Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- recall_acc_results/_a/nprobe_vs_metrics_nlist8192.png +3 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/test/unit/gemm/device/gemm_f16n_f16n_f16t_tensor_op_f32_sm75.cu +307 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/test/unit/gemm/device/gemm_f16t_f16n_f16t_tensor_op_f16_slicedk_sm75.cu +88 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/test/unit/gemm/device/gemm_universal_s8t_f16n_f32t_mixed_input_tensor_op_f32_sm80.cu +97 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/test/unit/gemm/device/hemm_cf32h_cf32n_tensor_op_fast_f32_ls_sm80.cu +175 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/test/unit/gemm/device/herk_cf64h_cf64n_tensor_op_f64_sm80.cu +175 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/test/unit/gemm/device/sm90_gemm_f16_f16_f16_tensor_op_f32_cluster_warpspecialized_cooperative_dag.cu +170 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/test/unit/gemm/device/sm90_gemm_tf32_tf32_f32_alignx_tensor_op_f32_warpspecialized.cu +167 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/test/unit/gemm/device/syr2k_cf64t_cf64n_tensor_op_f64_grouped_sm80.cu +168 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/test/unit/gemm/device/trmm_f64_f64_f64_tensor_op_f64_sm90.cu +126 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/test/unit/gemm/device/trmm_f64n_f64n_f64t_tensor_op_f64_ls_sm80.cu +414 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/test/unit/gemm/threadblock/mma_multistage_sparse_testbed.h +435 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/test/unit/gemm/threadblock/mma_pipelined_sm75.cu +2128 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/conv3d_operation_profiler.h +449 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/cublas_helpers.h +456 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/cudnn_helpers.h +590 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/cutlass_profiler.h +93 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/debug.h +56 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/device_context.h +136 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/enumerated_types.h +169 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/gemm_operation_profiler.h +268 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/gpu_timer.h +72 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/options.h +345 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/performance_report.h +127 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/performance_result.h +128 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/rank_2k_operation_profiler.h +229 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/rank_k_operation_profiler.h +227 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/sparse_gemm_operation_profiler.h +214 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/trmm_operation_profiler.h +222 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/conv2d_operation_profiler.cu +1510 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/cudnn_helpers.cpp +496 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/cutlass_profiler.cu +214 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/device_allocation.cu +2483 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/device_context.cu +245 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/enumerated_types.cpp +275 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/gemm_operation_profiler.cu +1298 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/gpu_timer.cpp +113 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/options.cu +899 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/performance_report.cpp +505 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/performance_result.cu +61 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/problem_space.cpp +1263 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/rank_2k_operation_profiler.cu +752 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/rank_k_operation_profiler.cu +737 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/sparse_gemm_operation_profiler.cu +598 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/symm_operation_profiler.cu +790 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/trmm_operation_profiler.cu +728 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/util/include/cutlass/util/GPU_Clock.hpp +67 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/util/include/cutlass/util/command_line.h +313 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/util/include/cutlass/util/cublas_wrappers.hpp +526 -0
- sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/util/include/cutlass/util/debug.h +143 -0
recall_acc_results/_a/nprobe_vs_metrics_nlist8192.png
ADDED
![]() |
Git LFS Details
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/test/unit/gemm/device/gemm_f16n_f16n_f16t_tensor_op_f32_sm75.cu
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/*! \file
|
32 |
+
\brief Tests for device-wide GEMM interface
|
33 |
+
*/
|
34 |
+
|
35 |
+
#include <iostream>
|
36 |
+
|
37 |
+
#include "cutlass/cutlass.h"
|
38 |
+
#include "cutlass/gemm/device/gemm.h"
|
39 |
+
|
40 |
+
#include "../../common/cutlass_unit_test.h"
|
41 |
+
|
42 |
+
#include "cutlass/util/host_tensor.h"
|
43 |
+
#include "cutlass/util/tensor_view_io.h"
|
44 |
+
#include "cutlass/util/reference/host/tensor_fill.h"
|
45 |
+
#include "cutlass/util/reference/host/tensor_copy.h"
|
46 |
+
#include "cutlass/util/reference/host/tensor_compare.h"
|
47 |
+
#include "cutlass/util/reference/host/gemm.h"
|
48 |
+
|
49 |
+
#include "testbed.h"
|
50 |
+
|
51 |
+
#if defined(CUTLASS_ARCH_MMA_SM75_SUPPORTED)
|
52 |
+
|
53 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
54 |
+
|
55 |
+
TEST(SM75_Device_Gemm_f16n_f16n_f16t_tensor_op_f32, 128x256x32_64x64x32) {
|
56 |
+
|
57 |
+
using ElementOutput = cutlass::half_t;
|
58 |
+
using ElementAccumulator = float;
|
59 |
+
|
60 |
+
using Gemm = cutlass::gemm::device::Gemm<
|
61 |
+
cutlass::half_t,
|
62 |
+
cutlass::layout::ColumnMajor,
|
63 |
+
cutlass::half_t,
|
64 |
+
cutlass::layout::ColumnMajor,
|
65 |
+
ElementOutput,
|
66 |
+
cutlass::layout::RowMajor,
|
67 |
+
ElementAccumulator,
|
68 |
+
cutlass::arch::OpClassTensorOp,
|
69 |
+
cutlass::arch::Sm75,
|
70 |
+
cutlass::gemm::GemmShape<128, 256, 32>,
|
71 |
+
cutlass::gemm::GemmShape<64, 64, 32>,
|
72 |
+
cutlass::gemm::GemmShape<16, 8, 8>,
|
73 |
+
cutlass::epilogue::thread::LinearCombination<
|
74 |
+
ElementOutput,
|
75 |
+
128 / cutlass::sizeof_bits<ElementOutput>::value,
|
76 |
+
ElementAccumulator,
|
77 |
+
ElementAccumulator
|
78 |
+
>,
|
79 |
+
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
80 |
+
2
|
81 |
+
>;
|
82 |
+
|
83 |
+
EXPECT_TRUE(test::gemm::device::TestAllGemm<Gemm>());
|
84 |
+
}
|
85 |
+
|
86 |
+
TEST(SM75_Device_Gemm_f16n_f16n_f16t_tensor_op_f32, 128x256x32_64x64x32_brief) {
|
87 |
+
|
88 |
+
using ElementOutput = cutlass::half_t;
|
89 |
+
using ElementAccumulator = float;
|
90 |
+
|
91 |
+
using Gemm = cutlass::gemm::device::Gemm<
|
92 |
+
cutlass::half_t,
|
93 |
+
cutlass::layout::ColumnMajor,
|
94 |
+
cutlass::half_t,
|
95 |
+
cutlass::layout::ColumnMajor,
|
96 |
+
ElementOutput,
|
97 |
+
cutlass::layout::RowMajor,
|
98 |
+
ElementAccumulator,
|
99 |
+
cutlass::arch::OpClassTensorOp,
|
100 |
+
cutlass::arch::Sm75,
|
101 |
+
cutlass::gemm::GemmShape<128, 256, 32>
|
102 |
+
>;
|
103 |
+
|
104 |
+
EXPECT_TRUE(test::gemm::device::TestAllGemm<Gemm>());
|
105 |
+
}
|
106 |
+
|
107 |
+
TEST(SM75_Device_Gemm_f16n_f16n_f16t_tensor_op_f32, 256x128x32_64x64x32) {
|
108 |
+
|
109 |
+
using ElementOutput = cutlass::half_t;
|
110 |
+
using ElementAccumulator = float;
|
111 |
+
|
112 |
+
using Gemm = cutlass::gemm::device::Gemm<
|
113 |
+
cutlass::half_t,
|
114 |
+
cutlass::layout::ColumnMajor,
|
115 |
+
cutlass::half_t,
|
116 |
+
cutlass::layout::ColumnMajor,
|
117 |
+
ElementOutput,
|
118 |
+
cutlass::layout::RowMajor,
|
119 |
+
ElementAccumulator,
|
120 |
+
cutlass::arch::OpClassTensorOp,
|
121 |
+
cutlass::arch::Sm75,
|
122 |
+
cutlass::gemm::GemmShape<256, 128, 32>,
|
123 |
+
cutlass::gemm::GemmShape<64, 64, 32>,
|
124 |
+
cutlass::gemm::GemmShape<16, 8, 8>,
|
125 |
+
cutlass::epilogue::thread::LinearCombination<
|
126 |
+
ElementOutput,
|
127 |
+
128 / cutlass::sizeof_bits<ElementOutput>::value,
|
128 |
+
ElementAccumulator,
|
129 |
+
ElementAccumulator
|
130 |
+
>,
|
131 |
+
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
132 |
+
2
|
133 |
+
>;
|
134 |
+
|
135 |
+
EXPECT_TRUE(test::gemm::device::TestAllGemm<Gemm>());
|
136 |
+
}
|
137 |
+
|
138 |
+
TEST(SM75_Device_Gemm_f16n_f16n_f16t_tensor_op_f32, 128x128x32_64x64x32) {
|
139 |
+
|
140 |
+
using ElementOutput = cutlass::half_t;
|
141 |
+
using ElementAccumulator = float;
|
142 |
+
|
143 |
+
using Gemm = cutlass::gemm::device::Gemm<
|
144 |
+
cutlass::half_t,
|
145 |
+
cutlass::layout::ColumnMajor,
|
146 |
+
cutlass::half_t,
|
147 |
+
cutlass::layout::ColumnMajor,
|
148 |
+
ElementOutput,
|
149 |
+
cutlass::layout::RowMajor,
|
150 |
+
ElementAccumulator,
|
151 |
+
cutlass::arch::OpClassTensorOp,
|
152 |
+
cutlass::arch::Sm75,
|
153 |
+
cutlass::gemm::GemmShape<128, 128, 32>,
|
154 |
+
cutlass::gemm::GemmShape<64, 64, 32>,
|
155 |
+
cutlass::gemm::GemmShape<16, 8, 8>,
|
156 |
+
cutlass::epilogue::thread::LinearCombination<
|
157 |
+
ElementOutput,
|
158 |
+
128 / cutlass::sizeof_bits<ElementOutput>::value,
|
159 |
+
ElementAccumulator,
|
160 |
+
ElementAccumulator
|
161 |
+
>,
|
162 |
+
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
163 |
+
2
|
164 |
+
>;
|
165 |
+
|
166 |
+
EXPECT_TRUE(test::gemm::device::TestAllGemm<Gemm>());
|
167 |
+
}
|
168 |
+
|
169 |
+
TEST(SM75_Device_Gemm_f16n_f16n_f16t_tensor_op_f32, 128x128x32_64x64x32_brief) {
|
170 |
+
|
171 |
+
using ElementOutput = cutlass::half_t;
|
172 |
+
using ElementAccumulator = float;
|
173 |
+
|
174 |
+
using Gemm = cutlass::gemm::device::Gemm<
|
175 |
+
cutlass::half_t,
|
176 |
+
cutlass::layout::ColumnMajor,
|
177 |
+
cutlass::half_t,
|
178 |
+
cutlass::layout::ColumnMajor,
|
179 |
+
ElementOutput,
|
180 |
+
cutlass::layout::RowMajor,
|
181 |
+
ElementAccumulator,
|
182 |
+
cutlass::arch::OpClassTensorOp,
|
183 |
+
cutlass::arch::Sm75,
|
184 |
+
cutlass::gemm::GemmShape<128, 128, 32>
|
185 |
+
>;
|
186 |
+
|
187 |
+
EXPECT_TRUE(test::gemm::device::TestAllGemm<Gemm>());
|
188 |
+
}
|
189 |
+
|
190 |
+
TEST(SM75_Device_Gemm_f16n_f16n_f16t_tensor_op_f32, 64x128x32_32x64x32) {
|
191 |
+
|
192 |
+
using ElementOutput = cutlass::half_t;
|
193 |
+
using ElementAccumulator = float;
|
194 |
+
|
195 |
+
using Gemm = cutlass::gemm::device::Gemm<
|
196 |
+
cutlass::half_t,
|
197 |
+
cutlass::layout::ColumnMajor,
|
198 |
+
cutlass::half_t,
|
199 |
+
cutlass::layout::ColumnMajor,
|
200 |
+
ElementOutput,
|
201 |
+
cutlass::layout::RowMajor,
|
202 |
+
ElementAccumulator,
|
203 |
+
cutlass::arch::OpClassTensorOp,
|
204 |
+
cutlass::arch::Sm75,
|
205 |
+
cutlass::gemm::GemmShape<64, 128, 32>,
|
206 |
+
cutlass::gemm::GemmShape<32, 64, 32>,
|
207 |
+
cutlass::gemm::GemmShape<16, 8, 8>,
|
208 |
+
cutlass::epilogue::thread::LinearCombination<
|
209 |
+
ElementOutput,
|
210 |
+
128 / cutlass::sizeof_bits<ElementOutput>::value,
|
211 |
+
ElementAccumulator,
|
212 |
+
ElementAccumulator
|
213 |
+
>,
|
214 |
+
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
215 |
+
2
|
216 |
+
>;
|
217 |
+
|
218 |
+
EXPECT_TRUE(test::gemm::device::TestAllGemm<Gemm>());
|
219 |
+
}
|
220 |
+
|
221 |
+
TEST(SM75_Device_Gemm_f16n_f16n_f16t_tensor_op_f32, 64x128x32_32x64x32_brief) {
|
222 |
+
|
223 |
+
using ElementOutput = cutlass::half_t;
|
224 |
+
using ElementAccumulator = float;
|
225 |
+
|
226 |
+
using Gemm = cutlass::gemm::device::Gemm<
|
227 |
+
cutlass::half_t,
|
228 |
+
cutlass::layout::ColumnMajor,
|
229 |
+
cutlass::half_t,
|
230 |
+
cutlass::layout::ColumnMajor,
|
231 |
+
ElementOutput,
|
232 |
+
cutlass::layout::RowMajor,
|
233 |
+
ElementAccumulator,
|
234 |
+
cutlass::arch::OpClassTensorOp,
|
235 |
+
cutlass::arch::Sm75,
|
236 |
+
cutlass::gemm::GemmShape<64, 128, 32>,
|
237 |
+
cutlass::gemm::GemmShape<32, 64, 32>
|
238 |
+
>;
|
239 |
+
|
240 |
+
EXPECT_TRUE(test::gemm::device::TestAllGemm<Gemm>());
|
241 |
+
}
|
242 |
+
|
243 |
+
TEST(SM75_Device_Gemm_f16n_f16n_f16t_tensor_op_f32, 128x64x32_64x32x32) {
|
244 |
+
|
245 |
+
using ElementOutput = cutlass::half_t;
|
246 |
+
using ElementAccumulator = float;
|
247 |
+
|
248 |
+
using Gemm = cutlass::gemm::device::Gemm<
|
249 |
+
cutlass::half_t,
|
250 |
+
cutlass::layout::ColumnMajor,
|
251 |
+
cutlass::half_t,
|
252 |
+
cutlass::layout::ColumnMajor,
|
253 |
+
ElementOutput,
|
254 |
+
cutlass::layout::RowMajor,
|
255 |
+
ElementAccumulator,
|
256 |
+
cutlass::arch::OpClassTensorOp,
|
257 |
+
cutlass::arch::Sm75,
|
258 |
+
cutlass::gemm::GemmShape<128, 64, 32>,
|
259 |
+
cutlass::gemm::GemmShape<64, 32, 32>,
|
260 |
+
cutlass::gemm::GemmShape<16, 8, 8>,
|
261 |
+
cutlass::epilogue::thread::LinearCombination<
|
262 |
+
ElementOutput,
|
263 |
+
128 / cutlass::sizeof_bits<ElementOutput>::value,
|
264 |
+
ElementAccumulator,
|
265 |
+
ElementAccumulator
|
266 |
+
>,
|
267 |
+
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
268 |
+
2
|
269 |
+
>;
|
270 |
+
|
271 |
+
EXPECT_TRUE(test::gemm::device::TestAllGemm<Gemm>());
|
272 |
+
}
|
273 |
+
|
274 |
+
TEST(SM75_Device_Gemm_f16n_f16n_f16t_tensor_op_f32, 64x64x32_32x32x32) {
|
275 |
+
|
276 |
+
using ElementOutput = cutlass::half_t;
|
277 |
+
using ElementAccumulator = float;
|
278 |
+
|
279 |
+
using Gemm = cutlass::gemm::device::Gemm<
|
280 |
+
cutlass::half_t,
|
281 |
+
cutlass::layout::ColumnMajor,
|
282 |
+
cutlass::half_t,
|
283 |
+
cutlass::layout::ColumnMajor,
|
284 |
+
ElementOutput,
|
285 |
+
cutlass::layout::RowMajor,
|
286 |
+
ElementAccumulator,
|
287 |
+
cutlass::arch::OpClassTensorOp,
|
288 |
+
cutlass::arch::Sm75,
|
289 |
+
cutlass::gemm::GemmShape<64, 64, 32>,
|
290 |
+
cutlass::gemm::GemmShape<32, 32, 32>,
|
291 |
+
cutlass::gemm::GemmShape<16, 8, 8>,
|
292 |
+
cutlass::epilogue::thread::LinearCombination<
|
293 |
+
ElementOutput,
|
294 |
+
128 / cutlass::sizeof_bits<ElementOutput>::value,
|
295 |
+
ElementAccumulator,
|
296 |
+
ElementAccumulator
|
297 |
+
>,
|
298 |
+
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
299 |
+
2
|
300 |
+
>;
|
301 |
+
|
302 |
+
EXPECT_TRUE(test::gemm::device::TestAllGemm<Gemm>());
|
303 |
+
}
|
304 |
+
|
305 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
306 |
+
|
307 |
+
#endif
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/test/unit/gemm/device/gemm_f16t_f16n_f16t_tensor_op_f16_slicedk_sm75.cu
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/*! \file
|
32 |
+
\brief Tests for device-wide GEMM interface
|
33 |
+
*/
|
34 |
+
|
35 |
+
#include <iostream>
|
36 |
+
|
37 |
+
#include "cutlass/cutlass.h"
|
38 |
+
#include "cutlass/gemm/device/gemm.h"
|
39 |
+
|
40 |
+
#include "../../common/cutlass_unit_test.h"
