |
+
"""
|
4 |
+
|
5 |
+
import argparse
|
6 |
+
import os
|
7 |
+
|
8 |
+
import yaml
|
9 |
+
from tqdm import tqdm
|
10 |
+
|
11 |
+
from lm_eval.logger import eval_logger
|
12 |
+
|
13 |
+
|
14 |
+
SUBSETS = ["WR", "GR", "RCS", "RCSS", "RCH", "LI"]
|
15 |
+
|
16 |
+
|
17 |
+
def parse_args():
|
18 |
+
parser = argparse.ArgumentParser()
|
19 |
+
parser.add_argument("--base_yaml_path", required=True)
|
20 |
+
parser.add_argument("--save_prefix_path", default="csatqa")
|
21 |
+
parser.add_argument("--task_prefix", default="")
|
22 |
+
return parser.parse_args()
|
23 |
+
|
24 |
+
|
25 |
+
if __name__ == "__main__":
|
26 |
+
args = parse_args()
|
27 |
+
|
28 |
+
# get filename of base_yaml so we can `"include": ` it in our other YAMLs.
|
29 |
+
base_yaml_name = os.path.split(args.base_yaml_path)[-1]
|
30 |
+
with open(args.base_yaml_path, encoding="utf-8") as f:
|
31 |
+
base_yaml = yaml.full_load(f)
|
32 |
+
|
33 |
+
for name in tqdm(SUBSETS):
|
34 |
+
yaml_dict = {
|
35 |
+
"include": base_yaml_name,
|
36 |
+
"task": f"csatqa_{args.task_prefix}_{name}"
|
37 |
+
if args.task_prefix != ""
|
38 |
+
else f"csatqa_{name.lower()}",
|
39 |
+
"dataset_name": name,
|
40 |
+
}
|
41 |
+
|
42 |
+
file_save_path = args.save_prefix_path + f"_{name.lower()}.yaml"
|
43 |
+
eval_logger.info(f"Saving yaml for subset {name} to {file_save_path}")
|
44 |
+
with open(file_save_path, "w", encoding="utf-8") as yaml_file:
|
45 |
+
yaml.dump(
|
46 |
+
yaml_dict,
|
47 |
+
yaml_file,
|
48 |
+
width=float("inf"),
|
49 |
+
allow_unicode=True,
|
50 |
+
default_style='"',
|
51 |
+
)
|
rag-evaluation-harness/lm_eval/tasks/csatqa/csatqa_gr.yaml
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
"dataset_name": "GR"
|
2 |
+
"include": "_default_csatqa_yaml"
|
3 |
+
"task": "csatqa_gr"
|
rag-evaluation-harness/lm_eval/tasks/csatqa/csatqa_rch.yaml
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
"dataset_name": "RCH"
|
2 |
+
"include": "_default_csatqa_yaml"
|
3 |
+
"task": "csatqa_rch"
|
rag-evaluation-harness/lm_eval/tasks/csatqa/csatqa_rcss.yaml
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
"dataset_name": "RCSS"
|
2 |
+
"include": "_default_csatqa_yaml"
|
3 |
+
"task": "csatqa_rcss"
|
rag-evaluation-harness/lm_eval/tasks/french_bench/_default_template_yaml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
test_split: test
|
2 |
+
fewshot_split: valid
|
3 |
+
fewshot_config:
|
4 |
+
sampler: first_n
|
rag-evaluation-harness/lm_eval/tasks/french_bench/french_bench_arc_challenge.yaml
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
group:
|
2 |
+
- french_bench
|
3 |
+
- french_bench_mc
|
4 |
+
task: french_bench_arc_challenge
|
5 |
+
dataset_path: manu/french_bench_arc_challenge
|
6 |
+
output_type: multiple_choice
|
7 |
+
training_split: train
|
8 |
+
validation_split: validation
|
9 |
+
test_split: test
|
10 |
+
doc_to_text: "Question: {{question}}\nRéponse:"
|
11 |
+
doc_to_target: "{{['A', 'B', 'C', 'D'].index(answerKey)}}"
|
12 |
+
doc_to_choice: "{{choices}}"
|
13 |
+
should_decontaminate: true
|
14 |
+
doc_to_decontamination_query: "Question: {{question}}\nRéponse:"
|
15 |
+
metric_list:
|
16 |
+
- metric: acc
|
17 |
+
aggregation: mean
|
18 |
+
higher_is_better: true
|
19 |
+
- metric: acc_norm
|
20 |
+
aggregation: mean
|
21 |
+
higher_is_better: true
|
rag-evaluation-harness/lm_eval/tasks/french_bench/french_bench_boolqa.yaml
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: "_default_template_yaml"
|
2 |
+
group:
|
3 |
+
- french_bench
|
4 |
+
- french_bench_extra
|
5 |
+
description: "D'après l'information dans le contexte donné, quelle est la réponse à la question ?"