|
41 |
+
|
42 |
+
#include "cutlass/util/host_tensor.h"
|
43 |
+
#include "cutlass/util/tensor_view_io.h"
|
44 |
+
#include "cutlass/util/reference/host/tensor_fill.h"
|
45 |
+
#include "cutlass/util/reference/host/tensor_copy.h"
|
46 |
+
#include "cutlass/util/reference/host/tensor_compare.h"
|
47 |
+
#include "cutlass/util/reference/host/gemm.h"
|
48 |
+
|
49 |
+
#include "testbed.h"
|
50 |
+
|
51 |
+
#if defined(CUTLASS_ARCH_MMA_SM75_SUPPORTED)
|
52 |
+
|
53 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
54 |
+
|
55 |
+
TEST(SM75_Device_Gemm_f16t_f16n_f16t_tensor_op_f16_sliced_k, 64x64x64_64x32x32) {
|
56 |
+
|
57 |
+
using ElementOutput = cutlass::half_t;
|
58 |
+
using ElementAccumulator = cutlass::half_t;
|
59 |
+
|
60 |
+
using Gemm = cutlass::gemm::device::Gemm<
|
61 |
+
cutlass::half_t,
|
62 |
+
cutlass::layout::RowMajor,
|
63 |
+
cutlass::half_t,
|
64 |
+
cutlass::layout::ColumnMajor,
|
65 |
+
ElementOutput,
|
66 |
+
cutlass::layout::RowMajor,
|
67 |
+
ElementAccumulator,
|
68 |
+
cutlass::arch::OpClassTensorOp,
|
69 |
+
cutlass::arch::Sm75,
|
70 |
+
cutlass::gemm::GemmShape<64, 64, 64>,
|
71 |
+
cutlass::gemm::GemmShape<64, 32, 32>,
|
72 |
+
cutlass::gemm::GemmShape<16, 8, 8>,
|
73 |
+
cutlass::epilogue::thread::LinearCombination<
|
74 |
+
ElementOutput,
|
75 |
+
64 / cutlass::sizeof_bits<ElementOutput>::value,
|
76 |
+
ElementAccumulator,
|
77 |
+
ElementAccumulator
|
78 |
+
>,
|
79 |
+
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
80 |
+
2
|
81 |
+
>;
|
82 |
+
|
83 |
+
EXPECT_TRUE(test::gemm::device::TestAllGemm<Gemm>());
|
84 |
+
}
|
85 |
+
|
86 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
87 |
+
|
88 |
+
#endif // if (CUTLASS_ARCH_MMA_SM75_SUPPORTED)
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/test/unit/gemm/device/gemm_universal_s8t_f16n_f32t_mixed_input_tensor_op_f32_sm80.cu
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/*! \file
|
32 |
+
\brief Tests for device-wide GEMM interface
|
33 |
+
|
34 |
+
*/
|
35 |
+
|
36 |
+
#include <iostream>
|
37 |
+
|
38 |
+
#include "../../common/cutlass_unit_test.h"
|
39 |
+
#include "cutlass/cutlass.h"
|
40 |
+
|
41 |
+
#include "cutlass/gemm/device/gemm_universal.h"
|
42 |
+
|
43 |
+
#include "cutlass/util/host_tensor.h"
|
44 |
+
#include "cutlass/util/reference/host/gemm.h"
|
45 |
+
#include "cutlass/util/reference/host/tensor_compare.h"
|
46 |
+
#include "cutlass/util/reference/host/tensor_copy.h"
|
47 |
+
#include "cutlass/util/reference/host/tensor_fill.h"
|
48 |
+
#include "cutlass/util/tensor_view_io.h"
|
49 |
+
|
50 |
+
#include "testbed_universal.h"
|
51 |
+
|
52 |
+
////////////////////////////////////////////////////////////////////////////////
|
53 |
+
|
54 |
+
#if defined(CUTLASS_ARCH_MMA_SM80_SUPPORTED)
|
55 |
+
|
56 |
+
////////////////////////////////////////////////////////////////////////////////
|
57 |
+
|
58 |
+
|
59 |
+
TEST(SM80_Device_GemmUniversal_s8t_f16n_f32t_mixed_input_tensor_op_f32, 128x128x64_64x64x64) {
|
60 |
+
|
61 |
+
using ElementA = int8_t;
|
62 |
+
using ElementB = cutlass::half_t;
|
63 |
+
using ElementOutput = float;
|
64 |
+
using ElementAccumulator = float;
|
65 |
+
|
66 |
+
using Gemm = cutlass::gemm::device::GemmUniversal<
|
67 |
+
ElementA,
|
68 |
+
cutlass::layout::RowMajor,
|
69 |
+
ElementB,
|
70 |
+
cutlass::layout::ColumnMajor,
|
71 |
+
ElementOutput,
|
72 |
+
cutlass::layout::RowMajor,
|
73 |
+
ElementAccumulator,
|
74 |
+
cutlass::arch::OpClassTensorOp,
|
75 |
+
cutlass::arch::Sm80,
|
76 |
+
cutlass::gemm::GemmShape<128, 128, 64>,
|
77 |
+
cutlass::gemm::GemmShape<64, 64, 64>,
|
78 |
+
cutlass::gemm::GemmShape<16, 8, 16>,
|
79 |
+
cutlass::epilogue::thread::LinearCombination<
|
80 |
+
ElementOutput, 128 / cutlass::sizeof_bits<ElementOutput>::value,
|
81 |
+
ElementAccumulator, ElementAccumulator>,
|
82 |
+
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
83 |
+
4, // Stages
|
84 |
+
16, // AlignmentA
|
85 |
+
8, // AlignmentB
|
86 |
+
cutlass::arch::OpMultiplyAddMixedInputUpcast,
|
87 |
+
cutlass::ComplexTransform::kNone,
|
88 |
+
cutlass::ComplexTransform::kNone
|
89 |
+
>;
|
90 |
+
|
91 |
+
EXPECT_TRUE(test::gemm::device::TestAllGemmUniversal<Gemm>());
|
92 |
+
}
|
93 |
+
////////////////////////////////////////////////////////////////////////////////
|
94 |
+
|
95 |
+
#endif // #if defined(CUTLASS_ARCH_MMA_SM80_SUPPORTED)
|
96 |
+
|
97 |
+
////////////////////////////////////////////////////////////////////////////////
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/test/unit/gemm/device/hemm_cf32h_cf32n_tensor_op_fast_f32_ls_sm80.cu
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/*! \file
|
32 |
+
\brief Tests for device-wide HEMM interface
|
33 |
+
|
34 |
+
|
35 |
+
*/
|
36 |
+
|
37 |
+
#include <iostream>
|
38 |
+
|
39 |
+
#include "../../common/cutlass_unit_test.h"
|
40 |
+
#include "cutlass/blas3.h"
|
41 |
+
#include "cutlass/gemm/device/symm.h"
|
42 |
+
#include "cutlass/util/host_tensor.h"
|
43 |
+
#include "cutlass/util/reference/host/symm_complex.h"
|
44 |
+
#include "cutlass/util/reference/host/tensor_compare.h"
|
45 |
+
#include "cutlass/util/reference/host/tensor_copy.h"
|
46 |
+
#include "cutlass/util/reference/host/tensor_fill.h"
|
47 |
+
#include "cutlass/util/tensor_view_io.h"
|
48 |
+
|
49 |
+
#include "testbed_symm_universal.h"
|
50 |
+
|
51 |
+
#if defined(CUTLASS_ARCH_MMA_SM80_SUPPORTED)
|
52 |
+
|
53 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
54 |
+
|
55 |
+
TEST(SM80_Device_Hemm_cf32h_cf32n_ls_l_tensor_op_fast_f32, 32x32x16_16x16x16) {
|
56 |
+
|
57 |
+
using ElementOutput = cutlass::complex<float>;
|
58 |
+
using ElementAccumulator = cutlass::complex<float>;
|
59 |
+
|
60 |
+
using Hemm = cutlass::gemm::device::Symm<
|
61 |
+
cutlass::complex<float>,
|
62 |
+
cutlass::layout::ColumnMajor,
|
63 |
+
cutlass::SideMode::kLeft,
|
64 |
+
cutlass::FillMode::kLower,
|
65 |
+
cutlass::complex<float>,
|
66 |
+
cutlass::layout::ColumnMajor,
|
67 |
+
ElementOutput,
|
68 |
+
cutlass::layout::ColumnMajor,
|
69 |
+
ElementAccumulator,
|
70 |
+
cutlass::arch::OpClassTensorOp,
|
71 |
+
cutlass::arch::Sm80,
|
72 |
+
cutlass::gemm::GemmShape<32, 32, 16>,
|
73 |
+
cutlass::gemm::GemmShape<16, 16, 16>,
|
74 |
+
cutlass::gemm::GemmShape<16, 8, 8>,
|
75 |
+
cutlass::epilogue::thread::LinearCombination<
|
76 |
+
ElementOutput,
|
77 |
+
1,
|
78 |
+
ElementAccumulator,
|
79 |
+
ElementAccumulator
|
80 |
+
>,
|
81 |
+
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
82 |
+
3,
|
83 |
+
1,
|
84 |
+
1,
|
85 |
+
false,
|
86 |
+
cutlass::arch::OpMultiplyAddComplexFastF32,
|
87 |
+
cutlass::BlasMode::kHermitian
|
88 |
+
>;
|
89 |
+
|
90 |
+
EXPECT_TRUE(test::gemm::device::TestAllSymmUniversal<Hemm>());
|
91 |
+
}
|
92 |
+
|
93 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
94 |
+
|
95 |
+
TEST(SM80_Device_Hemm_cf32h_cf32n_ls_u_tensor_op_fast_f32, 32x32x16_16x16x16) {
|
96 |
+
|
97 |
+
using ElementOutput = cutlass::complex<float>;
|
98 |
+
using ElementAccumulator = cutlass::complex<float>;
|
99 |
+
|
100 |
+
using Hemm = cutlass::gemm::device::Symm<
|
101 |
+
cutlass::complex<float>,
|
102 |
+
cutlass::layout::ColumnMajor,
|
103 |
+
cutlass::SideMode::kLeft,
|
104 |
+
cutlass::FillMode::kUpper,
|
105 |
+
cutlass::complex<float>,
|
106 |
+
cutlass::layout::ColumnMajor,
|
107 |
+
ElementOutput,
|
108 |
+
cutlass::layout::ColumnMajor,
|
109 |
+
ElementAccumulator,
|
110 |
+
cutlass::arch::OpClassTensorOp,
|
111 |
+
cutlass::arch::Sm80,
|
112 |
+
cutlass::gemm::GemmShape<32, 32, 16>,
|
113 |
+
cutlass::gemm::GemmShape<16, 16, 16>,
|
114 |
+
cutlass::gemm::GemmShape<16, 8, 8>,
|
115 |
+
cutlass::epilogue::thread::LinearCombination<
|
116 |
+
ElementOutput,
|
117 |
+
1,
|
118 |
+
ElementAccumulator,
|
119 |
+
ElementAccumulator
|
120 |
+
>,
|
121 |
+
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
122 |
+
3,
|
123 |
+
1,
|
124 |
+
1,
|
125 |
+
false,
|
126 |
+
cutlass::arch::OpMultiplyAddComplexFastF32,
|
127 |
+
cutlass::BlasMode::kHermitian
|
128 |
+
>;
|
129 |
+
|
130 |
+
EXPECT_TRUE(test::gemm::device::TestAllSymmUniversal<Hemm>());
|
131 |
+
}
|
132 |
+
|
133 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
134 |
+
|
135 |
+
TEST(SM80_Device_Hemm_cf32h_cf32n_ls_u_tensor_op_fast_f32, 64x64x16_32x32x16) {
|
136 |
+
|
137 |
+
using ElementOutput = cutlass::complex<float>;
|
138 |
+
using ElementAccumulator = cutlass::complex<float>;
|
139 |
+
|
140 |
+
using Hemm = cutlass::gemm::device::Symm<
|
141 |
+
cutlass::complex<float>,
|
142 |
+
cutlass::layout::ColumnMajor,
|
143 |
+
cutlass::SideMode::kLeft,
|
144 |
+
cutlass::FillMode::kUpper,
|
145 |
+
cutlass::complex<float>,
|
146 |
+
cutlass::layout::ColumnMajor,
|
147 |
+
ElementOutput,
|
148 |
+
cutlass::layout::ColumnMajor,
|
149 |
+
ElementAccumulator,
|
150 |
+
cutlass::arch::OpClassTensorOp,
|
151 |
+
cutlass::arch::Sm80,
|
152 |
+
cutlass::gemm::GemmShape<64, 64, 16>,
|
153 |
+
cutlass::gemm::GemmShape<32, 32, 16>,
|
154 |
+
cutlass::gemm::GemmShape<16, 8, 8>,
|
155 |
+
cutlass::epilogue::thread::LinearCombination<
|
156 |
+
ElementOutput,
|
157 |
+
1,
|
158 |
+
ElementAccumulator,
|
159 |
+
ElementAccumulator
|
160 |
+
>,
|
161 |
+
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
162 |
+
3,
|
163 |
+
1,
|
164 |
+
1,
|
165 |
+
false,
|
166 |
+
cutlass::arch::OpMultiplyAddComplexFastF32,
|
167 |
+
cutlass::BlasMode::kHermitian
|
168 |
+
>;
|
169 |
+
|
170 |
+
EXPECT_TRUE(test::gemm::device::TestAllSymmUniversal<Hemm>());
|
171 |
+
}
|
172 |
+
|
173 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
174 |
+
|
175 |
+
#endif // #if defined(CUTLASS_ARCH_MMA_SM80_SUPPORTED)
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/test/unit/gemm/device/herk_cf64h_cf64n_tensor_op_f64_sm80.cu
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/*! \file
|
32 |
+
\brief Tests for device-wide HERK interface
|
33 |
+
*/
|
34 |
+
|
35 |
+
#include <iostream>
|
36 |
+
|
37 |
+
#include "../../common/cutlass_unit_test.h"
|
38 |
+
#include "cutlass/blas3.h"
|
39 |
+
#include "cutlass/gemm/device/rank_k.h"
|
40 |
+
#include "cutlass/util/host_tensor.h"
|
41 |
+
#include "cutlass/util/reference/host/rank_k_complex.h"
|
42 |
+
#include "cutlass/util/reference/host/tensor_compare.h"
|
43 |
+
#include "cutlass/util/reference/host/tensor_copy.h"
|
44 |
+
#include "cutlass/util/reference/host/tensor_fill.h"
|
45 |
+
#include "cutlass/util/tensor_view_io.h"
|
46 |
+
|
47 |
+
#include "testbed_rank_k_universal.h"
|
48 |
+
|
49 |
+
#if defined(CUTLASS_ARCH_MMA_SM80_SUPPORTED)
|
50 |
+
|
51 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
52 |
+
// HERK operator on CUBLAS_OP_N (column-major) input layouts
|
53 |
+
TEST(SM80_Device_Herk_cf64n_cf64n_l_tensor_op_f64, 32x32x16_16x16x16) {
|
54 |
+
|
55 |
+
using ElementA = cutlass::complex<double>;
|
56 |
+
using LayoutA = cutlass::layout::ColumnMajor;
|
57 |
+
|
58 |
+
using ElementC = cutlass::complex<double>;
|
59 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
60 |
+
using ElementAccumulator = cutlass::complex<double>;
|
61 |
+
|
62 |
+
using RankK = cutlass::gemm::device::RankK<
|
63 |
+
ElementA,
|
64 |
+
LayoutA,
|
65 |
+
ElementC,
|
66 |
+
LayoutC,
|
67 |
+
cutlass::FillMode::kLower,
|
68 |
+
ElementAccumulator,
|
69 |
+
cutlass::arch::OpClassTensorOp,
|
70 |
+
cutlass::arch::Sm80,
|
71 |
+
cutlass::gemm::GemmShape<32, 32, 16>,
|
72 |
+
cutlass::gemm::GemmShape<16, 16, 16>,
|
73 |
+
cutlass::gemm::GemmShape<8, 8, 4>,
|
74 |
+
cutlass::epilogue::thread::LinearCombination<
|
75 |
+
ElementC,
|
76 |
+
1,
|
77 |
+
ElementAccumulator,
|
78 |
+
ElementAccumulator
|
79 |
+
>,
|
80 |
+
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
81 |
+
4, // kStages
|
82 |
+
1, // AlignmentA
|
83 |
+
false, // SplitKSerial
|
84 |
+
cutlass::arch::OpMultiplyAddComplex,
|
85 |
+
cutlass::ComplexTransform::kNone,
|
86 |
+
cutlass::BlasMode::kHermitian
|
87 |
+
>;
|
88 |
+
|
89 |
+
EXPECT_TRUE(test::gemm::device::TestAllRankKUniversal<RankK>());
|
90 |
+
}
|
91 |
+
|
92 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
93 |
+
// HERK operator on CUBLAS_OP_N (column-major) input layouts
|
94 |
+
TEST(SM80_Device_Herk_cf64n_cf64n_u_tensor_op_f64, 32x32x16_16x16x16) {
|
95 |
+
|
96 |
+
using ElementA = cutlass::complex<double>;
|
97 |
+
using LayoutA = cutlass::layout::ColumnMajor;
|
98 |
+
|
99 |
+
using ElementC = cutlass::complex<double>;
|
100 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
101 |
+
using ElementAccumulator = cutlass::complex<double>;
|
102 |
+
|
103 |
+
using RankK = cutlass::gemm::device::RankK<
|
104 |
+
ElementA,
|
105 |
+
LayoutA,
|
106 |
+
ElementC,
|
107 |
+
LayoutC,
|
108 |
+
cutlass::FillMode::kUpper,
|
109 |
+
ElementAccumulator,
|
110 |
+
cutlass::arch::OpClassTensorOp,
|
111 |
+
cutlass::arch::Sm80,
|
112 |
+
cutlass::gemm::GemmShape<32, 32, 16>,
|
113 |
+
cutlass::gemm::GemmShape<16, 16, 16>,
|
114 |
+
cutlass::gemm::GemmShape<8, 8, 4>,
|
115 |
+
cutlass::epilogue::thread::LinearCombination<
|
116 |
+
ElementC,
|
117 |
+
1,
|
118 |
+
ElementAccumulator,
|
119 |
+
ElementAccumulator
|
120 |
+
>,
|
121 |
+
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
122 |
+
4, // kStages
|
123 |
+
1, // AlignmentA
|
124 |
+
false, // SplitKSerial
|
125 |
+
cutlass::arch::OpMultiplyAddComplex,
|
126 |
+
cutlass::ComplexTransform::kNone,
|
127 |
+
cutlass::BlasMode::kHermitian
|
128 |
+
>;
|
129 |
+
|
130 |
+
EXPECT_TRUE(test::gemm::device::TestAllRankKUniversal<RankK>());
|
131 |
+
}
|
132 |
+
|
133 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
134 |
+
// HERK operator on CUBLAS_OP_C (row-major + conj) input layouts
|
135 |
+
TEST(SM80_Device_Herk_cf64h_cf64n_l_tensor_op_f64, 64x64x16_32x32x16) {
|
136 |
+
|
137 |
+
using ElementA = cutlass::complex<double>;
|
138 |
+
using LayoutA = cutlass::layout::RowMajor;
|
139 |
+
|
140 |
+
using ElementC = cutlass::complex<double>;
|
141 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
142 |
+
using ElementAccumulator = cutlass::complex<double>;
|
143 |
+
|
144 |
+
using RankK = cutlass::gemm::device::RankK<
|
145 |
+
ElementA,
|
146 |
+
LayoutA,
|
147 |
+
ElementC,
|
148 |
+
LayoutC,
|
149 |
+
cutlass::FillMode::kLower,
|
150 |
+
ElementAccumulator,
|
151 |
+
cutlass::arch::OpClassTensorOp,
|
152 |
+
cutlass::arch::Sm80,
|
153 |
+
cutlass::gemm::GemmShape<32, 32, 16>,
|
154 |
+
cutlass::gemm::GemmShape<16, 16, 16>,
|
155 |
+
cutlass::gemm::GemmShape<8, 8, 4>,
|
156 |
+
cutlass::epilogue::thread::LinearCombination<
|
157 |
+
ElementC,
|
158 |
+
1,
|
159 |
+
ElementAccumulator,
|
160 |
+
ElementAccumulator
|
161 |
+
>,
|
162 |
+
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
163 |
+
4, // kStages
|
164 |
+
1, // AlignmentA
|
165 |
+
false, // SplitKSerial
|
166 |
+
cutlass::arch::OpMultiplyAddComplex,
|
167 |
+
cutlass::ComplexTransform::kConjugate,
|
168 |
+
cutlass::BlasMode::kHermitian
|
169 |
+
>;
|
170 |
+
|
171 |
+
EXPECT_TRUE(test::gemm::device::TestAllRankKUniversal<RankK>());
|
172 |
+
}
|
173 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