|
6 |
+
task: french_bench_boolqa
|
7 |
+
dataset_path: manu/french_boolq
|
8 |
+
output_type: multiple_choice
|
9 |
+
validation_split: valid
|
10 |
+
doc_to_text: "\nContexte: {{passage}}\n\nQuestion: {{question}}\n"
|
11 |
+
doc_to_choice: ["Oui", "Non"]
|
12 |
+
# doc_to_text: "\nContexte: {{passage}}\n\nQuestion: {{question}}\n\nD'après l'information dans le contexte, la réponse est:\nA. Oui \nB. Non\n\nRéponse:"
|
13 |
+
# doc_to_choice: ["A", "B"]
|
14 |
+
doc_to_target: "{{[1, 0].index(label)}}"
|
15 |
+
should_decontaminate: true
|
16 |
+
doc_to_decontamination_query: passage
|
17 |
+
metric_list:
|
18 |
+
- metric: acc
|
19 |
+
aggregation: mean
|
20 |
+
higher_is_better: true
|
21 |
+
- metric: acc_norm
|
22 |
+
aggregation: mean
|
23 |
+
higher_is_better: true
|
rag-evaluation-harness/lm_eval/tasks/french_bench/french_bench_fquadv2_genq.yaml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: "_default_template_yaml"
|
2 |
+
group:
|
3 |
+
- french_bench
|
4 |
+
- french_bench_gen
|
5 |
+
description: "D'après l'information dans le contexte donné, quelle question a été posée pour obtenir la réponse donnée ?"
|
6 |
+
task: french_bench_fquadv2_genq
|
7 |
+
dataset_path: manu/fquad2_test
|
8 |
+
output_type: generate_until
|
9 |
+
validation_split: valid_hasAns
|
10 |
+
test_split: test_hasAns
|
11 |
+
fewshot_split: valid_hasAns
|
12 |
+
doc_to_text: "\nContexte: {{context}}\n\nRéponse: {% if answers.text| length > 0 %}{{answers.text[0]}}{% else %}{{['Impossible']}}{% endif %}\n\nQuestion:"
|
13 |
+
doc_to_target: "{{question}}"
|
14 |
+
target_delimiter: " "
|
15 |
+
should_decontaminate: true
|
16 |
+
doc_to_decontamination_query: question
|
17 |
+
generation_kwargs:
|
18 |
+
until:
|
19 |
+
- "\n"
|
20 |
+
# filter_list:
|
21 |
+
# - name: remove_whitespace
|
22 |
+
# filter:
|
23 |
+
# - function: remove_whitespace
|
24 |
+
# - function: take_first
|
25 |
+
metric_list:
|
26 |
+
- metric: !function utils.rouge1
|
27 |
+
higher_is_better: true
|
28 |
+
aggregation: !function utils.rouge1_agg
|
29 |
+
- metric: !function utils.f1
|
30 |
+
aggregation: mean
|
31 |
+
higher_is_better: true
|
rag-evaluation-harness/lm_eval/tasks/french_bench/french_bench_hellaswag.yaml
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
group:
|
2 |
+
- french_bench
|
3 |
+
- french_bench_mc
|
4 |
+
task: french_bench_hellaswag
|
5 |
+
dataset_path: manu/french_bench_hellaswag
|
6 |
+
output_type: multiple_choice
|
7 |
+
training_split: validation
|
8 |
+
validation_split: validation
|
9 |
+
test_split: null
|
10 |
+
process_docs: !function utils.process_docs
|
11 |
+
doc_to_text: "{{query}}"
|
12 |
+
doc_to_target: "{{label}}"
|
13 |
+
doc_to_choice: "{{choices}}"
|
14 |
+
metric_list:
|
15 |
+
- metric: acc
|
16 |
+
aggregation: mean
|
17 |
+
higher_is_better: true
|
18 |
+
- metric: acc_norm
|
19 |
+
aggregation: mean
|
20 |
+
higher_is_better: true
|
rag-evaluation-harness/lm_eval/tasks/french_bench/french_bench_opus_perplexity.yaml
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
group:
|
2 |
+
- french_bench_perplexity
|
3 |
+
task: french_bench_opus_perplexity
|
4 |
+
dataset_path: manu/opus100-en-fr
|
5 |
+
output_type: loglikelihood_rolling
|
6 |
+