174 |
+
|
175 |
+
#endif // #if defined(CUTLASS_ARCH_MMA_SM80_SUPPORTED)
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/test/unit/gemm/device/sm90_gemm_f16_f16_f16_tensor_op_f32_cluster_warpspecialized_cooperative_dag.cu
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/*! \file
|
32 |
+
\brief Tests for Sm90 f16_f16_f16 cooperative DAG epilogue
|
33 |
+
EVTDAG: D = beta * C + Graph(relu(alpha * acc + aux) + aux)
|
34 |
+
DAGEVT: EVT = alpha * acc + C, D = Graph(maximum(EVT + per-row bias, EVT))
|
35 |
+
*/
|
36 |
+
|
37 |
+
#include <iostream>
|
38 |
+
|
39 |
+
#include "cutlass/cutlass.h"
|
40 |
+
#include "cute/tensor.hpp"
|
41 |
+
#include "cute/atom/mma_atom.hpp"
|
42 |
+
|
43 |
+
#include "cutlass/numeric_types.h"
|
44 |
+
|
45 |
+
#include "cutlass/gemm/device/gemm_universal_adapter.h"
|
46 |
+
#include "cutlass/gemm/kernel/gemm_universal.hpp"
|
47 |
+
#include "cutlass/epilogue/collective/collective_builder.hpp"
|
48 |
+
#include "cutlass/gemm/collective/collective_builder.hpp"
|
49 |
+
#include "cutlass/epilogue/collective/sm70_epilogue_vectorized.hpp"
|
50 |
+
#include "cutlass/epilogue/collective/default_epilogue.hpp"
|
51 |
+
#include "cutlass/epilogue/thread/linear_combination.h"
|
52 |
+
#include "cutlass/epilogue/thread/linear_combination_bias_elementwise.h"
|
53 |
+
|
54 |
+
#include "../../common/cutlass_unit_test.h"
|
55 |
+
|
56 |
+
#include "gemm_testbed_3x_evt.hpp"
|
57 |
+
#include "sm90_evt_operations.hpp"
|
58 |
+
|
59 |
+
|
60 |
+
#if defined(CUTLASS_ARCH_MMA_SM90_SUPPORTED)
|
61 |
+
|
62 |
+
using namespace cute;
|
63 |
+
|
64 |
+
|
65 |
+
TEST(SM90_Device_Gemm_f16t_f16n_f32t_tensor_op_gmma_f32_cooperative_epilogue, 256x128x64_2x2x1_EVTDAG) {
|
66 |
+
using LayoutA = cutlass::layout::RowMajor;
|
67 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
68 |
+
using LayoutC = cutlass::layout::RowMajor;
|
69 |
+
using TileShape_MNK = Shape<_256,_128,_64>;
|
70 |
+
using ClusterShape_MNK = Shape<_2,_2,_1>;
|
71 |
+
|
72 |
+
using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecializedCooperative;
|
73 |
+
using EpilogueTileType = cutlass::epilogue::collective::EpilogueTileAuto;
|
74 |
+
|
75 |
+
using EpilogueDescriptor = cutlass::epilogue::collective::detail::EpilogueDescriptor<
|
76 |
+
TileShape_MNK, EpilogueTileType, cutlass::half_t, cutlass::half_t, EpilogueSchedule>;
|
77 |
+
|
78 |
+
using AuxLoadDescriptor = cutlass::epilogue::collective::detail::AuxLoadDescriptor<
|
79 |
+
EpilogueDescriptor, cutlass::layout::RowMajor, cutlass::half_t>;
|
80 |
+
|
81 |
+
using FusionCallbacks = cutlass::epilogue::fusion::Sm90LinCombEVTDAG<
|
82 |
+
EpilogueDescriptor, AuxLoadDescriptor, cutlass::half_t, float, float>;
|
83 |
+
|
84 |
+
using CollectiveEpilogue = typename cutlass::epilogue::collective::CollectiveBuilder<
|
85 |
+
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp,
|
86 |
+
TileShape_MNK, ClusterShape_MNK,
|
87 |
+
EpilogueTileType,
|
88 |
+
float, float,
|
89 |
+
cutlass::half_t, LayoutC, 8,
|
90 |
+
cutlass::half_t, LayoutC, 8,
|
91 |
+
EpilogueSchedule,
|
92 |
+
FusionCallbacks
|
93 |
+
>::CollectiveOp;
|
94 |
+
|
95 |
+
using CollectiveMainloop = typename cutlass::gemm::collective::CollectiveBuilder<
|
96 |
+
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp,
|
97 |
+
cutlass::half_t, LayoutA, 8,
|
98 |
+
cutlass::half_t, LayoutB, 8,
|
99 |
+
float,
|
100 |
+
TileShape_MNK, ClusterShape_MNK,
|
101 |
+
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(sizeof(typename CollectiveEpilogue::SharedStorage))>,
|
102 |
+
cutlass::gemm::KernelTmaWarpSpecializedCooperative
|
103 |
+
>::CollectiveOp;
|
104 |
+
|
105 |
+
using GemmKernel = cutlass::gemm::kernel::GemmUniversal<
|
106 |
+
Shape<int,int,int,int>,
|
107 |
+
CollectiveMainloop,
|
108 |
+
CollectiveEpilogue
|
109 |
+
>;
|
110 |
+
|
111 |
+
using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
|
112 |
+
|
113 |
+
// Host reference
|
114 |
+
bool passed = test::gemm::device::TestAllEVT<Gemm, test::gemm::device::HostEVTDAG<Gemm>>();
|
115 |
+
EXPECT_TRUE(passed);
|
116 |
+
}
|
117 |
+
|
118 |
+
TEST(SM90_Device_Gemm_f16t_f16n_f32t_tensor_op_gmma_f32_cooperative_epilogue, 128x128x64_2x2x1_DAGEVT) {
|
119 |
+
using LayoutA = cutlass::layout::RowMajor;
|
120 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
121 |
+
using LayoutC = cutlass::layout::RowMajor;
|
122 |
+
using TileShape_MNK = Shape<_256,_128,_64>;
|
123 |
+
using ClusterShape_MNK = Shape<_2,_2,_1>;
|
124 |
+
|
125 |
+
using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecializedCooperative;
|
126 |
+
using EpilogueTileType = cutlass::epilogue::collective::EpilogueTileAuto;
|
127 |
+
|
128 |
+
using EpilogueDescriptor = cutlass::epilogue::collective::detail::EpilogueDescriptor<
|
129 |
+
TileShape_MNK, EpilogueTileType, cutlass::half_t, cutlass::half_t, EpilogueSchedule>;
|
130 |
+
|
131 |
+
using AuxStoreDescriptor = cutlass::epilogue::collective::detail::AuxStoreDescriptor<
|
132 |
+
EpilogueDescriptor, cutlass::layout::RowMajor, cutlass::half_t>;
|
133 |
+
|
134 |
+
using FusionCallbacks = cutlass::epilogue::fusion::Sm90LinCombDAGEVT<
|
135 |
+
EpilogueDescriptor, AuxStoreDescriptor, cutlass::half_t, float, cutlass::half_t, float>;
|
136 |
+
|
137 |
+
using CollectiveEpilogue = typename cutlass::epilogue::collective::CollectiveBuilder<
|
138 |
+
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp,
|
139 |
+
TileShape_MNK, ClusterShape_MNK,
|
140 |
+
EpilogueTileType,
|
141 |
+
float, float,
|
142 |
+
cutlass::half_t, LayoutC, 8,
|
143 |
+
cutlass::half_t, LayoutC, 8,
|
144 |
+
EpilogueSchedule,
|
145 |
+
FusionCallbacks
|
146 |
+
>::CollectiveOp;
|
147 |
+
|
148 |
+
using CollectiveMainloop = typename cutlass::gemm::collective::CollectiveBuilder<
|
149 |
+
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp,
|
150 |
+
cutlass::half_t, LayoutA, 8,
|
151 |
+
cutlass::half_t, LayoutB, 8,
|
152 |
+
float,
|
153 |
+
TileShape_MNK, ClusterShape_MNK,
|
154 |
+
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(sizeof(typename CollectiveEpilogue::SharedStorage))>,
|
155 |
+
cutlass::gemm::KernelTmaWarpSpecializedCooperative
|
156 |
+
>::CollectiveOp;
|
157 |
+
|
158 |
+
using GemmKernel = cutlass::gemm::kernel::GemmUniversal<
|
159 |
+
Shape<int,int,int,int>,
|
160 |
+
CollectiveMainloop,
|
161 |
+
CollectiveEpilogue
|
162 |
+
>;
|
163 |
+
|
164 |
+
using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
|
165 |
+
|
166 |
+
// Host reference
|
167 |
+
bool passed = test::gemm::device::TestAllEVT<Gemm, test::gemm::device::HostDAGEVT<Gemm>>();
|
168 |
+
EXPECT_TRUE(passed);
|
169 |
+
}
|
170 |
+
#endif // defined(CUTLASS_ARCH_MMA_SM90_SUPPORTED)
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/test/unit/gemm/device/sm90_gemm_tf32_tf32_f32_alignx_tensor_op_f32_warpspecialized.cu
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/*! \file
|
32 |
+
\brief Tests for device-wide GEMM interface
|
33 |
+
*/
|
34 |
+
|
35 |
+
#include <iostream>
|
36 |
+
|
37 |
+
#include "cutlass/cutlass.h"
|
38 |
+
#include "cute/tensor.hpp"
|
39 |
+
#include "cute/atom/mma_atom.hpp"
|
40 |
+
|
41 |
+
#include "cutlass/numeric_types.h"
|
42 |
+
|
43 |
+
#include "cutlass/gemm/device/gemm_universal_adapter.h"
|
44 |
+
#include "cutlass/gemm/kernel/gemm_universal.hpp"
|
45 |
+
#include "cutlass/gemm/collective/collective_builder.hpp"
|
46 |
+
#include "cutlass/epilogue/collective/collective_builder.hpp"
|
47 |
+
#include "cutlass/epilogue/collective/default_epilogue.hpp"
|
48 |
+
#include "cutlass/epilogue/thread/linear_combination.h"
|
49 |
+
|
50 |
+
#include "../../common/cutlass_unit_test.h"
|
51 |
+
|
52 |
+
#include "gemm_testbed_3x.hpp"
|
53 |
+
|
54 |
+
#if defined(CUTLASS_ARCH_MMA_SM90_SUPPORTED)
|
55 |
+
|
56 |
+
using namespace cute;
|
57 |
+
|
58 |
+
///////////////////////////////////////////////////////////////////////////////
|
59 |
+
|
60 |
+
TEST(SM90_Device_Gemm_tf32t_tf32n_f32n_align4_tensor_op_gmma_f32_warpspecialized, 128x64x32) {
|
61 |
+
using LayoutA = cutlass::layout::RowMajor;
|
62 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
63 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
64 |
+
|
65 |
+
using CollectiveOp = typename cutlass::gemm::collective::CollectiveBuilder<
|
66 |
+
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp,
|
67 |
+
tfloat32_t, LayoutA, 4,
|
68 |
+
tfloat32_t, LayoutB, 4,
|
69 |
+
float,
|
70 |
+
Shape<_128,_64,_32>, Shape<_1,_1,_1>,
|
71 |
+
cutlass::gemm::collective::StageCountAuto,
|
72 |
+
cutlass::gemm::KernelCpAsyncWarpSpecialized
|
73 |
+
>::CollectiveOp;
|
74 |
+
|
75 |
+
using CollectiveEpilogue = typename cutlass::epilogue::collective::CollectiveBuilder<
|
76 |
+
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp,
|
77 |
+
Shape<_128,_64,_32>, Shape<_1,_1,_1>,
|
78 |
+
cutlass::epilogue::collective::EpilogueTileAuto,
|
79 |
+
float, float,
|
80 |
+
float, LayoutC, 4,
|
81 |
+
float, LayoutC, 4,
|
82 |
+
cutlass::epilogue::NoSmemWarpSpecialized
|
83 |
+
>::CollectiveOp;
|
84 |
+
|
85 |
+
using GemmKernel = cutlass::gemm::kernel::GemmUniversal<
|
86 |
+
Shape<int,int,int,int>,
|
87 |
+
CollectiveOp,
|
88 |
+
CollectiveEpilogue
|
89 |
+
>;
|
90 |
+
|
91 |
+
using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
|
92 |
+
EXPECT_TRUE(test::gemm::device::TestAll<Gemm>());
|
93 |
+
}
|
94 |
+
|
95 |
+
TEST(SM90_Device_Gemm_tf32t_tf32n_f32n_align2_tensor_op_gmma_f32_warpspecialized, 128x64x32) {
|
96 |
+
using LayoutA = cutlass::layout::RowMajor;
|
97 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
98 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
99 |
+
|
100 |
+
using CollectiveOp = typename cutlass::gemm::collective::CollectiveBuilder<
|
101 |
+
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp,
|
102 |
+
cutlass::tfloat32_t, LayoutA, 2,
|
103 |
+
cutlass::tfloat32_t, LayoutB, 2,
|
104 |
+
float,
|
105 |
+
Shape<_128,_64,_32>, Shape<_1,_1,_1>,
|
106 |
+
cutlass::gemm::collective::StageCountAuto,
|
107 |
+
cutlass::gemm::KernelCpAsyncWarpSpecialized
|
108 |
+
>::CollectiveOp;
|
109 |
+
|
110 |
+
using CollectiveEpilogue = typename cutlass::epilogue::collective::CollectiveBuilder<
|
111 |
+
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp,
|
112 |
+
Shape<_128,_64,_32>, Shape<_1,_1,_1>,
|
113 |
+
cutlass::epilogue::collective::EpilogueTileAuto,
|
114 |
+
float, float,
|
115 |
+
float, LayoutC, 2,
|
116 |
+
float, LayoutC, 2,
|
117 |
+
cutlass::epilogue::collective::EpilogueScheduleAuto
|
118 |
+
>::CollectiveOp;
|
119 |
+
|
120 |
+
using GemmKernel = cutlass::gemm::kernel::GemmUniversal<
|
121 |
+
Shape<int,int,int,int>,
|
122 |
+
CollectiveOp,
|
123 |
+
CollectiveEpilogue
|
124 |
+
>;
|
125 |
+
|
126 |
+
using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
|
127 |
+
EXPECT_TRUE(test::gemm::device::TestAll<Gemm>());
|
128 |
+
}
|
129 |
+
|
130 |
+
TEST(SM90_Device_Gemm_tf32t_tf32n_f32n_align1_tensor_op_gmma_f32_warpspecialized, 128x64x32) {
|
131 |
+
using LayoutA = cutlass::layout::RowMajor;
|
132 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
133 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
134 |
+
|
135 |
+
using CollectiveOp = typename cutlass::gemm::collective::CollectiveBuilder<
|
136 |
+
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp,
|
137 |
+
cutlass::tfloat32_t, LayoutA, 1,
|
138 |
+
cutlass::tfloat32_t, LayoutB, 1,
|
139 |
+
float,
|
140 |
+
Shape<_128,_64,_32>, Shape<_1,_1,_1>,
|
141 |
+
cutlass::gemm::collective::StageCountAuto,
|
142 |
+
cutlass::gemm::KernelCpAsyncWarpSpecialized
|
143 |
+
>::CollectiveOp;
|
144 |
+
|
145 |
+
using CollectiveEpilogue = typename cutlass::epilogue::collective::CollectiveBuilder<
|
146 |
+
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp,
|
147 |
+
Shape<_128,_64,_32>, Shape<_1,_1,_1>,
|
148 |
+
cutlass::epilogue::collective::EpilogueTileAuto,
|
149 |
+
float, float,
|
150 |
+
float, LayoutC, 1,
|
151 |
+
float, LayoutC, 1,
|
152 |
+
cutlass::epilogue::collective::EpilogueScheduleAuto
|
153 |
+
>::CollectiveOp;
|
154 |
+
|
155 |
+
using GemmKernel = cutlass::gemm::kernel::GemmUniversal<
|
156 |
+
Shape<int,int,int,int>,
|
157 |
+
CollectiveOp,
|
158 |
+
CollectiveEpilogue
|
159 |
+
>;
|
160 |
+
|
161 |
+
using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
|
162 |
+
EXPECT_TRUE(test::gemm::device::TestAll<Gemm>());
|
163 |
+
}
|
164 |
+
|
165 |
+
///////////////////////////////////////////////////////////////////////////////
|
166 |
+
|
167 |
+
#endif // defined(CUTLASS_ARCH_MMA_SM90_SUPPORTED)
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/test/unit/gemm/device/syr2k_cf64t_cf64n_tensor_op_f64_grouped_sm80.cu
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/*! \file
|
32 |
+
\brief Tests for grouped Rank2K interface
|
33 |
+
*/
|
34 |
+
|
35 |
+
#include <iostream>
|
36 |
+
|
37 |
+
#include "../../common/cutlass_unit_test.h"
|
38 |
+
#include "cutlass/cutlass.h"
|
39 |
+
|
40 |
+
#include "cutlass/blas3.h"
|
41 |
+
#include "cutlass/gemm/gemm.h"
|
42 |
+
#include "cutlass/gemm/kernel/rank_2k_grouped.h"
|
43 |
+
#include "cutlass/gemm/kernel/default_rank_2k_grouped.h"
|
44 |
+
#include "cutlass/gemm/device/rank_2k_grouped.h"
|
45 |
+
|
46 |
+
#include "cutlass/util/host_tensor.h"
|
47 |
+
#include "cutlass/util/reference/host/gemm.h"
|
48 |
+
#include "cutlass/util/reference/host/tensor_compare.h"
|
49 |
+
#include "cutlass/util/reference/host/tensor_copy.h"
|
50 |
+
#include "cutlass/util/reference/host/tensor_fill.h"
|
51 |
+
#include "cutlass/util/tensor_view_io.h"
|
52 |
+
|
53 |
+
#include "testbed_grouped_rank_2k.h"
|
54 |
+
|
55 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
56 |
+
|
57 |
+
#if defined(CUTLASS_ARCH_MMA_SM80_SUPPORTED)
|
58 |
+
|
59 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
60 |
+
|
61 |
+
TEST(SM80_Device_Syr2kGrouped_cf64n_cf64n_l_tensor_op_f64, 32x32x16_16x16x16) {
|
62 |
+
|
63 |
+
using ElementA = cutlass::complex<double>;
|
64 |
+
using LayoutA = cutlass::layout::RowMajor;
|
65 |
+
using ElementB = cutlass::complex<double>;
|
66 |
+
using LayoutB = cutlass::layout::RowMajor;
|
67 |
+
using ElementC = cutlass::complex<double>;
|
68 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
69 |
+
using ElementAccumulator = cutlass::complex<double>;
|
70 |
+
|
71 |
+
using Rank2Kkernel = typename cutlass::gemm::kernel::DefaultRank2KGrouped<
|
72 |
+
ElementA, LayoutA, cutlass::ComplexTransform::kNone, 1,
|
73 |
+
ElementB, LayoutB, cutlass::ComplexTransform::kNone, 1,
|
74 |
+
ElementC, LayoutC, cutlass::FillMode::kLower,
|
75 |
+
ElementAccumulator,
|
76 |
+
cutlass::arch::OpClassTensorOp,
|
77 |
+
cutlass::arch::Sm80,
|
78 |
+
cutlass::gemm::GemmShape<32, 32, 16>,
|
79 |
+
cutlass::gemm::GemmShape<16, 16, 16>,
|
80 |
+
cutlass::gemm::GemmShape<8, 8, 4>,
|
81 |
+
cutlass::epilogue::thread::LinearCombination<ElementC, 1, ElementAccumulator, ElementAccumulator>,
|
82 |
+
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
83 |
+
3, // kStages
|
84 |
+