test_split: test
|
7 |
+
fewshot_split: validation
|
8 |
+
validation_split: validation
|
9 |
+
num_fewshot: 0
|
10 |
+
doc_to_text: ""
|
11 |
+
doc_to_target: "{{text}}"
|
12 |
+
should_decontaminate: true
|
13 |
+
doc_to_decontamination_query: "{{text}}"
|
14 |
+
metric_list:
|
15 |
+
- metric: word_perplexity
|
16 |
+
aggregation: weighted_perplexity
|
17 |
+
higher_is_better: false
|
18 |
+
- metric: byte_perplexity
|
19 |
+
aggregation: weighted_perplexity
|
20 |
+
higher_is_better: false
|
21 |
+
- metric: bits_per_byte
|
22 |
+
aggregation: bits_per_byte
|
23 |
+
higher_is_better: false
|
rag-evaluation-harness/lm_eval/tasks/french_bench/french_bench_orangesum_title.yaml
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: "_default_template_yaml"
|
2 |
+
group:
|
3 |
+
- french_bench
|
4 |
+
- french_bench_extra
|
5 |
+
description: "Trouve le titre de l'article."
|
6 |
+
task: french_bench_orangesum_title
|
7 |
+
dataset_path: orange_sum
|
8 |
+
dataset_name: title
|
9 |
+
output_type: generate_until
|
10 |
+
validation_split: validation
|
11 |
+
fewshot_split: validation
|
12 |
+
doc_to_text: "\nArticle: {{text}}\n\nTitre:"
|
13 |
+
doc_to_target: "{{summary}}"
|
14 |
+
target_delimiter: " "
|
15 |
+
should_decontaminate: true
|
16 |
+
doc_to_decontamination_query: summary
|
17 |
+
generation_kwargs:
|
18 |
+
until:
|
19 |
+
- "\n"
|
20 |
+
# filter_list:
|
21 |
+
# - name: remove_whitespace
|
22 |
+
# filter:
|
23 |
+
# - function: remove_whitespace
|
24 |
+
# - function: take_first
|
25 |
+
metric_list:
|
26 |
+
- metric: !function utils.rouge1
|
27 |
+
higher_is_better: true
|
28 |
+
aggregation: !function utils.rouge1_agg
|
rag-evaluation-harness/lm_eval/tasks/french_bench/french_bench_wikitext_fr.yaml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
group:
|
2 |
+
- french_bench_perplexity
|
3 |
+
task: french_bench_wikitext_fr
|
4 |
+
dataset_path: asi/wikitext_fr
|
5 |
+
dataset_name: wikitext-35
|
6 |
+
output_type: loglikelihood_rolling
|
7 |
+
training_split: train
|
8 |
+
validation_split: validation
|
9 |
+
test_split: test
|
10 |
+
num_fewshot: 0
|
11 |
+
doc_to_text: ""
|
12 |
+
doc_to_target: !function preprocess_wikitext.wikitext_detokenizer
|
13 |
+
process_results: !function preprocess_wikitext.process_results
|
14 |
+
should_decontaminate: true
|
15 |
+
doc_to_decontamination_query: "{{paragraph}}"
|
16 |
+
metric_list:
|
17 |
+
- metric: word_perplexity
|
18 |
+
aggregation: weighted_perplexity
|
19 |
+
higher_is_better: false
|
20 |
+
- metric: byte_perplexity
|
21 |
+
aggregation: weighted_perplexity
|
22 |
+
higher_is_better: false
|
23 |
+
- metric: bits_per_byte
|
24 |
+
aggregation: bits_per_byte
|
25 |
+
higher_is_better: false
|
rag-evaluation-harness/lm_eval/tasks/french_bench/preprocess_wikitext.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
|
3 |
+
|
4 |
+
def wikitext_detokenizer(doc):
|
5 |
+
string = doc["paragraph"]
|
6 |
+
# contractions
|
7 |
+
string = string.replace("s '", "s'")
|
8 |
+
string = re.sub(r"/' [0-9]/", r"/'[0-9]/", string)
|
9 |
+
# number separators
|
10 |
+
string = string.replace(" @-@ ", "-")
|
11 |
+
string = string.replace(" @,@ ", ",")
|
12 |
+
string = string.replace(" @.@ ", ".")