cutlass::arch::OpMultiplyAddComplex,
|
85 |
+
cutlass::BlasMode::kSymmetric>::Rank2Kkernel;
|
86 |
+
|
87 |
+
using Rank2K = cutlass::gemm::device::Rank2KGrouped<Rank2Kkernel>;
|
88 |
+
|
89 |
+
test::gemm::device::TestbedGrouped<Rank2K> testbed;
|
90 |
+
bool passed = testbed.run(24);
|
91 |
+
EXPECT_TRUE(passed);
|
92 |
+
}
|
93 |
+
|
94 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
95 |
+
|
96 |
+
TEST(SM80_Device_Syr2kGrouped_cf64n_cf64n_l_tensor_op_f64, 64x64x16_32x32x16) {
|
97 |
+
|
98 |
+
using ElementA = cutlass::complex<double>;
|
99 |
+
using LayoutA = cutlass::layout::RowMajor;
|
100 |
+
using ElementB = cutlass::complex<double>;
|
101 |
+
using LayoutB = cutlass::layout::RowMajor;
|
102 |
+
using ElementC = cutlass::complex<double>;
|
103 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
104 |
+
using ElementAccumulator = cutlass::complex<double>;
|
105 |
+
|
106 |
+
using Rank2Kkernel = typename cutlass::gemm::kernel::DefaultRank2KGrouped<
|
107 |
+
ElementA, LayoutA, cutlass::ComplexTransform::kNone, 1,
|
108 |
+
ElementB, LayoutB, cutlass::ComplexTransform::kNone, 1,
|
109 |
+
ElementC, LayoutC, cutlass::FillMode::kLower,
|
110 |
+
ElementAccumulator,
|
111 |
+
cutlass::arch::OpClassTensorOp,
|
112 |
+
cutlass::arch::Sm80,
|
113 |
+
cutlass::gemm::GemmShape<64, 64, 16>,
|
114 |
+
cutlass::gemm::GemmShape<32, 32, 16>,
|
115 |
+
cutlass::gemm::GemmShape<8, 8, 4>,
|
116 |
+
cutlass::epilogue::thread::LinearCombination<ElementC, 1, ElementAccumulator, ElementAccumulator>,
|
117 |
+
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
118 |
+
3, // kStages
|
119 |
+
cutlass::arch::OpMultiplyAddComplex,
|
120 |
+
cutlass::BlasMode::kSymmetric>::Rank2Kkernel;
|
121 |
+
|
122 |
+
using Rank2K = cutlass::gemm::device::Rank2KGrouped<Rank2Kkernel>;
|
123 |
+
|
124 |
+
test::gemm::device::TestbedGrouped<Rank2K> testbed;
|
125 |
+
bool passed = testbed.run(24);
|
126 |
+
EXPECT_TRUE(passed);
|
127 |
+
}
|
128 |
+
|
129 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
130 |
+
|
131 |
+
TEST(SM80_Device_Syr2kGrouped_cf64n_cf64n_u_tensor_op_f64, 32x32x16_16x16x16) {
|
132 |
+
|
133 |
+
using ElementA = cutlass::complex<double>;
|
134 |
+
using LayoutA = cutlass::layout::RowMajor;
|
135 |
+
using ElementB = cutlass::complex<double>;
|
136 |
+
using LayoutB = cutlass::layout::RowMajor;
|
137 |
+
using ElementC = cutlass::complex<double>;
|
138 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
139 |
+
using ElementAccumulator = cutlass::complex<double>;
|
140 |
+
|
141 |
+
using Rank2Kkernel = typename cutlass::gemm::kernel::DefaultRank2KGrouped<
|
142 |
+
ElementA, LayoutA, cutlass::ComplexTransform::kNone, 1,
|
143 |
+
ElementB, LayoutB, cutlass::ComplexTransform::kNone, 1,
|
144 |
+
ElementC, LayoutC, cutlass::FillMode::kUpper,
|
145 |
+
ElementAccumulator,
|
146 |
+
cutlass::arch::OpClassTensorOp,
|
147 |
+
cutlass::arch::Sm80,
|
148 |
+
cutlass::gemm::GemmShape<32, 32, 16>,
|
149 |
+
cutlass::gemm::GemmShape<16, 16, 16>,
|
150 |
+
cutlass::gemm::GemmShape<8, 8, 4>,
|
151 |
+
cutlass::epilogue::thread::LinearCombination<ElementC, 1, ElementAccumulator, ElementAccumulator>,
|
152 |
+
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
153 |
+
3, // kStages
|
154 |
+
cutlass::arch::OpMultiplyAddComplex,
|
155 |
+
cutlass::BlasMode::kSymmetric>::Rank2Kkernel;
|
156 |
+
|
157 |
+
using Rank2K = cutlass::gemm::device::Rank2KGrouped<Rank2Kkernel>;
|
158 |
+
|
159 |
+
test::gemm::device::TestbedGrouped<Rank2K> testbed;
|
160 |
+
bool passed = testbed.run(24);
|
161 |
+
EXPECT_TRUE(passed);
|
162 |
+
}
|
163 |
+
|
164 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
165 |
+
|
166 |
+
#endif // #if defined(CUTLASS_ARCH_MMA_SM80_SUPPORTED)
|
167 |
+
|
168 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/test/unit/gemm/device/trmm_f64_f64_f64_tensor_op_f64_sm90.cu
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/*! \file
|
32 |
+
\brief Tests for device-wide TRMM interface
|
33 |
+
|
34 |
+
|
35 |
+
*/
|
36 |
+
|
37 |
+
#include <iostream>
|
38 |
+
|
39 |
+
#include "../../common/cutlass_unit_test.h"
|
40 |
+
#include "cutlass/blas3.h"
|
41 |
+
#include "cutlass/gemm/device/trmm.h"
|
42 |
+
#include "cutlass/util/host_tensor.h"
|
43 |
+
#include "cutlass/util/reference/host/trmm.h"
|
44 |
+
#include "cutlass/util/reference/host/tensor_compare.h"
|
45 |
+
#include "cutlass/util/reference/host/tensor_copy.h"
|
46 |
+
#include "cutlass/util/reference/host/tensor_fill.h"
|
47 |
+
#include "cutlass/util/tensor_view_io.h"
|
48 |
+
|
49 |
+
#include "testbed_trmm_universal.h"
|
50 |
+
|
51 |
+
#if defined(CUTLASS_ARCH_MMA_SM90_F64_MMA_ENABLED)
|
52 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
53 |
+
|
54 |
+
TEST(SM90_Device_Trmm_f64n_f64n_f64t_rs_l_nu_tensor_op_f64, 32x32x16_16x16x16) {
|
55 |
+
|
56 |
+
using ElementOutput = double;
|
57 |
+
using ElementAccumulator = double;
|
58 |
+
|
59 |
+
using Trmm = cutlass::gemm::device::Trmm<
|
60 |
+
double,
|
61 |
+
cutlass::layout::ColumnMajor,
|
62 |
+
cutlass::SideMode::kRight,
|
63 |
+
cutlass::FillMode::kLower,
|
64 |
+
cutlass::DiagType::kNonUnit,
|
65 |
+
double,
|
66 |
+
cutlass::layout::ColumnMajor,
|
67 |
+
ElementOutput,
|
68 |
+
cutlass::layout::RowMajor,
|
69 |
+
ElementAccumulator,
|
70 |
+
cutlass::arch::OpClassTensorOp,
|
71 |
+
cutlass::arch::Sm90,
|
72 |
+
cutlass::gemm::GemmShape<32, 32, 16>,
|
73 |
+
cutlass::gemm::GemmShape<16, 16, 16>,
|
74 |
+
cutlass::gemm::GemmShape<16, 8, 4>,
|
75 |
+
cutlass::epilogue::thread::LinearCombination<
|
76 |
+
ElementOutput,
|
77 |
+
1,
|
78 |
+
ElementAccumulator,
|
79 |
+
ElementAccumulator
|
80 |
+
>,
|
81 |
+
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
82 |
+
4
|
83 |
+
>;
|
84 |
+
|
85 |
+
EXPECT_TRUE(test::gemm::device::TestAllTrmmUniversal<Trmm>());
|
86 |
+
}
|
87 |
+
|
88 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
89 |
+
|
90 |
+
TEST(SM90_Device_Trmm_f64t_f64t_f64n_rs_l_nu_tensor_op_f64, 64x64x16_32x32x16) {
|
91 |
+
|
92 |
+
using ElementOutput = double;
|
93 |
+
using ElementAccumulator = double;
|
94 |
+
|
95 |
+
using Trmm = cutlass::gemm::device::Trmm<
|
96 |
+
double,
|
97 |
+
cutlass::layout::RowMajor,
|
98 |
+
cutlass::SideMode::kRight,
|
99 |
+
cutlass::FillMode::kLower,
|
100 |
+
cutlass::DiagType::kNonUnit,
|
101 |
+
double,
|
102 |
+
cutlass::layout::RowMajor,
|
103 |
+
ElementOutput,
|
104 |
+
cutlass::layout::ColumnMajor,
|
105 |
+
ElementAccumulator,
|
106 |
+
cutlass::arch::OpClassTensorOp,
|
107 |
+
cutlass::arch::Sm90,
|
108 |
+
cutlass::gemm::GemmShape<64, 64, 16>,
|
109 |
+
cutlass::gemm::GemmShape<32, 32, 16>,
|
110 |
+
cutlass::gemm::GemmShape<16, 8, 4>,
|
111 |
+
cutlass::epilogue::thread::LinearCombination<
|
112 |
+
ElementOutput,
|
113 |
+
1,
|
114 |
+
ElementAccumulator,
|
115 |
+
ElementAccumulator
|
116 |
+
>,
|
117 |
+
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
118 |
+
4
|
119 |
+
>;
|
120 |
+
|
121 |
+
EXPECT_TRUE(test::gemm::device::TestAllTrmmUniversal<Trmm>());
|
122 |
+
}
|
123 |
+
|
124 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
125 |
+
|
126 |
+
#endif // #if defined(CUTLASS_ARCH_MMA_SM90_F64_MMA_ENABLED)
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/test/unit/gemm/device/trmm_f64n_f64n_f64t_tensor_op_f64_ls_sm80.cu
ADDED
@@ -0,0 +1,414 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/*! \file
|
32 |
+
\brief Tests for device-wide TRMM interface
|
33 |
+
|
34 |
+
|
35 |
+
*/
|
36 |
+
|
37 |
+
#include <iostream>
|
38 |
+
|
39 |
+
#include "../../common/cutlass_unit_test.h"
|
40 |
+
#include "cutlass/blas3.h"
|
41 |
+
#include "cutlass/gemm/device/trmm.h"
|
42 |
+
#include "cutlass/util/host_tensor.h"
|
43 |
+
#include "cutlass/util/reference/host/trmm.h"
|
44 |
+
#include "cutlass/util/reference/host/tensor_compare.h"
|
45 |
+
#include "cutlass/util/reference/host/tensor_copy.h"
|
46 |
+
#include "cutlass/util/reference/host/tensor_fill.h"
|
47 |
+
#include "cutlass/util/tensor_view_io.h"
|
48 |
+
|
49 |
+
#include "testbed_trmm_universal.h"
|
50 |
+
|
51 |
+
#if defined(CUTLASS_ARCH_MMA_SM80_SUPPORTED)
|
52 |
+
|
53 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
54 |
+
|
55 |
+
TEST(SM80_Device_Trmm_f64n_f64n_f64t_ls_l_nu_tensor_op_f64, 32x32x16_16x16x16) {
|
56 |
+
|
57 |
+
using ElementOutput = double;
|
58 |
+
using ElementAccumulator = double;
|
59 |
+
|
60 |
+
using Trmm = cutlass::gemm::device::Trmm<
|
61 |
+
double,
|
62 |
+
cutlass::layout::ColumnMajor,
|
63 |
+
cutlass::SideMode::kLeft,
|
64 |
+
cutlass::FillMode::kLower,
|
65 |
+
cutlass::DiagType::kNonUnit,
|
66 |
+
double,
|
67 |
+
cutlass::layout::ColumnMajor,
|
68 |
+
ElementOutput,
|
69 |
+
cutlass::layout::RowMajor,
|
70 |
+
ElementAccumulator,
|
71 |
+
cutlass::arch::OpClassTensorOp,
|
72 |
+
cutlass::arch::Sm80,
|
73 |
+
cutlass::gemm::GemmShape<32, 32, 16>,
|
74 |
+
cutlass::gemm::GemmShape<16, 16, 16>,
|
75 |
+
cutlass::gemm::GemmShape<8, 8, 4>,
|
76 |
+
cutlass::epilogue::thread::LinearCombination<
|
77 |
+
ElementOutput,
|
78 |
+
1,
|
79 |
+
ElementAccumulator,
|
80 |
+
ElementAccumulator
|
81 |
+
>,
|
82 |
+
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
83 |
+
4
|
84 |
+
>;
|
85 |
+
|
86 |
+
EXPECT_TRUE(test::gemm::device::TestAllTrmmUniversal<Trmm>());
|
87 |
+
}
|
88 |
+
|
89 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
90 |
+
|
91 |
+
TEST(SM80_Device_Trmm_f64n_f64n_f64t_ls_l_nu_tensor_op_f64, 64x64x16_32x32x16) {
|
92 |
+
|
93 |
+
using ElementOutput = double;
|
94 |
+
using ElementAccumulator = double;
|
95 |
+
|
96 |
+
using Trmm = cutlass::gemm::device::Trmm<
|
97 |
+
double,
|
98 |
+
cutlass::layout::ColumnMajor,
|
99 |
+
cutlass::SideMode::kLeft,
|
100 |
+
cutlass::FillMode::kLower,
|
101 |
+
cutlass::DiagType::kNonUnit,
|
102 |
+
double,
|
103 |
+
cutlass::layout::ColumnMajor,
|
104 |
+
ElementOutput,
|
105 |
+
cutlass::layout::RowMajor,
|
106 |
+
ElementAccumulator,
|
107 |
+
cutlass::arch::OpClassTensorOp,
|
108 |
+
cutlass::arch::Sm80,
|
109 |
+
cutlass::gemm::GemmShape<64, 64, 16>,
|
110 |
+
cutlass::gemm::GemmShape<32, 32, 16>,
|
111 |
+
cutlass::gemm::GemmShape<8, 8, 4>,
|
112 |
+
cutlass::epilogue::thread::LinearCombination<
|
113 |
+
ElementOutput,
|
114 |
+
1,
|
115 |
+
ElementAccumulator,
|
116 |
+
ElementAccumulator
|
117 |
+
>,
|
118 |
+
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
119 |
+
4
|
120 |
+
>;
|
121 |
+
|
122 |
+
EXPECT_TRUE(test::gemm::device::TestAllTrmmUniversal<Trmm>());
|
123 |
+
}
|
124 |
+
|
125 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
126 |
+
|
127 |
+
TEST(SM80_Device_Trmm_f64n_f64n_f64t_ls_l_nu_tensor_op_f64, 128x64x16_64x32x16) {
|
128 |
+
|
129 |
+
using ElementOutput = double;
|
130 |
+
using ElementAccumulator = double;
|
131 |
+
|
132 |
+
using Trmm = cutlass::gemm::device::Trmm<
|
133 |
+
double,
|
134 |
+
cutlass::layout::ColumnMajor,
|
135 |
+
cutlass::SideMode::kLeft,
|
136 |
+
cutlass::FillMode::kLower,
|
137 |
+
cutlass::DiagType::kNonUnit,
|
138 |
+
double,
|
139 |
+
cutlass::layout::ColumnMajor,
|
140 |
+
ElementOutput,
|
141 |
+
cutlass::layout::RowMajor,
|
142 |
+
ElementAccumulator,
|
143 |
+
cutlass::arch::OpClassTensorOp,
|
144 |
+
cutlass::arch::Sm80,
|
145 |
+
cutlass::gemm::GemmShape<128, 64, 16>,
|
146 |
+
cutlass::gemm::GemmShape<64, 32, 16>,
|
147 |
+
cutlass::gemm::GemmShape<8, 8, 4>,
|
148 |
+
cutlass::epilogue::thread::LinearCombination<
|
149 |
+
ElementOutput,
|
150 |
+
1,
|
151 |
+
ElementAccumulator,
|
152 |
+
ElementAccumulator
|
153 |
+
>,
|
154 |
+
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
155 |
+
4
|
156 |
+
>;
|
157 |
+
|
158 |
+
EXPECT_TRUE(test::gemm::device::TestAllTrmmUniversal<Trmm>());
|
159 |
+
}
|
160 |
+
|
161 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
162 |
+
|
163 |
+
TEST(SM80_Device_Trmm_f64n_f64n_f64t_ls_l_nu_tensor_op_f64, 64x128x16_32x64x16) {
|
164 |
+
|
165 |
+
using ElementOutput = double;
|
166 |
+
using ElementAccumulator = double;
|
167 |
+
|
168 |
+
using Trmm = cutlass::gemm::device::Trmm<
|
169 |
+
double,
|
170 |
+
cutlass::layout::ColumnMajor,
|
171 |
+
cutlass::SideMode::kLeft,
|
172 |
+
cutlass::FillMode::kLower,
|
173 |
+
cutlass::DiagType::kNonUnit,
|
174 |
+
double,
|
175 |
+
cutlass::layout::ColumnMajor,
|
176 |
+
ElementOutput,
|
177 |
+
cutlass::layout::RowMajor,
|
178 |
+
ElementAccumulator,
|
179 |
+
cutlass::arch::OpClassTensorOp,
|
180 |
+
cutlass::arch::Sm80,
|
181 |
+
cutlass::gemm::GemmShape<64, 128, 16>,
|
182 |
+
cutlass::gemm::GemmShape<32, 64, 16>,
|
183 |
+
cutlass::gemm::GemmShape<8, 8, 4>,
|
184 |
+
cutlass::epilogue::thread::LinearCombination<
|
185 |
+
ElementOutput,
|
186 |
+
1,
|
187 |
+
ElementAccumulator,
|
188 |
+
ElementAccumulator
|
189 |
+
>,
|
190 |
+
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
191 |
+
3
|
192 |
+
>;
|
193 |
+
|
194 |
+
EXPECT_TRUE(test::gemm::device::TestAllTrmmUniversal<Trmm>());
|
195 |
+
}
|
196 |
+
|
197 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
198 |
+
|
199 |
+
TEST(SM80_Device_Trmm_f64n_f64n_f64t_ls_l_nu_tensor_op_f64, 128x128x16_32x64x16) {
|
200 |
+
|
201 |
+
using ElementOutput = double;
|
202 |
+
using ElementAccumulator = double;
|
203 |
+
|
204 |
+
using Trmm = cutlass::gemm::device::Trmm<
|
205 |
+
double,
|
206 |
+
cutlass::layout::ColumnMajor,
|
207 |
+
cutlass::SideMode::kLeft,
|
208 |
+
cutlass::FillMode::kLower,
|
209 |
+
cutlass::DiagType::kNonUnit,
|
210 |
+
double,
|
211 |
+
cutlass::layout::ColumnMajor,
|
212 |
+
ElementOutput,
|
213 |
+
cutlass::layout::RowMajor,
|
214 |
+
ElementAccumulator,
|
215 |
+
cutlass::arch::OpClassTensorOp,
|
216 |
+
cutlass::arch::Sm80,
|
217 |
+
cutlass::gemm::GemmShape<128, 128, 16>,
|
218 |
+
cutlass::gemm::GemmShape<32, 64, 16>,
|
219 |
+
cutlass::gemm::GemmShape<8, 8, 4>,
|
220 |
+
cutlass::epilogue::thread::LinearCombination<
|
221 |
+
ElementOutput,
|
222 |
+
1,
|
223 |
+
ElementAccumulator,
|
224 |
+
ElementAccumulator
|
225 |
+
>,
|
226 |
+
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
227 |
+
3
|
228 |
+
>;
|
229 |
+
|
230 |
+
EXPECT_TRUE(test::gemm::device::TestAllTrmmUniversal<Trmm>());
|
231 |
+
}
|
232 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
233 |
+
|
234 |
+
TEST(SM80_Device_Trmm_f64n_f64n_f64t_ls_u_nu_tensor_op_f64, 32x32x16_16x16x16) {
|
235 |
+
|
236 |
+
using ElementOutput = double;
|
237 |
+
using ElementAccumulator = double;
|
238 |
+
|
239 |
+
using Trmm = cutlass::gemm::device::Trmm<
|
240 |
+
double,
|
241 |
+
cutlass::layout::ColumnMajor,
|
242 |
+
cutlass::SideMode::kLeft,
|
243 |
+
cutlass::FillMode::kUpper,
|
244 |
+
cutlass::DiagType::kNonUnit,
|
245 |
+
double,
|
246 |
+
cutlass::layout::ColumnMajor,
|
247 |
+
ElementOutput,
|
248 |
+
cutlass::layout::RowMajor,
|
249 |
+
ElementAccumulator,
|
250 |
+
cutlass::arch::OpClassTensorOp,
|
251 |
+
cutlass::arch::Sm80,
|
252 |
+
cutlass::gemm::GemmShape<32, 32, 16>,
|
253 |
+
cutlass::gemm::GemmShape<16, 16, 16>,
|
254 |
+
cutlass::gemm::GemmShape<8, 8, 4>,
|
255 |
+
cutlass::epilogue::thread::LinearCombination<