|
13 |
+
# punctuation
|
14 |
+
string = string.replace(" : ", ": ")
|
15 |
+
string = string.replace(" ; ", "; ")
|
16 |
+
string = string.replace(" . ", ". ")
|
17 |
+
string = string.replace(" ! ", "! ")
|
18 |
+
string = string.replace(" ? ", "? ")
|
19 |
+
string = string.replace(" , ", ", ")
|
20 |
+
# double brackets
|
21 |
+
string = re.sub(r"\(\s*([^\)]*?)\s*\)", r"(\1)", string)
|
22 |
+
string = re.sub(r"\[\s*([^\]]*?)\s*\]", r"[\1]", string)
|
23 |
+
string = re.sub(r"{\s*([^}]*?)\s*}", r"{\1}", string)
|
24 |
+
string = re.sub(r"\"\s*([^\"]*?)\s*\"", r'"\1"', string)
|
25 |
+
string = re.sub(r"'\s*([^']*?)\s*'", r"'\1'", string)
|
26 |
+
# miscellaneous
|
27 |
+
string = string.replace("= = = =", "====")
|
28 |
+
string = string.replace("= = =", "===")
|
29 |
+
string = string.replace("= =", "==")
|
30 |
+
string = string.replace(" " + chr(176) + " ", chr(176))
|
31 |
+
string = string.replace(" \n", "\n")
|
32 |
+
string = string.replace("\n ", "\n")
|
33 |
+
string = string.replace(" N ", " 1 ")
|
34 |
+
string = string.replace(" 's", "'s")
|
35 |
+
|
36 |
+
return string
|
37 |
+
|
38 |
+
|
39 |
+
def process_results(doc, results):
|
40 |
+
(loglikelihood,) = results
|
41 |
+
# IMPORTANT: wikitext counts number of words in *original doc before detokenization*
|
42 |
+
_words = len(re.split(r"\s+", doc["paragraph"]))
|
43 |
+
_bytes = len(doc["paragraph"].encode("utf-8"))
|
44 |
+
return {
|
45 |
+
"word_perplexity": (loglikelihood, _words),
|
46 |
+
"byte_perplexity": (loglikelihood, _bytes),
|
47 |
+
"bits_per_byte": (loglikelihood, _bytes),
|
48 |
+
}
|
rag-evaluation-harness/lm_eval/tasks/french_bench/utils.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
import re
|
3 |
+
import string
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
import evaluate
|
7 |
+
|
8 |
+
|
9 |
+
def normalize_answer(s):
|
10 |
+
"""Lower text and remove punctuation, articles and extra whitespace."""
|
11 |
+
|
12 |
+
def remove_articles(text):
|
13 |
+
regex = re.compile(r"\b(un|une|des|le|la|les)\b", re.UNICODE)
|
14 |
+
return re.sub(regex, " ", text)
|
15 |
+
|
16 |
+
def white_space_fix(text):
|
17 |
+
return " ".join(text.split())
|
18 |
+
|
19 |
+
def remove_punc(text):
|
20 |
+
exclude = set(string.punctuation)
|
21 |
+
return "".join(ch for ch in text if ch not in exclude)
|
22 |
+
|
23 |
+
def lower(text):
|
24 |
+
return text.lower()
|
25 |
+
|
26 |
+
return white_space_fix(remove_articles(remove_punc(lower(s))))
|
27 |
+
|
28 |
+
|
29 |
+
def get_tokens(s):
|
30 |
+
if not s:
|
31 |
+
return []
|
32 |
+
return normalize_answer(s).split()
|
33 |
+
|
34 |
+
|
35 |
+
# Exact match (the normalized answer exactly match the gold answer)
|
36 |
+
def exact(predictions, references):
|
37 |
+
return int(normalize_answer(references[0]) == normalize_answer(predictions[0]))
|
38 |
+
|
39 |
+
|
40 |
+
# The F-score of predicted tokens versus the gold answer
|
41 |
+
def f1(predictions, references):
|
42 |
+
gold_toks = get_tokens(references[0])
|
43 |
+
pred_toks = get_tokens(predictions[0])
|
44 |
+
common = collections.Counter(gold_toks) & collections.Counter(pred_toks)