|
256 |
+
ElementOutput,
|
257 |
+
1,
|
258 |
+
ElementAccumulator,
|
259 |
+
ElementAccumulator
|
260 |
+
>,
|
261 |
+
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
262 |
+
4
|
263 |
+
>;
|
264 |
+
|
265 |
+
EXPECT_TRUE(test::gemm::device::TestAllTrmmUniversal<Trmm>());
|
266 |
+
}
|
267 |
+
|
268 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
269 |
+
|
270 |
+
TEST(SM80_Device_Trmm_f64n_f64n_f64t_ls_u_nu_tensor_op_f64, 64x64x16_32x32x16) {
|
271 |
+
|
272 |
+
using ElementOutput = double;
|
273 |
+
using ElementAccumulator = double;
|
274 |
+
|
275 |
+
using Trmm = cutlass::gemm::device::Trmm<
|
276 |
+
double,
|
277 |
+
cutlass::layout::ColumnMajor,
|
278 |
+
cutlass::SideMode::kLeft,
|
279 |
+
cutlass::FillMode::kUpper,
|
280 |
+
cutlass::DiagType::kNonUnit,
|
281 |
+
double,
|
282 |
+
cutlass::layout::ColumnMajor,
|
283 |
+
ElementOutput,
|
284 |
+
cutlass::layout::RowMajor,
|
285 |
+
ElementAccumulator,
|
286 |
+
cutlass::arch::OpClassTensorOp,
|
287 |
+
cutlass::arch::Sm80,
|
288 |
+
cutlass::gemm::GemmShape<64, 64, 16>,
|
289 |
+
cutlass::gemm::GemmShape<32, 32, 16>,
|
290 |
+
cutlass::gemm::GemmShape<8, 8, 4>,
|
291 |
+
cutlass::epilogue::thread::LinearCombination<
|
292 |
+
ElementOutput,
|
293 |
+
1,
|
294 |
+
ElementAccumulator,
|
295 |
+
ElementAccumulator
|
296 |
+
>,
|
297 |
+
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
298 |
+
4
|
299 |
+
>;
|
300 |
+
|
301 |
+
EXPECT_TRUE(test::gemm::device::TestAllTrmmUniversal<Trmm>());
|
302 |
+
}
|
303 |
+
|
304 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
305 |
+
|
306 |
+
TEST(SM80_Device_Trmm_f64n_f64n_f64t_ls_u_nu_tensor_op_f64, 128x64x16_64x32x16) {
|
307 |
+
|
308 |
+
using ElementOutput = double;
|
309 |
+
using ElementAccumulator = double;
|
310 |
+
|
311 |
+
using Trmm = cutlass::gemm::device::Trmm<
|
312 |
+
double,
|
313 |
+
cutlass::layout::ColumnMajor,
|
314 |
+
cutlass::SideMode::kLeft,
|
315 |
+
cutlass::FillMode::kUpper,
|
316 |
+
cutlass::DiagType::kNonUnit,
|
317 |
+
double,
|
318 |
+
cutlass::layout::ColumnMajor,
|
319 |
+
ElementOutput,
|
320 |
+
cutlass::layout::RowMajor,
|
321 |
+
ElementAccumulator,
|
322 |
+
cutlass::arch::OpClassTensorOp,
|
323 |
+
cutlass::arch::Sm80,
|
324 |
+
cutlass::gemm::GemmShape<128, 64, 16>,
|
325 |
+
cutlass::gemm::GemmShape<64, 32, 16>,
|
326 |
+
cutlass::gemm::GemmShape<8, 8, 4>,
|
327 |
+
cutlass::epilogue::thread::LinearCombination<
|
328 |
+
ElementOutput,
|
329 |
+
1,
|
330 |
+
ElementAccumulator,
|
331 |
+
ElementAccumulator
|
332 |
+
>,
|
333 |
+
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
334 |
+
4
|
335 |
+
>;
|
336 |
+
|
337 |
+
EXPECT_TRUE(test::gemm::device::TestAllTrmmUniversal<Trmm>());
|
338 |
+
}
|
339 |
+
|
340 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
341 |
+
|
342 |
+
TEST(SM80_Device_Trmm_f64n_f64n_f64t_ls_u_nu_tensor_op_f64, 64x128x16_32x64x16) {
|
343 |
+
|
344 |
+
using ElementOutput = double;
|
345 |
+
using ElementAccumulator = double;
|
346 |
+
|
347 |
+
using Trmm = cutlass::gemm::device::Trmm<
|
348 |
+
double,
|
349 |
+
cutlass::layout::ColumnMajor,
|
350 |
+
cutlass::SideMode::kLeft,
|
351 |
+
cutlass::FillMode::kUpper,
|
352 |
+
cutlass::DiagType::kNonUnit,
|
353 |
+
double,
|
354 |
+
cutlass::layout::ColumnMajor,
|
355 |
+
ElementOutput,
|
356 |
+
cutlass::layout::RowMajor,
|
357 |
+
ElementAccumulator,
|
358 |
+
cutlass::arch::OpClassTensorOp,
|
359 |
+
cutlass::arch::Sm80,
|
360 |
+
cutlass::gemm::GemmShape<64, 128, 16>,
|
361 |
+
cutlass::gemm::GemmShape<32, 64, 16>,
|
362 |
+
cutlass::gemm::GemmShape<8, 8, 4>,
|
363 |
+
cutlass::epilogue::thread::LinearCombination<
|
364 |
+
ElementOutput,
|
365 |
+
1,
|
366 |
+
ElementAccumulator,
|
367 |
+
ElementAccumulator
|
368 |
+
>,
|
369 |
+
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
370 |
+
3
|
371 |
+
>;
|
372 |
+
|
373 |
+
EXPECT_TRUE(test::gemm::device::TestAllTrmmUniversal<Trmm>());
|
374 |
+
}
|
375 |
+
|
376 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
377 |
+
|
378 |
+
TEST(SM80_Device_Trmm_f64n_f64n_f64t_ls_u_nu_tensor_op_f64, 128x128x16_32x64x16) {
|
379 |
+
|
380 |
+
using ElementOutput = double;
|
381 |
+
using ElementAccumulator = double;
|
382 |
+
|
383 |
+
using Trmm = cutlass::gemm::device::Trmm<
|
384 |
+
double,
|
385 |
+
cutlass::layout::ColumnMajor,
|
386 |
+
cutlass::SideMode::kLeft,
|
387 |
+
cutlass::FillMode::kUpper,
|
388 |
+
cutlass::DiagType::kNonUnit,
|
389 |
+
double,
|
390 |
+
cutlass::layout::ColumnMajor,
|
391 |
+
ElementOutput,
|
392 |
+
cutlass::layout::RowMajor,
|
393 |
+
ElementAccumulator,
|
394 |
+
cutlass::arch::OpClassTensorOp,
|
395 |
+
cutlass::arch::Sm80,
|
396 |
+
cutlass::gemm::GemmShape<128, 128, 16>,
|
397 |
+
cutlass::gemm::GemmShape<32, 64, 16>,
|
398 |
+
cutlass::gemm::GemmShape<8, 8, 4>,
|
399 |
+
cutlass::epilogue::thread::LinearCombination<
|
400 |
+
ElementOutput,
|
401 |
+
1,
|
402 |
+
ElementAccumulator,
|
403 |
+
ElementAccumulator
|
404 |
+
>,
|
405 |
+
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
406 |
+
3
|
407 |
+
>;
|
408 |
+
|
409 |
+
EXPECT_TRUE(test::gemm::device::TestAllTrmmUniversal<Trmm>());
|
410 |
+
}
|
411 |
+
|
412 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
413 |
+
|
414 |
+
#endif // #if defined(CUTLASS_ARCH_MMA_SM80_SUPPORTED)
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/test/unit/gemm/threadblock/mma_multistage_sparse_testbed.h
ADDED
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/*! \file
|
32 |
+
\brief Unit testbed for kernel-level GEMM
|
33 |
+
*/
|
34 |
+
|
35 |
+
#pragma once
|
36 |
+
|
37 |
+
#include "../../common/cutlass_unit_test.h"
|
38 |
+
#include "cutlass/aligned_buffer.h"
|
39 |
+
#include "cutlass/array.h"
|
40 |
+
#include "cutlass/core_io.h"
|
41 |
+
#include "cutlass/gemm/gemm.h"
|
42 |
+
#include "cutlass/gemm/threadblock/default_mma_core_sparse_sm80.h"
|
43 |
+
#include "cutlass/layout/matrix.h"
|
44 |
+
#include "cutlass/numeric_types.h"
|
45 |
+
#include "cutlass/transform/threadblock/predicated_tile_access_iterator.h"
|
46 |
+
#include "cutlass/util/distribution.h"
|
47 |
+
#include "cutlass/util/host_tensor.h"
|
48 |
+
#include "cutlass/util/reference/host/gemm.h"
|
49 |
+
#include "cutlass/util/reference/host/tensor_compare.h"
|
50 |
+
#include "cutlass/util/reference/host/tensor_norm.h"
|
51 |
+
#include "cutlass/util/reference/host/tensor_fill.h"
|
52 |
+
#include "cutlass/util/tensor_view_io.h"
|
53 |
+
#include "cutlass/util/host_reorder.h"
|
54 |
+
#include "cutlass/util/host_uncompress.h"
|
55 |
+
|
56 |
+
namespace test {
|
57 |
+
namespace gemm {
|
58 |
+
namespace threadblock {
|
59 |
+
|
60 |
+
////////////////////////////////////////////////////////////////////////////////
|
61 |
+
|
62 |
+
template <typename Mma>
|
63 |
+
__global__ void kernel_multistage_mma_sparse(cutlass::gemm::GemmCoord problem_size,
|
64 |
+
typename Mma::IteratorA::Params params_A,
|
65 |
+
typename Mma::IteratorA::TensorRef ref_A,
|
66 |
+
typename Mma::IteratorB::Params params_B,
|
67 |
+
typename Mma::IteratorB::TensorRef ref_B,
|
68 |
+
typename Mma::ElementC *ptr_C,
|
69 |
+
typename Mma::LayoutC::Stride::Index ldc,
|
70 |
+
typename Mma::IteratorE::Params params_E,
|
71 |
+
typename Mma::IteratorE::TensorRef ref_E) {
|
72 |
+
// Shared storage needed by threadblock-scoped matrix multiply-
|
73 |
+
// Dynamic shared memory base pointer
|
74 |
+
extern __shared__ int GemmSharedStorageBase[];
|
75 |
+
|
76 |
+
// Declare pointer to dynamic shared memory.
|
77 |
+
typename Mma::SharedStorage *shared_storage =
|
78 |
+
reinterpret_cast<typename Mma::SharedStorage *>(GemmSharedStorageBase);
|
79 |
+
|
80 |
+
// Compute threadblock location
|
81 |
+
cutlass::gemm::GemmCoord tb_tile_offset = {int(blockIdx.x), int(blockIdx.y),
|
82 |
+
0};
|
83 |
+
|
84 |
+
cutlass::MatrixCoord tb_offset_A{tb_tile_offset.m() * Mma::Shape::kM,
|
85 |
+
tb_tile_offset.k() / Mma::kSparse};
|
86 |
+
|
87 |
+
cutlass::MatrixCoord tb_offset_B{tb_tile_offset.k(),
|
88 |
+
tb_tile_offset.n() * Mma::Shape::kN};
|
89 |
+
|
90 |
+
cutlass::MatrixCoord tb_offset_E{tb_tile_offset.m() * Mma::Shape::kM,
|
91 |
+
tb_tile_offset.k() / Mma::kSparse};
|
92 |
+
|
93 |
+
// Compute position within threadblock
|
94 |
+
int tb_thread_id = threadIdx.y * blockDim.x + threadIdx.x;
|
95 |
+
|
96 |
+
// Construct iterators to A and B operands
|
97 |
+
typename Mma::IteratorA iterator_A(params_A, ref_A.data(),
|
98 |
+
{problem_size.m(), problem_size.k() / Mma::kSparse},
|
99 |
+
tb_thread_id, tb_offset_A);
|
100 |
+
|
101 |
+
typename Mma::IteratorB iterator_B(params_B, ref_B.data(),
|
102 |
+
{problem_size.k(), problem_size.n()},
|
103 |
+
tb_thread_id, tb_offset_B);
|
104 |
+
|
105 |
+
typename Mma::IteratorE iterator_E(
|
106 |
+
params_E, ref_E.data(),
|
107 |
+
{problem_size.m(),
|
108 |
+
problem_size.k() / Mma::kSparse / Mma::kElementsPerElementE},
|
109 |
+
tb_thread_id, tb_offset_E);
|
110 |
+
|
111 |
+
int warp_id = __shfl_sync(0xffffffff, threadIdx.y, 0);
|
112 |
+
|
113 |
+
// Construct thread-scoped matrix multiply
|
114 |
+
Mma mma(*shared_storage, tb_thread_id, warp_id, threadIdx.x);
|
115 |
+
|
116 |
+
typename Mma::FragmentC accum;
|
117 |
+
|
118 |
+
accum.clear();
|
119 |
+
|
120 |
+
int gemm_k_iterations = (problem_size.k() + Mma::Shape::kK - 1) / Mma::Shape::kK;
|
121 |
+
|
122 |
+
// Compute threadblock-scoped matrix multiply-add
|
123 |
+
mma(gemm_k_iterations, accum, iterator_A, iterator_B, iterator_E, accum);
|
124 |
+
|
125 |
+
// Output results
|
126 |
+
typename Mma::Operator::IteratorC iterator_C({ptr_C, ldc}, threadIdx.x);
|
127 |
+
|
128 |
+
iterator_C.add_tile_offset(
|
129 |
+
{(tb_tile_offset.m() * Mma::WarpCount::kM) +
|
130 |
+
(warp_id % Mma::WarpCount::kM),
|
131 |
+
(tb_tile_offset.n() * Mma::WarpCount::kN) +
|
132 |
+
(warp_id / Mma::WarpCount::kM)});
|
133 |
+
|
134 |
+
iterator_C.store(accum);
|
135 |
+
}
|
136 |
+
|
137 |
+
////////////////////////////////////////////////////////////////////////////////
|
138 |
+
|
139 |
+
/// Structure to compute the matrix product
|
140 |
+
template <
|
141 |
+
/// Threadblock-level matrix multiply-accumulate
|
142 |
+
typename MmaCore_>
|
143 |
+
struct SparseTestbed {
|
144 |
+
/// Threadblock-level GEMM implementation
|
145 |
+
using MmaCore = MmaCore_;
|
146 |
+
using ThreadblockShape = typename MmaCore::Shape;
|
147 |
+
using WarpShape = typename MmaCore::WarpShape;
|
148 |
+
using InstructionShape = typename MmaCore::InstructionShape;
|
149 |
+
using ElementA = typename MmaCore::ElementA;
|
150 |
+
using LayoutA = typename MmaCore::LayoutA;
|
151 |
+
using ElementB = typename MmaCore::ElementB;
|
152 |
+
using LayoutB = typename MmaCore::LayoutB;
|
153 |
+
using ElementC = typename MmaCore::ElementC;
|
154 |
+
using LayoutC = typename MmaCore::LayoutC;
|
155 |
+
using ElementE = typename MmaCore::ElementE;
|
156 |
+
using ThreadMapA = typename MmaCore::IteratorThreadMapA;
|
157 |
+
using ThreadMapB = typename MmaCore::IteratorThreadMapB;
|
158 |
+
using ThreadMapE = typename MmaCore::IteratorThreadMapE;
|
159 |
+
using AccessTypeA = cutlass::Array<ElementA, ThreadMapA::kElementsPerAccess>;
|
160 |
+
using AccessTypeB = cutlass::Array<ElementB, ThreadMapB::kElementsPerAccess>;
|
161 |
+
using AccessTypeE = cutlass::Array<ElementE, ThreadMapE::kElementsPerAccess>;
|
162 |
+
static int const Stages = MmaCore::kStages;
|
163 |
+
static cutlass::arch::CacheOperation::Kind const CacheOpA =
|
164 |
+
MmaCore::kCacheOpA;
|
165 |
+
static cutlass::arch::CacheOperation::Kind const CacheOpB =
|
166 |
+
MmaCore::kCacheOpB;
|
167 |
+
static cutlass::arch::CacheOperation::Kind const CacheOpE =
|
168 |
+
MmaCore::kCacheOpE;
|
169 |
+
|
170 |
+
static int const Sparse = MmaCore::kSparse;
|
171 |
+
static int const MetaSizeInBits = MmaCore::kMetaSizeInBits;
|
172 |
+
static int const MaxID2 = MmaCore::kMaxID2;
|
173 |
+
|
174 |
+
using LayoutE = cutlass::layout::RowMajor;
|
175 |
+
using ReorderedLayoutE = typename MmaCore::GmemLayoutE;
|
176 |
+
|
177 |
+
static int const ElementsPerElementE = MmaCore::kElementsPerElementE;
|
178 |
+
|
179 |
+
// Define iterators over tiles from the A operand
|
180 |
+
using IteratorA =
|
181 |
+
cutlass::transform::threadblock::PredicatedTileAccessIterator<
|
182 |
+
cutlass::MatrixShape<ThreadblockShape::kM, ThreadblockShape::kK / Sparse>,
|
183 |
+
ElementA, LayoutA, 1, ThreadMapA, AccessTypeA>;
|
184 |
+
|
185 |
+
// Define iterators over tiles from the B operand
|
186 |
+
using IteratorB =
|
187 |
+
cutlass::transform::threadblock::PredicatedTileAccessIterator<
|
188 |
+
cutlass::MatrixShape<ThreadblockShape::kK, ThreadblockShape::kN>,
|
189 |
+
ElementB, LayoutB, 0, ThreadMapB, AccessTypeB>;
|
190 |
+
|
191 |
+
// Define iterators over tiles from the E operand
|
192 |
+
using IteratorE =
|
193 |
+
cutlass::transform::threadblock::PredicatedTileAccessIterator<
|
194 |
+
cutlass::MatrixShape<ThreadblockShape::kM, ThreadblockShape::kK /
|
195 |
+
Sparse /
|
196 |
+
ElementsPerElementE>,
|
197 |
+
ElementE, ReorderedLayoutE, 1, ThreadMapE, AccessTypeE>;
|
198 |
+
|
199 |
+
// Define the threadblock-scoped pipelined matrix multiply
|
200 |
+
using Mma = cutlass::gemm::threadblock::SparseMmaMultistage<
|
201 |
+
typename MmaCore::Shape, IteratorA, typename MmaCore::SmemIteratorA,
|
202 |
+
CacheOpA, IteratorB, typename MmaCore::SmemIteratorB, CacheOpB, ElementC,
|
203 |
+
LayoutC, IteratorE, typename MmaCore::SmemIteratorE, CacheOpE,
|
204 |
+
typename MmaCore::MmaPolicy, Stages>;
|
205 |
+
|
206 |
+
//
|
207 |
+
// Data members
|
208 |
+
//
|
209 |
+
|
210 |
+
cutlass::HostTensor<ElementA, LayoutA> matrix_A;
|
211 |
+
cutlass::HostTensor<ElementA, LayoutA> matrix_A_uncompressed;
|
212 |
+
cutlass::HostTensor<ElementB, LayoutB> matrix_B;
|
213 |
+
cutlass::HostTensor<ElementC, LayoutC> matrix_C_computed;
|
214 |
+
cutlass::HostTensor<ElementC, LayoutC> matrix_C_reference;
|
215 |
+
cutlass::HostTensor<ElementE, LayoutE> matrix_E;
|
216 |
+
cutlass::HostTensor<ElementE, ReorderedLayoutE> matrix_E_reordered;
|
217 |
+
|
218 |
+
cutlass::gemm::GemmCoord problem_size;
|
219 |
+
float alpha, beta;
|
220 |
+
|
221 |
+
//
|
222 |
+
// Methods
|
223 |
+
//
|
224 |
+
|
225 |
+
/// Allocates workspace in device memory
|
226 |
+
SparseTestbed(int m, int n, int k, float alpha_ = float(1), float beta_ = float(0))
|
227 |
+
: problem_size(m, n, k), alpha(alpha_), beta(beta_) {
|
228 |
+
matrix_A.reset(cutlass::make_Coord(m, k / Sparse));
|
229 |
+
matrix_A_uncompressed.reset(cutlass::make_Coord(m, k));
|
230 |
+
matrix_B.reset(cutlass::make_Coord(k, n));
|
231 |
+
matrix_C_computed.reset(cutlass::make_Coord(m, n));
|
232 |
+
matrix_C_reference.reset(cutlass::make_Coord(m, n), false);
|
233 |
+
matrix_E.reset(cutlass::make_Coord(m, k / Sparse / ElementsPerElementE));
|
234 |
+
matrix_E_reordered.reset(
|
235 |
+
cutlass::make_Coord(m, k / Sparse / ElementsPerElementE));
|
236 |
+
}
|
237 |
+
|
238 |
+
/// Returns true if the CUDA device is sufficient to execute the kernel.
|
239 |
+
bool sufficient() const {
|
240 |
+
//
|
241 |
+
// Determine SMEM requirements and waive if not satisfied
|
242 |
+
//
|
243 |
+
|
244 |
+
cudaDeviceProp properties;
|
245 |
+
int device_idx;
|
246 |
+
cudaError_t result = cudaGetDevice(&device_idx);
|
247 |
+
|
248 |
+
if (result != cudaSuccess) {
|
249 |
+
throw std::runtime_error("cudaGetDevice() API call failed.");
|
250 |
+
}
|
251 |
+
|
252 |
+
result = cudaGetDeviceProperties(&properties, device_idx);
|
253 |
+
|
254 |
+
if (result != cudaSuccess) {
|
255 |
+
throw std::runtime_error("cudaGetDeviceProperties() failed");
|
256 |
+
}
|
257 |
+
|
258 |
+
return true;
|
259 |
+
}
|
260 |
+
|
261 |
+
/// Runs the test
|
262 |
+
bool run(
|
263 |
+
dim3 grid, dim3 block,
|
264 |
+
cutlass::Distribution::Kind init_A = cutlass::Distribution::Uniform,
|
265 |
+
cutlass::Distribution::Kind init_B = cutlass::Distribution::Uniform,
|
266 |
+
cutlass::Distribution::Kind init_E = cutlass::Distribution::Uniform) {
|
267 |
+
|
268 |
+
// Waive the test
|
269 |
+
if (!sufficient()) {
|
270 |
+
return true;
|
271 |
+
}
|
272 |
+
|
273 |
+
//
|
274 |
+
// initialize device memory
|
275 |
+
//
|
276 |
+
|
277 |
+
if (init_A == cutlass::Distribution::Uniform) {
|
278 |
+
|
279 |
+
int scope_max = 8;
|
280 |
+
int scope_min = -8;
|
281 |
+
|
282 |
+
if (cutlass::sizeof_bits<ElementA>::value == 4) {
|
283 |
+
scope_max = 2;
|
284 |
+
scope_min = -2;
|
285 |
+
} else if (cutlass::sizeof_bits<ElementA>::value == 1) {
|
286 |
+
scope_max = 2;
|
287 |
+
scope_min = 0;
|
288 |
+
}
|
289 |
+
|
290 |
+
uint64_t seed = 7;
|
291 |
+
cutlass::reference::host::TensorFillRandomUniform(
|
292 |
+
matrix_A.host_view(), seed, scope_max, scope_min, 0);
|
293 |
+
} else if (init_A == cutlass::Distribution::Sequential) {
|
294 |
+
cutlass::reference::host::BlockFillSequential(matrix_A.host_data(),
|
295 |
+
matrix_A.capacity());
|
296 |
+
} else if (init_A == cutlass::Distribution::Identity) {
|
297 |
+
cutlass::reference::host::TensorFillIdentity(matrix_A.host_view());
|
298 |
+
} else {
|
299 |
+
return false;
|
300 |
+
}
|
301 |
+
|
302 |
+
if (init_B == cutlass::Distribution::Uniform) {
|
303 |
+
|
304 |
+
int scope_max = 8;
|
305 |
+
int scope_min = -8;
|
306 |
+
|
307 |
+
if (cutlass::sizeof_bits<ElementB>::value == 4) {
|
308 |
+
scope_max = 2;
|
309 |
+
scope_min = -2;
|
310 |
+
} else if (cutlass::sizeof_bits<ElementB>::value == 1) {
|
311 |
+
scope_max = 2;
|
312 |
+
scope_min = 0;
|
313 |
+
}
|
314 |
+
|
315 |
+
uint64_t seed = 7;
|
316 |
+
cutlass::reference::host::TensorFillRandomUniform(
|
317 |
+
matrix_B.host_view(), seed + 16, scope_max, scope_min, 0);
|
318 |
+
} else if (init_B == cutlass::Distribution::Sequential) {
|
319 |
+
cutlass::reference::host::BlockFillSequential(matrix_B.host_data(),
|
320 |
+
matrix_B.capacity());
|
321 |
+
} else if (init_B == cutlass::Distribution::Identity) {
|
322 |
+
cutlass::reference::host::TensorFillIdentity(matrix_B.host_view());
|
323 |
+
} else {
|
324 |
+
return false;
|
325 |
+
}
|
326 |
+
|
327 |
+
cutlass::reference::host::TensorFill(matrix_C_computed.host_view());
|
328 |
+
|
329 |
+
cutlass::reference::host::TensorFill(matrix_C_reference.host_view());
|
330 |
+
|
331 |
+
if (init_E == cutlass::Distribution::Uniform) {
|
332 |
+
uint64_t seed = 7;
|
333 |
+
cutlass::reference::host::TensorFillRandomSparseMeta(
|
334 |
+
matrix_E.host_view(), seed, MetaSizeInBits);
|
335 |
+
} else if (init_E == cutlass::Distribution::Identity) {
|
336 |
+
uint32_t content = (MaxID2 == 1) ? 0x44444444 : 0x4444;
|
337 |
+
cutlass::reference::host::TensorFill(matrix_E.host_view(),
|
338 |
+
(ElementE)(content));
|
339 |
+
} else {
|
340 |
+
return false;
|
341 |
+
}
|
342 |
+
|
343 |
+
cutlass::reorder_meta(matrix_E_reordered.host_ref(), matrix_E.host_ref(),
|
344 |
+
{problem_size.m(), problem_size.n(),
|
345 |
+
problem_size.k() / Sparse / ElementsPerElementE});
|
346 |
+
|
347 |
+
matrix_A.sync_device();
|
348 |
+
matrix_B.sync_device();
|
349 |
+
matrix_C_computed.sync_device();
|
350 |
+
matrix_E_reordered.sync_device();
|
351 |
+
|
352 |
+
typename IteratorA::Params params_A(matrix_A.layout());
|
353 |
+
typename IteratorB::Params params_B(matrix_B.layout());
|
354 |
+
typename IteratorE::Params params_E(matrix_E_reordered.layout());
|
355 |
+
|
356 |
+
cudaError_t result;
|
357 |
+
|
358 |
+
int smem_size = int(sizeof(typename Mma::SharedStorage));
|
359 |
+
if (smem_size >= (48 << 10)) {
|
360 |
+
result = cudaFuncSetAttribute(
|
361 |
+
test::gemm::threadblock::kernel_multistage_mma_sparse<Mma>,
|
362 |
+
cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size);
|
363 |
+
|
364 |
+
if (result != cudaSuccess) {
|
365 |
+
return true;
|
366 |
+
}
|
367 |
+
|
368 |
+
result = cudaFuncSetAttribute(
|
369 |
+
test::gemm::threadblock::kernel_multistage_mma_sparse<Mma>,
|
370 |
+
cudaFuncAttributePreferredSharedMemoryCarveout, 100);
|
371 |
+
|
372 |
+
if (result != cudaSuccess) {
|
373 |
+
return true;
|
374 |
+
}
|
375 |
+
}
|
376 |
+
|
377 |
+
test::gemm::threadblock::kernel_multistage_mma_sparse<Mma>
|
378 |
+
<<<grid, block, smem_size, 0>>>(
|
379 |
+
problem_size, params_A, matrix_A.device_ref(), params_B,
|
380 |
+
matrix_B.device_ref(), matrix_C_computed.device_data(),
|
381 |
+
matrix_C_computed.layout().stride(0), params_E,
|
382 |
+
matrix_E_reordered.device_ref());
|
383 |
+
|
384 |
+
//
|
385 |
+
// Check error code
|
386 |
+
//
|
387 |
+
|
388 |
+
result = cudaDeviceSynchronize();
|
389 |
+
EXPECT_EQ(result, cudaSuccess)
|
390 |
+
<< " kernel error: " << cudaGetErrorString(result);
|
391 |
+
|
392 |
+
matrix_C_computed.sync_host();
|
393 |
+
|
394 |
+
cutlass::uncompress(matrix_A_uncompressed.host_ref(), matrix_A.host_ref(),
|
395 |
+
matrix_E.host_ref(), problem_size.m(),
|
396 |
+
problem_size.k());
|
397 |
+
|
398 |
+
cutlass::reference::host::Gemm<ElementA, LayoutA, ElementB, LayoutB,
|
399 |
+
ElementC, LayoutC, ElementC, ElementC>
|
400 |
+
reference_gemm;
|
401 |
+
|
402 |
+
reference_gemm(problem_size, ElementC(alpha),
|
403 |
+
matrix_A_uncompressed.host_view(), matrix_B.host_view(),
|
404 |
+
ElementC(beta), matrix_C_reference.host_view());
|
405 |
+
|
406 |
+
bool passed = cutlass::reference::host::TensorEquals(
|
407 |
+
matrix_C_computed.host_view(), matrix_C_reference.host_view());
|
408 |
+
|
409 |
+
EXPECT_TRUE(passed);
|
410 |
+
|
411 |
+
if (!passed && CUTLASS_TEST_UNIT_ENABLE_WARNINGS) {
|
412 |
+
|
413 |
+
std::cout
|
414 |
+
<< __FILE__ << ":" << __LINE__ << " "
|
415 |
+
<< "A:\n" << matrix_A.host_view() << "\n"
|
416 |
+
<< "B:\n" << matrix_B.host_view() << "\n"
|
417 |
+
<< "E:\n" << matrix_E.host_view() << "\n"
|
418 |
+
<< "Reference:\n"
|
419 |
+
<< matrix_C_reference.host_view() << "\n"
|
420 |
+
<< "Computed:\n"
|
421 |
+
<< matrix_C_computed.host_view() << "\n";
|
422 |
+
}
|
423 |
+
|
424 |
+
EXPECT_GT(cutlass::reference::host::TensorNorm(matrix_C_reference.host_view()), 0);
|
425 |
+
EXPECT_GT(cutlass::reference::host::TensorNorm(matrix_C_computed.host_view()), 0);
|
426 |
+
|
427 |
+
return passed;
|
428 |
+
}
|
429 |
+
};
|
430 |
+
|
431 |
+
////////////////////////////////////////////////////////////////////////////////
|
432 |
+
|
433 |
+
} // namespace threadblock
|
434 |
+
} // namespace gemm
|
435 |
+
} // namespace test
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/test/unit/gemm/threadblock/mma_pipelined_sm75.cu
ADDED
@@ -0,0 +1,2128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/*! \file
|
32 |
+
\brief Unit tests for threadblock-level GEMM
|
33 |
+
*/
|
34 |
+
|
35 |
+
#include "mma_pipelined_testbed.h"
|
36 |
+
|
37 |
+
#if defined(CUTLASS_ARCH_MMA_SM75_SUPPORTED)
|
38 |
+
|
39 |
+
////////////////////////////////////////////////////////////////////////////////
|
40 |
+
|
41 |
+
TEST(SM75_gemm_threadblock_congruous, tensor_op_64x64x32_64x64x32_16x8x8) {
|
42 |
+
using ElementA = cutlass::half_t;
|
43 |
+
using LayoutA = cutlass::layout::ColumnMajor;
|
44 |
+
using ElementB = cutlass::half_t;
|
45 |
+
using LayoutB = cutlass::layout::RowMajor;
|
46 |
+
using ElementC = float;
|
47 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
48 |
+
|
49 |
+
cutlass::gemm::GemmCoord problem_size(64, 64, 128);
|
50 |
+
|
51 |
+
using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 32>;
|
52 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>;
|
53 |
+
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
|
54 |
+
|
55 |
+
float alpha = 1.f;
|
56 |
+
float beta = 0.0f;
|
57 |
+
|
58 |
+
// Define the MmaCore components
|
59 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
60 |
+
ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
61 |
+
ElementB, LayoutB, ElementC, LayoutC,
|
62 |
+
cutlass::arch::OpClassTensorOp>;
|
63 |
+
|
64 |
+
dim3 grid(1, 1);
|
65 |
+
dim3 block(32, 1, 1);
|
66 |
+
|
67 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
68 |
+
problem_size.k(), alpha, beta)
|
69 |
+
.run(grid, block);
|
70 |
+
}
|
71 |
+
|
72 |
+
////////////////////////////////////////////////////////////////////////////////
|
73 |
+
|
74 |
+
TEST(SM75_gemm_threadblock_congruous, tensor_op_128x64x32_64x32x32_16x8x8) {
|
75 |
+
using ElementA = cutlass::half_t;
|
76 |
+
using LayoutA = cutlass::layout::ColumnMajor;
|
77 |
+
using ElementB = cutlass::half_t;
|
78 |
+
using LayoutB = cutlass::layout::RowMajor;
|
79 |
+
using ElementC = float;
|
80 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
81 |
+
|
82 |
+
cutlass::gemm::GemmCoord problem_size(128, 64, 128);
|
83 |
+
|
84 |
+
using ThreadblockShape = cutlass::gemm::GemmShape<128, 64, 32>;
|
85 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>;
|
86 |
+
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
|
87 |
+
|
88 |
+
float alpha = 1.f;
|
89 |
+
float beta = 0.0f;
|
90 |
+
|
91 |
+
// Define the MmaCore components
|
92 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
93 |
+
ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
94 |
+
ElementB, LayoutB, ElementC, LayoutC,
|
95 |
+
cutlass::arch::OpClassTensorOp>;
|
96 |
+
|
97 |
+
dim3 grid(1, 1);
|
98 |
+
dim3 block(32, 4, 1);
|
99 |
+
|
100 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
101 |
+
problem_size.k(), alpha, beta)
|
102 |
+
.run(grid, block);
|
103 |
+
}
|
104 |
+
|
105 |
+
////////////////////////////////////////////////////////////////////////////////
|
106 |
+
|
107 |
+
TEST(SM75_gemm_threadblock_congruous, tensor_op_64x128x32_32x64x32_16x8x8) {
|
108 |
+
using ElementA = cutlass::half_t;
|
109 |
+
using LayoutA = cutlass::layout::ColumnMajor;
|
110 |
+
using ElementB = cutlass::half_t;
|
111 |
+
using LayoutB = cutlass::layout::RowMajor;
|
112 |
+
using ElementC = float;
|
113 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
114 |
+
|
115 |
+
cutlass::gemm::GemmCoord problem_size(64, 128, 128);
|
116 |
+
|
117 |
+
using ThreadblockShape = cutlass::gemm::GemmShape<64, 128, 32>;
|
118 |
+
using WarpShape = cutlass::gemm::GemmShape<32, 64, 32>;
|
119 |
+
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
|
120 |
+
|
121 |
+
float alpha = 1.f;
|
122 |
+
float beta = 0.0f;
|
123 |
+
|
124 |
+
// Define the MmaCore components
|
125 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
126 |
+
ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
127 |
+
ElementB, LayoutB, ElementC, LayoutC,
|
128 |
+
cutlass::arch::OpClassTensorOp>;
|
129 |
+
|
130 |
+
dim3 grid(1, 1);
|
131 |
+
dim3 block(32, 4, 1);
|
132 |
+
|
133 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
134 |
+
problem_size.k(), alpha, beta)
|
135 |
+
.run(grid, block);
|
136 |
+
}
|
137 |
+
|
138 |
+
////////////////////////////////////////////////////////////////////////////////
|
139 |
+
|
140 |
+
TEST(SM75_gemm_threadblock_congruous, tensor_op_128x128x32_64x64x32_16x8x8) {
|
141 |
+
using ElementA = cutlass::half_t;
|
142 |
+
using LayoutA = cutlass::layout::ColumnMajor;
|
143 |
+
using ElementB = cutlass::half_t;
|
144 |
+
using LayoutB = cutlass::layout::RowMajor;
|
145 |
+
using ElementC = float;
|
146 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
147 |
+
|
148 |
+
cutlass::gemm::GemmCoord problem_size(128, 128, 128);
|
149 |
+
|
150 |
+
using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 32>;
|
151 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>;
|
152 |
+
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
|
153 |
+
|
154 |
+
float alpha = 1.f;
|
155 |
+
float beta = 0.0f;
|
156 |
+
|
157 |
+
// Define the MmaCore components
|
158 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
159 |
+
ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
160 |
+
ElementB, LayoutB, ElementC, LayoutC,
|
161 |
+
cutlass::arch::OpClassTensorOp>;
|
162 |
+
|
163 |
+
dim3 grid(1, 1);
|
164 |
+
dim3 block(32, 4, 1);
|
165 |
+
|
166 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
167 |
+
problem_size.k(), alpha, beta)
|
168 |
+
.run(grid, block);
|
169 |
+
}
|
170 |
+
|
171 |
+
////////////////////////////////////////////////////////////////////////////////
|
172 |
+
|
173 |
+
TEST(SM75_gemm_threadblock_congruous,
|
174 |
+
multicta_256x256x96_128x128x32_64x64x32_16x8x8) {
|
175 |
+
using ElementA = cutlass::half_t;
|
176 |
+
using LayoutA = cutlass::layout::ColumnMajor;
|
177 |
+
using ElementB = cutlass::half_t;
|
178 |
+
using LayoutB = cutlass::layout::RowMajor;
|
179 |
+
using ElementC = cutlass::half_t;
|
180 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
181 |
+
|
182 |
+
cutlass::gemm::GemmCoord problem_size(256, 256, 96);
|
183 |
+
|
184 |
+
using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 32>;
|
185 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>;
|
186 |
+
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
|
187 |
+
|
188 |
+
float alpha = 1.f;
|
189 |
+
float beta = 0.0f;
|
190 |
+
|
191 |
+
// Define the MmaCore components
|
192 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
193 |
+
ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
194 |
+
ElementB, LayoutB, ElementC, LayoutC,
|
195 |
+
cutlass::arch::OpClassTensorOp>;
|
196 |
+
|
197 |
+
dim3 grid(2, 2);
|
198 |
+
dim3 block(32, 4, 1);
|
199 |
+
|
200 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
201 |
+
problem_size.k(), alpha, beta)
|
202 |
+
.run(grid, block);
|
203 |
+
}
|
204 |
+
|
205 |
+
////////////////////////////////////////////////////////////////////////////////
|
206 |
+
|
207 |
+
TEST(SM75_gemm_threadblock_congruous,
|
208 |
+
multicta_512x256x384_256x128x32_64x64x32_16x8x8) {
|
209 |
+
using ElementA = cutlass::half_t;
|
210 |
+
using LayoutA = cutlass::layout::ColumnMajor;
|
211 |
+
using ElementB = cutlass::half_t;
|
212 |
+
using LayoutB = cutlass::layout::RowMajor;
|
213 |
+
using ElementC = cutlass::half_t;
|
214 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
215 |
+
|
216 |
+
cutlass::gemm::GemmCoord problem_size(512, 256, 384);
|
217 |
+
|
218 |
+
using ThreadblockShape = cutlass::gemm::GemmShape<256, 128, 32>;
|
219 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>;
|
220 |
+
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
|
221 |
+
|
222 |
+
float alpha = 1.f;
|
223 |
+
float beta = 0.0f;
|
224 |
+
|
225 |
+
// Define the MmaCore components
|
226 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
227 |
+
ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
228 |
+
ElementB, LayoutB, ElementC, LayoutC,
|
229 |
+
cutlass::arch::OpClassTensorOp>;
|
230 |
+
|
231 |
+
dim3 grid(2, 2);
|
232 |
+
dim3 block(32, 8, 1);
|
233 |
+
|
234 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
235 |
+
problem_size.k(), alpha, beta)
|
236 |
+
.run(grid, block);
|
237 |
+
}
|
238 |
+
|
239 |
+
////////////////////////////////////////////////////////////////////////////////
|
240 |
+
|
241 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_64x64x32_64x64x32_16x8x8) {
|
242 |
+
using ElementA = cutlass::half_t;
|
243 |
+
using LayoutA = cutlass::layout::RowMajor;
|
244 |
+
using ElementB = cutlass::half_t;
|
245 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
246 |
+
using ElementC = float;
|
247 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
248 |
+
|
249 |
+
cutlass::gemm::GemmCoord problem_size(64, 64, 128);
|
250 |
+
|
251 |
+
using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 32>;
|
252 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>;
|
253 |
+
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
|
254 |
+
|
255 |
+
float alpha = 1.f;
|
256 |
+
float beta = 0.0f;
|
257 |
+
|
258 |
+
// Define the MmaCore components
|
259 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
260 |
+
ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
261 |
+
ElementB, LayoutB, ElementC, LayoutC,
|
262 |
+
cutlass::arch::OpClassTensorOp>;
|
263 |
+
|
264 |
+
dim3 grid(1, 1);
|
265 |
+
dim3 block(32, 1, 1);
|
266 |
+
|
267 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
268 |
+
problem_size.k(), alpha, beta)
|
269 |
+
.run(grid, block);
|
270 |
+
}
|
271 |
+
|
272 |
+
////////////////////////////////////////////////////////////////////////////////
|
273 |
+
|
274 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_32x32x32_16x16x32_16x8x8) {
|
275 |
+
using ElementA = cutlass::half_t;
|
276 |
+
using LayoutA = cutlass::layout::RowMajor;
|
277 |
+
using ElementB = cutlass::half_t;
|
278 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
279 |
+
using ElementC = float;
|
280 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
281 |
+
|
282 |
+
cutlass::gemm::GemmCoord problem_size(32, 32, 128);
|
283 |
+
|
284 |
+
using ThreadblockShape = cutlass::gemm::GemmShape<32, 32, 32>;
|
285 |
+
using WarpShape = cutlass::gemm::GemmShape<16, 16, 32>;
|
286 |
+
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
|
287 |
+
|
288 |
+
float alpha = 1.f;
|
289 |
+
float beta = 0.0f;
|
290 |
+
|
291 |
+
// Define the MmaCore components
|
292 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
293 |
+
ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
294 |
+
ElementB, LayoutB, ElementC, LayoutC,
|
295 |
+
cutlass::arch::OpClassTensorOp>;
|
296 |
+
|
297 |
+
dim3 grid(1, 1);
|
298 |
+
dim3 block(32, 4, 1);
|
299 |
+
|
300 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
301 |
+
problem_size.k(), alpha, beta)
|
302 |
+
.run(grid, block);
|
303 |
+
}
|
304 |
+
|
305 |
+
////////////////////////////////////////////////////////////////////////////////