|
45 |
+
num_same = sum(common.values())
|
46 |
+
if len(gold_toks) == 0 or len(pred_toks) == 0:
|
47 |
+
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
|
48 |
+
return int(gold_toks == pred_toks)
|
49 |
+
if num_same == 0:
|
50 |
+
return 0
|
51 |
+
precision = 1.0 * num_same / len(pred_toks)
|
52 |
+
recall = 1.0 * num_same / len(gold_toks)
|
53 |
+
f1 = (2 * precision * recall) / (precision + recall)
|
54 |
+
return f1
|
55 |
+
|
56 |
+
|
57 |
+
def rouge1(items):
|
58 |
+
"""
|
59 |
+
# passthrough for efficiency
|
60 |
+
"""
|
61 |
+
return items
|
62 |
+
|
63 |
+
|
64 |
+
def rouge1_agg(items):
|
65 |
+
"""
|
66 |
+
Higher is better
|
67 |
+
"""
|
68 |
+
refs = list(zip(*items))[0]
|
69 |
+
preds = list(zip(*items))[1]
|
70 |
+
rouge_scorer = evaluate.load("rouge")
|
71 |
+
return rouge_scorer.compute(predictions=preds, references=refs)["rouge1"]
|
72 |
+
|
73 |
+
|
74 |
+
def is_included(items):
|
75 |
+
"""
|
76 |
+
# passthrough for efficiency
|
77 |
+
"""
|
78 |
+
if items[0] in items[1]:
|
79 |
+
return True
|
80 |
+
return False
|
81 |
+
|
82 |
+
|
83 |
+
def preprocess(text):
|
84 |
+
text = text.strip()
|
85 |
+
# NOTE: Brackets are artifacts of the WikiHow dataset portion of HellaSwag.
|
86 |
+
text = text.replace(" [title]", ". ")
|
87 |
+
text = re.sub("\\[.*?\\]", "", text)
|
88 |
+
text = text.replace(" ", " ")
|
89 |
+
return text
|
90 |
+
|
91 |
+
|
92 |
+
def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:
|
93 |
+
def _process_doc(doc):
|
94 |
+
ctx = doc["ctx_a"] + " " + doc["ctx_b"].capitalize()
|
95 |
+
out_doc = {
|
96 |
+
"query": preprocess(doc["activity_label"] + ": " + ctx),
|
97 |
+
"choices": [preprocess(ending) for ending in doc["endings"]],
|
98 |
+
"gold": int(doc["label"]),
|
99 |
+
}
|
100 |
+
return out_doc
|
101 |
+
|
102 |
+
return dataset.map(_process_doc)
|
rag-evaluation-harness/lm_eval/tasks/kobest/README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# LAMBADA
|
2 |
+
|
3 |
+
### Paper
|
4 |
+
Title: `KOBEST: Korean Balanced Evaluation of Significant Tasks`
|
5 |
+
|
6 |
+
Abstract: https://arxiv.org/abs/2204.04541
|
7 |
+
|
8 |
+
A well-formulated benchmark plays a critical role in spurring advancements in the natural language processing (NLP) field, as it allows objective and precise evaluation of diverse models. As modern language models (LMs) have become more elaborate and sophisticated, more difficult benchmarks that require linguistic knowledge and reasoning have been proposed. However, most of these benchmarks only support English, and great effort is necessary to construct benchmarks for other low resource languages. To this end, we propose a new benchmark named Korean balanced evaluation of significant tasks (KoBEST), which consists of five Korean-language downstream tasks. Professional Korean linguists designed the tasks that require advanced Korean linguistic knowledge. Moreover, our data is purely annotated by humans and thoroughly reviewed to guarantee high data quality. We also provide baseline models and human performance results. Our dataset is available on the Huggingface.