|
306 |
+
|
307 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_32x64x32_16x32x32_16x8x8) {
|
308 |
+
using ElementA = cutlass::half_t;
|
309 |
+
using LayoutA = cutlass::layout::RowMajor;
|
310 |
+
using ElementB = cutlass::half_t;
|
311 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
312 |
+
using ElementC = float;
|
313 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
314 |
+
|
315 |
+
cutlass::gemm::GemmCoord problem_size(32, 64, 128);
|
316 |
+
|
317 |
+
using ThreadblockShape = cutlass::gemm::GemmShape<32, 64, 32>;
|
318 |
+
using WarpShape = cutlass::gemm::GemmShape<16, 32, 32>;
|
319 |
+
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
|
320 |
+
|
321 |
+
float alpha = 1.f;
|
322 |
+
float beta = 0.0f;
|
323 |
+
|
324 |
+
// Define the MmaCore components
|
325 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
326 |
+
ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
327 |
+
ElementB, LayoutB, ElementC, LayoutC,
|
328 |
+
cutlass::arch::OpClassTensorOp>;
|
329 |
+
|
330 |
+
dim3 grid(1, 1);
|
331 |
+
dim3 block(32, 4, 1);
|
332 |
+
|
333 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
334 |
+
problem_size.k(), alpha, beta)
|
335 |
+
.run(grid, block);
|
336 |
+
}
|
337 |
+
|
338 |
+
////////////////////////////////////////////////////////////////////////////////
|
339 |
+
|
340 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_64x32x32_32x16x32_16x8x8) {
|
341 |
+
using ElementA = cutlass::half_t;
|
342 |
+
using LayoutA = cutlass::layout::RowMajor;
|
343 |
+
using ElementB = cutlass::half_t;
|
344 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
345 |
+
using ElementC = float;
|
346 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
347 |
+
|
348 |
+
cutlass::gemm::GemmCoord problem_size(64, 32, 128);
|
349 |
+
|
350 |
+
using ThreadblockShape = cutlass::gemm::GemmShape<64, 32, 32>;
|
351 |
+
using WarpShape = cutlass::gemm::GemmShape<32, 16, 32>;
|
352 |
+
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
|
353 |
+
|
354 |
+
float alpha = 1.f;
|
355 |
+
float beta = 0.0f;
|
356 |
+
|
357 |
+
// Define the MmaCore components
|
358 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
359 |
+
ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
360 |
+
ElementB, LayoutB, ElementC, LayoutC,
|
361 |
+
cutlass::arch::OpClassTensorOp>;
|
362 |
+
|
363 |
+
dim3 grid(1, 1);
|
364 |
+
dim3 block(32, 4, 1);
|
365 |
+
|
366 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
367 |
+
problem_size.k(), alpha, beta)
|
368 |
+
.run(grid, block);
|
369 |
+
}
|
370 |
+
|
371 |
+
////////////////////////////////////////////////////////////////////////////////
|
372 |
+
|
373 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_64x64x32_32x32x32_16x8x8) {
|
374 |
+
using ElementA = cutlass::half_t;
|
375 |
+
using LayoutA = cutlass::layout::RowMajor;
|
376 |
+
using ElementB = cutlass::half_t;
|
377 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
378 |
+
using ElementC = float;
|
379 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
380 |
+
|
381 |
+
cutlass::gemm::GemmCoord problem_size(64, 64, 128);
|
382 |
+
|
383 |
+
using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 32>;
|
384 |
+
using WarpShape = cutlass::gemm::GemmShape<32, 32, 32>;
|
385 |
+
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
|
386 |
+
|
387 |
+
float alpha = 1.f;
|
388 |
+
float beta = 0.0f;
|
389 |
+
|
390 |
+
// Define the MmaCore components
|
391 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
392 |
+
ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
393 |
+
ElementB, LayoutB, ElementC, LayoutC,
|
394 |
+
cutlass::arch::OpClassTensorOp>;
|
395 |
+
|
396 |
+
dim3 grid(1, 1);
|
397 |
+
dim3 block(32, 4, 1);
|
398 |
+
|
399 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
400 |
+
problem_size.k(), alpha, beta)
|
401 |
+
.run(grid, block);
|
402 |
+
}
|
403 |
+
|
404 |
+
////////////////////////////////////////////////////////////////////////////////
|
405 |
+
|
406 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_128x64x32_64x32x32_16x8x8) {
|
407 |
+
using ElementA = cutlass::half_t;
|
408 |
+
using LayoutA = cutlass::layout::RowMajor;
|
409 |
+
using ElementB = cutlass::half_t;
|
410 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
411 |
+
using ElementC = float;
|
412 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
413 |
+
|
414 |
+
cutlass::gemm::GemmCoord problem_size(128, 64, 128);
|
415 |
+
|
416 |
+
using ThreadblockShape = cutlass::gemm::GemmShape<128, 64, 32>;
|
417 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>;
|
418 |
+
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
|
419 |
+
|
420 |
+
float alpha = 1.f;
|
421 |
+
float beta = 0.0f;
|
422 |
+
|
423 |
+
// Define the MmaCore components
|
424 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
425 |
+
ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
426 |
+
ElementB, LayoutB, ElementC, LayoutC,
|
427 |
+
cutlass::arch::OpClassTensorOp>;
|
428 |
+
|
429 |
+
dim3 grid(1, 1);
|
430 |
+
dim3 block(32, 4, 1);
|
431 |
+
|
432 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
433 |
+
problem_size.k(), alpha, beta)
|
434 |
+
.run(grid, block);
|
435 |
+
}
|
436 |
+
|
437 |
+
////////////////////////////////////////////////////////////////////////////////
|
438 |
+
|
439 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_64x128x32_32x64x32_16x8x8) {
|
440 |
+
using ElementA = cutlass::half_t;
|
441 |
+
using LayoutA = cutlass::layout::RowMajor;
|
442 |
+
using ElementB = cutlass::half_t;
|
443 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
444 |
+
using ElementC = float;
|
445 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
446 |
+
|
447 |
+
cutlass::gemm::GemmCoord problem_size(64, 128, 128);
|
448 |
+
|
449 |
+
using ThreadblockShape = cutlass::gemm::GemmShape<64, 128, 32>;
|
450 |
+
using WarpShape = cutlass::gemm::GemmShape<32, 64, 32>;
|
451 |
+
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
|
452 |
+
|
453 |
+
float alpha = 1.f;
|
454 |
+
float beta = 0.0f;
|
455 |
+
|
456 |
+
// Define the MmaCore components
|
457 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
458 |
+
ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
459 |
+
ElementB, LayoutB, ElementC, LayoutC,
|
460 |
+
cutlass::arch::OpClassTensorOp>;
|
461 |
+
|
462 |
+
dim3 grid(1, 1);
|
463 |
+
dim3 block(32, 4, 1);
|
464 |
+
|
465 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
466 |
+
problem_size.k(), alpha, beta)
|
467 |
+
.run(grid, block);
|
468 |
+
}
|
469 |
+
|
470 |
+
////////////////////////////////////////////////////////////////////////////////
|
471 |
+
|
472 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_128x128x32_64x64x32_16x8x8) {
|
473 |
+
using ElementA = cutlass::half_t;
|
474 |
+
using LayoutA = cutlass::layout::RowMajor;
|
475 |
+
using ElementB = cutlass::half_t;
|
476 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
477 |
+
using ElementC = float;
|
478 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
479 |
+
|
480 |
+
cutlass::gemm::GemmCoord problem_size(128, 128, 96);
|
481 |
+
|
482 |
+
using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 32>;
|
483 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>;
|
484 |
+
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
|
485 |
+
|
486 |
+
float alpha = 1.f;
|
487 |
+
float beta = 0.0f;
|
488 |
+
|
489 |
+
// Define the MmaCore components
|
490 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
491 |
+
ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
492 |
+
ElementB, LayoutB, ElementC, LayoutC,
|
493 |
+
cutlass::arch::OpClassTensorOp>;
|
494 |
+
|
495 |
+
dim3 grid(1, 1);
|
496 |
+
dim3 block(32, 4, 1);
|
497 |
+
|
498 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
499 |
+
problem_size.k(), alpha, beta)
|
500 |
+
.run(grid, block);
|
501 |
+
}
|
502 |
+
|
503 |
+
////////////////////////////////////////////////////////////////////////////////
|
504 |
+
|
505 |
+
TEST(SM75_gemm_threadblock_crosswise,
|
506 |
+
multicta_256x256x96_128x128x32_64x64x32_16x8x8) {
|
507 |
+
using ElementA = cutlass::half_t;
|
508 |
+
using LayoutA = cutlass::layout::RowMajor;
|
509 |
+
using ElementB = cutlass::half_t;
|
510 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
511 |
+
using ElementC = float;
|
512 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
513 |
+
|
514 |
+
cutlass::gemm::GemmCoord problem_size(256, 256, 96);
|
515 |
+
|
516 |
+
using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 32>;
|
517 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>;
|
518 |
+
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
|
519 |
+
|
520 |
+
float alpha = 1.f;
|
521 |
+
float beta = 0.0f;
|
522 |
+
|
523 |
+
// Define the MmaCore components
|
524 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
525 |
+
ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
526 |
+
ElementB, LayoutB, ElementC, LayoutC,
|
527 |
+
cutlass::arch::OpClassTensorOp>;
|
528 |
+
|
529 |
+
dim3 grid(2, 2);
|
530 |
+
dim3 block(32, 4, 1);
|
531 |
+
|
532 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
533 |
+
problem_size.k(), alpha, beta)
|
534 |
+
.run(grid, block);
|
535 |
+
}
|
536 |
+
|
537 |
+
////////////////////////////////////////////////////////////////////////////////
|
538 |
+
|
539 |
+
TEST(SM75_gemm_threadblock_crosswise,
|
540 |
+
multicta_512x256x384_256x128x32_64x64x32_16x8x8) {
|
541 |
+
using ElementA = cutlass::half_t;
|
542 |
+
using LayoutA = cutlass::layout::RowMajor;
|
543 |
+
using ElementB = cutlass::half_t;
|
544 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
545 |
+
using ElementC = float;
|
546 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
547 |
+
|
548 |
+
cutlass::gemm::GemmCoord problem_size(512, 256, 384);
|
549 |
+
|
550 |
+
using ThreadblockShape = cutlass::gemm::GemmShape<256, 128, 32>;
|
551 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>;
|
552 |
+
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
|
553 |
+
|
554 |
+
float alpha = 1.f;
|
555 |
+
float beta = 0.0f;
|
556 |
+
|
557 |
+
// Define the MmaCore components
|
558 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
559 |
+
ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
560 |
+
ElementB, LayoutB, ElementC, LayoutC,
|
561 |
+
cutlass::arch::OpClassTensorOp>;
|
562 |
+
|
563 |
+
dim3 grid(2, 2);
|
564 |
+
dim3 block(32, 8, 1);
|
565 |
+
|
566 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
567 |
+
problem_size.k(), alpha, beta)
|
568 |
+
.run(grid, block);
|
569 |
+
}
|
570 |
+
|
571 |
+
////////////////////////////////////////////////////////////////////////////////
|
572 |
+
TEST(SM75_gemm_threadblock_interleaved, tensor_op_32x32x64_16x16x64_8x8x16) {
|
573 |
+
using ElementA = uint8_t;
|
574 |
+
using LayoutA = cutlass::layout::ColumnMajorInterleaved<32>;
|
575 |
+
using ElementB = uint8_t;
|
576 |
+
using LayoutB = cutlass::layout::RowMajorInterleaved<32>;
|
577 |
+
using ElementC = int32_t;
|
578 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
579 |
+
|
580 |
+
cutlass::gemm::GemmCoord problem_size(32, 32, 256);
|
581 |
+
|
582 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 32, 64>;
|
583 |
+
using WarpShape = cutlass::gemm::GemmShape<16, 16, 64>;
|
584 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
|
585 |
+
|
586 |
+
float alpha = 1.f;
|
587 |
+
float beta = 0.f;
|
588 |
+
|
589 |
+
// Define the MmaCore components
|
590 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
591 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
592 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
593 |
+
|
594 |
+
dim3 grid(1, 1);
|
595 |
+
dim3 block(32, 4, 1);
|
596 |
+
|
597 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
598 |
+
problem_size.k(), alpha, beta)
|
599 |
+
.run(grid, block);
|
600 |
+
}
|
601 |
+
|
602 |
+
////////////////////////////////////////////////////////////////////////////////
|
603 |
+
|
604 |
+
TEST(SM75_gemm_threadblock_interleaved, tensor_op_64x32x64_32x16x64_8x8x16) {
|
605 |
+
using ElementA = uint8_t;
|
606 |
+
using LayoutA = cutlass::layout::ColumnMajorInterleaved<32>;
|
607 |
+
using ElementB = uint8_t;
|
608 |
+
using LayoutB = cutlass::layout::RowMajorInterleaved<32>;
|
609 |
+
using ElementC = int32_t;
|
610 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
611 |
+
|
612 |
+
cutlass::gemm::GemmCoord problem_size(64, 32, 256);
|
613 |
+
|
614 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 32, 64>;
|
615 |
+
using WarpShape = cutlass::gemm::GemmShape<32, 16, 64>;
|
616 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
|
617 |
+
|
618 |
+
float alpha = 1.f;
|
619 |
+
float beta = 0.f;
|
620 |
+
|
621 |
+
// Define the MmaCore components
|
622 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
623 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
624 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
625 |
+
|
626 |
+
dim3 grid(1, 1);
|
627 |
+
dim3 block(32, 4, 1);
|
628 |
+
|
629 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
630 |
+
problem_size.k(), alpha, beta)
|
631 |
+
.run(grid, block);
|
632 |
+
}
|
633 |
+
|
634 |
+
////////////////////////////////////////////////////////////////////////////////
|
635 |
+
|
636 |
+
TEST(SM75_gemm_threadblock_interleaved, tensor_op_32x64x64_16x32x64_8x8x16) {
|
637 |
+
using ElementA = uint8_t;
|
638 |
+
using LayoutA = cutlass::layout::ColumnMajorInterleaved<32>;
|
639 |
+
using ElementB = uint8_t;
|
640 |
+
using LayoutB = cutlass::layout::RowMajorInterleaved<32>;
|
641 |
+
using ElementC = int32_t;
|
642 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
643 |
+
|
644 |
+
cutlass::gemm::GemmCoord problem_size(32, 64, 256);
|
645 |
+
|
646 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 64, 64>;
|
647 |
+
using WarpShape = cutlass::gemm::GemmShape<16, 32, 64>;
|
648 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
|
649 |
+
|
650 |
+
float alpha = 1.f;
|
651 |
+
float beta = 0.f;
|
652 |
+
|
653 |
+
// Define the MmaCore components
|
654 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
655 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
656 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
657 |
+
|
658 |
+
dim3 grid(1, 1);
|
659 |
+
dim3 block(32, 4, 1);
|
660 |
+
|
661 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
662 |
+
problem_size.k(), alpha, beta)
|
663 |
+
.run(grid, block);
|
664 |
+
}
|
665 |
+
|
666 |
+
////////////////////////////////////////////////////////////////////////////////
|
667 |
+
|
668 |
+
TEST(SM75_gemm_threadblock_interleaved, tensor_op_64x64x64_32x32x64_8x8x16) {
|
669 |
+
using ElementA = uint8_t;
|
670 |
+
using LayoutA = cutlass::layout::ColumnMajorInterleaved<32>;
|
671 |
+
using ElementB = uint8_t;
|
672 |
+
using LayoutB = cutlass::layout::RowMajorInterleaved<32>;
|
673 |
+
using ElementC = int32_t;
|
674 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
675 |
+
|
676 |
+
cutlass::gemm::GemmCoord problem_size(64, 64, 256);
|
677 |
+
|
678 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 64>;
|
679 |
+
using WarpShape = cutlass::gemm::GemmShape<32, 32, 64>;
|
680 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
|
681 |
+
|
682 |
+
float alpha = 1.f;
|
683 |
+
float beta = 0.f;
|
684 |
+
|
685 |
+
// Define the MmaCore components
|
686 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
687 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
688 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
689 |
+
|
690 |
+
dim3 grid(1, 1);
|
691 |
+
dim3 block(32, 4, 1);
|
692 |
+
|
693 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
694 |
+
problem_size.k(), alpha, beta)
|
695 |
+
.run(grid, block);
|
696 |
+
}
|
697 |
+
|
698 |
+
////////////////////////////////////////////////////////////////////////////////
|
699 |
+
|
700 |
+
TEST(SM75_gemm_threadblock_interleaved, tensor_op_128x64x64_64x32x64_8x8x16) {
|
701 |
+
using ElementA = uint8_t;
|
702 |
+
using LayoutA = cutlass::layout::ColumnMajorInterleaved<32>;
|
703 |
+
using ElementB = uint8_t;
|
704 |
+
using LayoutB = cutlass::layout::RowMajorInterleaved<32>;
|
705 |
+
using ElementC = int32_t;
|
706 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
707 |
+
|
708 |
+
cutlass::gemm::GemmCoord problem_size(128, 64, 256);
|
709 |
+
|
710 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 64, 64>;
|
711 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 32, 64>;
|
712 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
|
713 |
+
|
714 |
+
float alpha = 1.f;
|
715 |
+
float beta = 0.f;
|
716 |
+
|
717 |
+
// Define the MmaCore component
|
718 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
719 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
720 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
721 |
+
|
722 |
+
dim3 grid(1, 1);
|
723 |
+
dim3 block(32, 4, 1);
|
724 |
+
|
725 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
726 |
+
problem_size.k(), alpha, beta)
|
727 |
+
.run(grid, block);
|
728 |
+
}
|
729 |
+
|
730 |
+
////////////////////////////////////////////////////////////////////////////////
|
731 |
+
|
732 |
+
TEST(SM75_gemm_threadblock_interleaved, tensor_op_64x128x64_32x64x64_8x8x16) {
|
733 |
+
using ElementA = uint8_t;
|
734 |
+
using LayoutA = cutlass::layout::ColumnMajorInterleaved<32>;
|
735 |
+
using ElementB = uint8_t;
|
736 |
+
using LayoutB = cutlass::layout::RowMajorInterleaved<32>;
|
737 |
+
using ElementC = int32_t;
|
738 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
739 |
+
|
740 |
+
cutlass::gemm::GemmCoord problem_size(64, 128, 256);
|
741 |
+
|
742 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 128, 64>;
|
743 |
+
using WarpShape = cutlass::gemm::GemmShape<32, 64, 64>;
|
744 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
|
745 |
+
|
746 |
+
float alpha = 1.f;
|
747 |
+
float beta = 0.f;
|
748 |
+
|
749 |
+
// Define the MmaCore components
|
750 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
751 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
752 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
753 |
+
|
754 |
+
dim3 grid(1, 1);
|
755 |
+
dim3 block(32, 4, 1);
|
756 |
+
|
757 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
758 |
+
problem_size.k(), alpha, beta)
|
759 |
+
.run(grid, block);