|
9 |
+
|
10 |
+
|
11 |
+
Homepage: https://huggingface.co/datasets/skt/kobest_v1
|
12 |
+
|
13 |
+
### Groups and Tasks
|
14 |
+
|
15 |
+
#### Groups
|
16 |
+
|
17 |
+
- `kobest`
|
18 |
+
|
19 |
+
#### Tasks
|
20 |
+
|
21 |
+
- `kobest_boolq`
|
22 |
+
- `kobest_copa`
|
23 |
+
- `kobest_hallawag`
|
24 |
+
- `kobest_sentineg`
|
25 |
+
- `kobest_wic`
|
26 |
+
|
27 |
+
|
28 |
+
### Citation
|
29 |
+
|
30 |
+
@misc{
|
31 |
+
author={Dohyeong Kim, Myeongjun Jang, Deuk Sin Kwon, Eric Davis},
|
32 |
+
title={KOBEST: Korean Balanced Evaluation of Significant Tasks},
|
33 |
+
DOI={https://doi.org/10.48550/arXiv.2204.04541},
|
34 |
+
publisher={arXiv},
|
35 |
+
year={2022},
|
36 |
+
month={Apr}
|
37 |
+
}
|
rag-evaluation-harness/lm_eval/tasks/kobest/kobest_boolq.yaml
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
group:
|
2 |
+
- kobest
|
3 |
+
task: kobest_boolq
|
4 |
+
dataset_path: skt/kobest_v1
|
5 |
+
dataset_name: boolq
|
6 |
+
output_type: multiple_choice
|
7 |
+
training_split: train
|
8 |
+
validation_split: validation
|
9 |
+
test_split: test
|
10 |
+
doc_to_text: "{{paragraph}} 질문: {{question}} 답변: "
|
11 |
+
doc_to_target: "{{label}}"
|
12 |
+
doc_to_choice: ["아니오", "예"]
|
13 |
+
metric_list:
|
14 |
+
- metric: acc
|
15 |
+
aggregation: mean
|
16 |
+
higher_is_better: True
|
17 |
+
- metric: f1
|
18 |
+
aggregation: !function utils.macro_f1_score
|
19 |
+
average: macro
|
20 |
+
hf_evaluate: true
|
21 |
+
higher_is_better: True
|
22 |
+
metadata:
|
23 |
+
version: 1.0
|
rag-evaluation-harness/lm_eval/tasks/kobest/utils.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import Dataset
|
2 |
+
from sklearn.metrics import f1_score
|
3 |
+
|
4 |
+
|
5 |
+
def copa_doc_to_text(doc: dict) -> str:
|
6 |
+
connector = {"원인": " 왜냐하면", "결과": " 그래서"}[doc["question"].strip()]
|
7 |
+
return f"""{doc["premise"]} {connector}"""
|
8 |
+
|
9 |
+
|
10 |
+
def copa_doc_to_target(doc: dict) -> str:
|
11 |
+
correct_choice = doc["alternative_1"] if doc["label"] == 0 else doc["alternative_2"]
|
12 |
+
return f"""{correct_choice}"""
|
13 |
+
|
14 |
+
|
15 |
+
def copa_doc_to_choice(doc: dict) -> list:
|
16 |
+
return [f"""{doc["alternative_1"]}""", f"""{doc["alternative_2"]}"""]
|
17 |
+
|
18 |
+
|
19 |
+
def sentineg_doc_to_text(doc: dict):
|
20 |
+
return f"""문장: {doc["sentence"]} 긍부정:"""
|
21 |
+
|
22 |
+
|
23 |
+
def wic_doc_to_text(doc: dict) -> str:
|
24 |
+
return f"""문장1: {doc["context_1"]} 문장2: {doc["context_2"]} 두 문장에서 {doc["word"]}가 같은 뜻으로 쓰였나?"""
|
25 |
+
|
26 |
+
|
27 |
+
def hellaswag_process_doc(doc: Dataset) -> Dataset:
|
28 |
+
def preprocessor(dataset):
|
29 |
+
return {
|
30 |
+
"query": f"""문장: {dataset["context"]}""",
|
31 |
+
"choices": [
|
32 |
+
dataset["ending_1"],
|
33 |
+
dataset["ending_2"],
|
34 |
+
dataset["ending_3"],
|
35 |
+
dataset["ending_4"],
|
36 |
+
],
|
37 |
+
"gold": int(dataset["label"]),
|
38 |
+
}
|
39 |
+
|
40 |
+
return doc.map(preprocessor)
|
41 |
+
|
42 |
+
|
43 |
+
def macro_f1_score(items):
|
44 |
+
unzipped_list = list(zip(*items))
|
45 |
+
golds = unzipped_list[0]
|
46 |
+
preds = unzipped_list[1]
|
47 |
+
fscore = f1_score(golds, preds, average="macro")
|
48 |
+
return fscore
|
rag-evaluation-harness/lm_eval/tasks/okapi/arc_multilingual/arc_ar.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: _arc_yaml
|
2 |
+
task: arc_ar
|
3 |
+
dataset_path: alexandrainst/m_arc
|
4 |
+
dataset_name: ar
|
5 |
+
training_split: train
|
6 |
+
validation_split: validation
|
7 |
+
test_split: test
|
rag-evaluation-harness/lm_eval/tasks/okapi/arc_multilingual/arc_nl.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: _arc_yaml
|
2 |
+
task: arc_nl
|
3 |
+
dataset_path: alexandrainst/m_arc
|
4 |
+
dataset_name: nl
|
5 |
+
training_split: train
|
6 |
+
validation_split: validation
|
7 |
+
test_split: test
|
rag-evaluation-harness/lm_eval/tasks/okapi/hellaswag_multilingual/README.md
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Multilingual HellaSwag
|
2 |
+
|
3 |
+
### Paper
|
4 |
+
|
5 |
+
Title: `Okapi: Instruction-tuned Large Language Models in Multiple Languages with Reinforcement Learning from Human Feedback`
|
6 |
+
|
7 |
+
Abstract: https://arxiv.org/abs/2307.16039
|
8 |
+
|
9 |
+
A key technology for the development of large language models (LLMs) involves instruction tuning that helps align the models' responses with human expectations to realize impressive learning abilities. Two major approaches for instruction tuning characterize supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF), which are currently applied to produce the best commercial LLMs (e.g., ChatGPT). To improve the accessibility of LLMs for research and development efforts, various instruction-tuned open-source LLMs have also been introduced recently, e.g., Alpaca, Vicuna, to name a few. However, existing open-source LLMs have only been instruction-tuned for English and a few popular languages, thus hindering their impacts and accessibility to many other languages in the world. Among a few very recent work to explore instruction tuning for LLMs in multiple languages, SFT has been used as the only approach to instruction-tune LLMs for multiple languages. This has left a significant gap for fine-tuned LLMs based on RLHF in diverse languages and raised important questions on how RLHF can boost the performance of multilingual instruction tuning. To overcome this issue, we present Okapi, the first system with instruction-tuned LLMs based on RLHF for multiple languages. Okapi introduces instruction and response-ranked data in 26 diverse languages to facilitate the experiments and development of future multilingual LLM research. We also present benchmark datasets to enable the evaluation of generative LLMs in multiple languages. Our experiments demonstrate the advantages of RLHF for multilingual instruction over SFT for different base models and datasets. Our framework and resources are released at this https URL.
|
10 |
+
|
11 |
+
Homepage: `https://github.com/nlp-uoregon/Okapi`
|
12 |
+
|
13 |
+
|
14 |
+
### Citation
|
15 |
+
|
16 |
+
```
|
17 |
+
@article{dac2023okapi,
|
18 |
+
title={Okapi: Instruction-tuned Large Language Models in Multiple Languages with Reinforcement Learning from Human Feedback},
|
19 |
+
author={Dac Lai, Viet and Van Nguyen, Chien and Ngo, Nghia Trung and Nguyen, Thuat and Dernoncourt, Franck and Rossi, Ryan A and Nguyen, Thien Huu},
|
20 |
+
journal={arXiv e-prints},
|
21 |
+
pages={arXiv--2307},
|
22 |
+
year={2023}
|
23 |
+
}
|
24 |
+
```
|
25 |
+
|
26 |
+
### Groups and Tasks
|
27 |
+
|
28 |
+
#### Groups
|
29 |
+
|
30 |
+
- hellaswag_multilingual
|
31 |
+
|
32 |
+
#### Tasks
|
33 |
+
|
34 |
+
- `hellaswag_{ar,bn,ca,da,de,es,eu,fr,gu,hi,hr,hu,hy,id,it,kn,ml,mr,ne,nl,pt,ro,ru,sk,sr,sv,ta,te,uk,vi}`
|
35 |
+
|
36 |
+
|
37 |
+
### Checklist
|
38 |
+
|
39 |
+
For adding novel benchmarks/datasets to the library:
|
40 |
+
* [x] Is the task an existing benchmark in the literature?
|
41 |
+
* [x] Have you referenced the original paper that introduced the task?
|
42 |
+
* [x] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
|
43 |
+
|
44 |
+
|
45 |
+
If other tasks on this dataset are already supported:
|
46 |
+
* [ ] Is the "Main" variant of this task clearly denoted?
|
47 |
+
* [ ] Have you provided a short sentence in a README on what each new variant adds / evaluates?
|
48 |
+
* [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
|