|
760 |
+
}
|
761 |
+
|
762 |
+
////////////////////////////////////////////////////////////////////////////////
|
763 |
+
|
764 |
+
TEST(SM75_gemm_threadblock_interleaved, tensor_op_128x128x64_64x64x64_8x8x16) {
|
765 |
+
using ElementA = uint8_t;
|
766 |
+
using LayoutA = cutlass::layout::ColumnMajorInterleaved<32>;
|
767 |
+
using ElementB = uint8_t;
|
768 |
+
using LayoutB = cutlass::layout::RowMajorInterleaved<32>;
|
769 |
+
using ElementC = int32_t;
|
770 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
771 |
+
|
772 |
+
cutlass::gemm::GemmCoord problem_size(128, 128, 256);
|
773 |
+
|
774 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 64>;
|
775 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>;
|
776 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
|
777 |
+
|
778 |
+
float alpha = 1.f;
|
779 |
+
float beta = 0.f;
|
780 |
+
|
781 |
+
// Define the MmaCore components
|
782 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
783 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
784 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
785 |
+
|
786 |
+
dim3 grid(1, 1);
|
787 |
+
dim3 block(32, 4, 1);
|
788 |
+
|
789 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
790 |
+
problem_size.k(), alpha, beta)
|
791 |
+
.run(grid, block);
|
792 |
+
}
|
793 |
+
|
794 |
+
////////////////////////////////////////////////////////////////////////////////
|
795 |
+
|
796 |
+
TEST(SM75_gemm_threadblock_interleaved,
|
797 |
+
multicta_256x256x192_128x128x64_64x64x64_8x8x16) {
|
798 |
+
using ElementA = uint8_t;
|
799 |
+
using LayoutA = cutlass::layout::ColumnMajorInterleaved<32>;
|
800 |
+
using ElementB = uint8_t;
|
801 |
+
using LayoutB = cutlass::layout::RowMajorInterleaved<32>;
|
802 |
+
using ElementC = int32_t;
|
803 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
804 |
+
|
805 |
+
cutlass::gemm::GemmCoord problem_size(256, 256, 192);
|
806 |
+
|
807 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 64>;
|
808 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>;
|
809 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
|
810 |
+
|
811 |
+
float alpha = 1.f;
|
812 |
+
float beta = 0.f;
|
813 |
+
|
814 |
+
// Define the MmaCore components
|
815 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
816 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
817 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
818 |
+
|
819 |
+
dim3 grid(2, 2);
|
820 |
+
dim3 block(32, 4, 1);
|
821 |
+
|
822 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
823 |
+
problem_size.k(), alpha, beta)
|
824 |
+
.run(grid, block);
|
825 |
+
}
|
826 |
+
|
827 |
+
////////////////////////////////////////////////////////////////////////////////
|
828 |
+
|
829 |
+
TEST(SM75_gemm_threadblock_interleaved,
|
830 |
+
multicta_512x256x768_256x128x64_64x64x64_8x8x16) {
|
831 |
+
using ElementA = uint8_t;
|
832 |
+
using LayoutA = cutlass::layout::ColumnMajorInterleaved<32>;
|
833 |
+
using ElementB = uint8_t;
|
834 |
+
using LayoutB = cutlass::layout::RowMajorInterleaved<32>;
|
835 |
+
using ElementC = int32_t;
|
836 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
837 |
+
|
838 |
+
cutlass::gemm::GemmCoord problem_size(512, 256, 768);
|
839 |
+
|
840 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<256, 128, 64>;
|
841 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>;
|
842 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
|
843 |
+
|
844 |
+
float alpha = 1.f;
|
845 |
+
float beta = 0.f;
|
846 |
+
|
847 |
+
// Define the MmaCore components
|
848 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
849 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
850 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
851 |
+
|
852 |
+
dim3 grid(2, 2);
|
853 |
+
dim3 block(32, 8, 1);
|
854 |
+
|
855 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
856 |
+
problem_size.k(), alpha, beta)
|
857 |
+
.run(grid, block);
|
858 |
+
}
|
859 |
+
|
860 |
+
////////////////////////////////////////////////////////////////////////////////
|
861 |
+
|
862 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_64x64x64_64x64x64_8x8x16) {
|
863 |
+
using ElementA = uint8_t;
|
864 |
+
using LayoutA = cutlass::layout::RowMajor;
|
865 |
+
using ElementB = uint8_t;
|
866 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
867 |
+
using ElementC = int32_t;
|
868 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
869 |
+
|
870 |
+
cutlass::gemm::GemmCoord problem_size(64, 64, 256);
|
871 |
+
|
872 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 64>;
|
873 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>;
|
874 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
|
875 |
+
|
876 |
+
float alpha = 1.f;
|
877 |
+
float beta = 0.f;
|
878 |
+
|
879 |
+
// Define the MmaCore components
|
880 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
881 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
882 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
883 |
+
|
884 |
+
dim3 grid(1, 1);
|
885 |
+
dim3 block(32, 1, 1);
|
886 |
+
|
887 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
888 |
+
problem_size.k(), alpha, beta)
|
889 |
+
.run(grid, block);
|
890 |
+
}
|
891 |
+
|
892 |
+
////////////////////////////////////////////////////////////////////////////////
|
893 |
+
|
894 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_32x32x64_16x16x64_8x8x16) {
|
895 |
+
using ElementA = uint8_t;
|
896 |
+
using LayoutA = cutlass::layout::RowMajor;
|
897 |
+
using ElementB = uint8_t;
|
898 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
899 |
+
using ElementC = int32_t;
|
900 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
901 |
+
|
902 |
+
cutlass::gemm::GemmCoord problem_size(32, 32, 256);
|
903 |
+
|
904 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 32, 64>;
|
905 |
+
using WarpShape = cutlass::gemm::GemmShape<16, 16, 64>;
|
906 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
|
907 |
+
|
908 |
+
float alpha = 1.f;
|
909 |
+
float beta = 0.f;
|
910 |
+
|
911 |
+
// Define the MmaCore components
|
912 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
913 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
914 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
915 |
+
|
916 |
+
dim3 grid(1, 1);
|
917 |
+
dim3 block(32, 4, 1);
|
918 |
+
|
919 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
920 |
+
problem_size.k(), alpha, beta)
|
921 |
+
.run(grid, block);
|
922 |
+
}
|
923 |
+
|
924 |
+
////////////////////////////////////////////////////////////////////////////////
|
925 |
+
|
926 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_64x32x64_32x16x64_8x8x16) {
|
927 |
+
using ElementA = uint8_t;
|
928 |
+
using LayoutA = cutlass::layout::RowMajor;
|
929 |
+
using ElementB = uint8_t;
|
930 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
931 |
+
using ElementC = int32_t;
|
932 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
933 |
+
|
934 |
+
cutlass::gemm::GemmCoord problem_size(64, 32, 256);
|
935 |
+
|
936 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 32, 64>;
|
937 |
+
using WarpShape = cutlass::gemm::GemmShape<32, 16, 64>;
|
938 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
|
939 |
+
|
940 |
+
float alpha = 1.f;
|
941 |
+
float beta = 0.f;
|
942 |
+
|
943 |
+
// Define the MmaCore components
|
944 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
945 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
946 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
947 |
+
|
948 |
+
dim3 grid(1, 1);
|
949 |
+
dim3 block(32, 4, 1);
|
950 |
+
|
951 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
952 |
+
problem_size.k(), alpha, beta)
|
953 |
+
.run(grid, block);
|
954 |
+
}
|
955 |
+
|
956 |
+
////////////////////////////////////////////////////////////////////////////////
|
957 |
+
|
958 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_32x64x64_16x32x64_8x8x16) {
|
959 |
+
using ElementA = uint8_t;
|
960 |
+
using LayoutA = cutlass::layout::RowMajor;
|
961 |
+
using ElementB = uint8_t;
|
962 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
963 |
+
using ElementC = int32_t;
|
964 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
965 |
+
|
966 |
+
cutlass::gemm::GemmCoord problem_size(32, 64, 256);
|
967 |
+
|
968 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 64, 64>;
|
969 |
+
using WarpShape = cutlass::gemm::GemmShape<16, 32, 64>;
|
970 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
|
971 |
+
|
972 |
+
float alpha = 1.f;
|
973 |
+
float beta = 0.f;
|
974 |
+
|
975 |
+
// Define the MmaCore components
|
976 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
977 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
978 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
979 |
+
|
980 |
+
dim3 grid(1, 1);
|
981 |
+
dim3 block(32, 4, 1);
|
982 |
+
|
983 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
984 |
+
problem_size.k(), alpha, beta)
|
985 |
+
.run(grid, block);
|
986 |
+
}
|
987 |
+
|
988 |
+
////////////////////////////////////////////////////////////////////////////////
|
989 |
+
|
990 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_64x64x64_32x32x64_8x8x16) {
|
991 |
+
using ElementA = uint8_t;
|
992 |
+
using LayoutA = cutlass::layout::RowMajor;
|
993 |
+
using ElementB = uint8_t;
|
994 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
995 |
+
using ElementC = int32_t;
|
996 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
997 |
+
|
998 |
+
cutlass::gemm::GemmCoord problem_size(64, 64, 256);
|
999 |
+
|
1000 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 64>;
|
1001 |
+
using WarpShape = cutlass::gemm::GemmShape<32, 32, 64>;
|
1002 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
|
1003 |
+
|
1004 |
+
float alpha = 1.f;
|
1005 |
+
float beta = 0.f;
|
1006 |
+
|
1007 |
+
// Define the MmaCore components
|
1008 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
1009 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
1010 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
1011 |
+
|
1012 |
+
dim3 grid(1, 1);
|
1013 |
+
dim3 block(32, 4, 1);
|
1014 |
+
|
1015 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
1016 |
+
problem_size.k(), alpha, beta)
|
1017 |
+
.run(grid, block);
|
1018 |
+
}
|
1019 |
+
|
1020 |
+
////////////////////////////////////////////////////////////////////////////////
|
1021 |
+
|
1022 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_128x64x64_64x32x64_8x8x16) {
|
1023 |
+
using ElementA = uint8_t;
|
1024 |
+
using LayoutA = cutlass::layout::RowMajor;
|
1025 |
+
using ElementB = uint8_t;
|
1026 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
1027 |
+
using ElementC = int32_t;
|
1028 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
1029 |
+
|
1030 |
+
cutlass::gemm::GemmCoord problem_size(128, 64, 256);
|
1031 |
+
|
1032 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 64, 64>;
|
1033 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 32, 64>;
|
1034 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
|
1035 |
+
|
1036 |
+
float alpha = 1.f;
|
1037 |
+
float beta = 0.f;
|
1038 |
+
|
1039 |
+
// Define the MmaCore component
|
1040 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
1041 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
1042 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
1043 |
+
|
1044 |
+
dim3 grid(1, 1);
|
1045 |
+
dim3 block(32, 4, 1);
|
1046 |
+
|
1047 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
1048 |
+
problem_size.k(), alpha, beta)
|
1049 |
+
.run(grid, block);
|
1050 |
+
}
|
1051 |
+
|
1052 |
+
////////////////////////////////////////////////////////////////////////////////
|
1053 |
+
|
1054 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_64x128x64_32x64x64_8x8x16) {
|
1055 |
+
using ElementA = uint8_t;
|
1056 |
+
using LayoutA = cutlass::layout::RowMajor;
|
1057 |
+
using ElementB = uint8_t;
|
1058 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
1059 |
+
using ElementC = int32_t;
|
1060 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
1061 |
+
|
1062 |
+
cutlass::gemm::GemmCoord problem_size(64, 128, 256);
|
1063 |
+
|
1064 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 128, 64>;
|
1065 |
+
using WarpShape = cutlass::gemm::GemmShape<32, 64, 64>;
|
1066 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
|
1067 |
+
|
1068 |
+
float alpha = 1.f;
|
1069 |
+
float beta = 0.f;
|
1070 |
+
|
1071 |
+
// Define the MmaCore components
|
1072 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
1073 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
1074 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
1075 |
+
|
1076 |
+
dim3 grid(1, 1);
|
1077 |
+
dim3 block(32, 4, 1);
|
1078 |
+
|
1079 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
1080 |
+
problem_size.k(), alpha, beta)
|
1081 |
+
.run(grid, block);
|
1082 |
+
}
|
1083 |
+
|
1084 |
+
////////////////////////////////////////////////////////////////////////////////
|
1085 |
+
|
1086 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_128x128x64_64x64x64_8x8x16) {
|
1087 |
+
using ElementA = uint8_t;
|
1088 |
+
using LayoutA = cutlass::layout::RowMajor;
|
1089 |
+
using ElementB = uint8_t;
|
1090 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
1091 |
+
using ElementC = int32_t;
|
1092 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
1093 |
+
|
1094 |
+
cutlass::gemm::GemmCoord problem_size(128, 128, 256);
|
1095 |
+
|
1096 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 64>;
|
1097 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>;
|
1098 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
|
1099 |
+
|
1100 |
+
float alpha = 1.f;
|
1101 |
+
float beta = 0.f;
|
1102 |
+
|
1103 |
+
// Define the MmaCore components
|
1104 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
1105 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
1106 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
1107 |
+
|
1108 |
+
dim3 grid(1, 1);
|
1109 |
+
dim3 block(32, 4, 1);
|
1110 |
+
|
1111 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
1112 |
+
problem_size.k(), alpha, beta)
|
1113 |
+
.run(grid, block);
|
1114 |
+
}
|
1115 |
+
|
1116 |
+
////////////////////////////////////////////////////////////////////////////////
|
1117 |
+
|
1118 |
+
TEST(SM75_gemm_threadblock_crosswise,
|
1119 |
+
multicta_256x256x192_128x128x64_64x64x64_8x8x16) {
|
1120 |
+
using ElementA = uint8_t;
|
1121 |
+
using LayoutA = cutlass::layout::RowMajor;
|
1122 |
+
using ElementB = uint8_t;
|
1123 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
1124 |
+
using ElementC = int32_t;
|
1125 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
1126 |
+
|
1127 |
+
cutlass::gemm::GemmCoord problem_size(256, 256, 192);
|
1128 |
+
|
1129 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 64>;
|
1130 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>;
|
1131 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
|
1132 |
+
|
1133 |
+
float alpha = 1.f;
|
1134 |
+
float beta = 0.f;
|
1135 |
+
|
1136 |
+
// Define the MmaCore components
|
1137 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
1138 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
1139 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
1140 |
+
|
1141 |
+
dim3 grid(2, 2);
|
1142 |
+
dim3 block(32, 4, 1);
|
1143 |
+
|
1144 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
1145 |
+
problem_size.k(), alpha, beta)
|
1146 |
+
.run(grid, block);
|
1147 |
+
}
|
1148 |
+
|
1149 |
+
////////////////////////////////////////////////////////////////////////////////
|
1150 |
+
|
1151 |
+
TEST(SM75_gemm_threadblock_crosswise,
|
1152 |
+
multicta_512x256x768_256x128x64_64x64x64_8x8x16) {
|
1153 |
+
using ElementA = uint8_t;
|
1154 |
+
using LayoutA = cutlass::layout::RowMajor;
|
1155 |
+
using ElementB = uint8_t;
|
1156 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
1157 |
+
using ElementC = int32_t;
|
1158 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
1159 |
+
|
1160 |
+
cutlass::gemm::GemmCoord problem_size(512, 256, 768);
|
1161 |
+
|
1162 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<256, 128, 64>;
|
1163 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>;
|
1164 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
|
1165 |
+
|
1166 |
+
float alpha = 1.f;
|
1167 |
+
float beta = 0.f;
|
1168 |
+
|
1169 |
+
// Define the MmaCore components
|
1170 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
1171 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
1172 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
1173 |
+
|
1174 |
+
dim3 grid(2, 2);
|
1175 |
+
dim3 block(32, 8, 1);
|
1176 |
+
|
1177 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
1178 |
+
problem_size.k(), alpha, beta)
|
1179 |
+
.run(grid, block);
|
1180 |
+
}
|
1181 |
+
|
1182 |
+
////////////////////////////////////////////////////////////////////////////////
|
1183 |
+
|
1184 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_64x64x128_64x64x128_8x8x32) {
|
1185 |
+
using ElementA = cutlass::uint4b_t;
|
1186 |
+
using LayoutA = cutlass::layout::RowMajor;
|
1187 |
+
using ElementB = cutlass::uint4b_t;
|
1188 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
1189 |
+
using ElementC = int32_t;
|
1190 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
1191 |
+
|
1192 |
+
cutlass::gemm::GemmCoord problem_size(64, 64, 512);
|
1193 |
+
|
1194 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 128>;
|
1195 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 64, 128>;
|
1196 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>;
|
1197 |
+
|
1198 |
+
float alpha = 1.f;
|
1199 |
+
float beta = 0.f;
|
1200 |
+
|
1201 |
+
// Define the MmaCore components
|
1202 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
1203 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
1204 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
1205 |
+
|
1206 |
+
dim3 grid(1, 1);
|
1207 |
+
dim3 block(32, 1, 1);
|
1208 |
+
|
1209 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
1210 |
+
problem_size.k(), alpha, beta)
|
1211 |
+
.run(grid, block);
|
1212 |
+
}
|
1213 |
+
|
1214 |
+
////////////////////////////////////////////////////////////////////////////////
|
1215 |
+
|
1216 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_32x32x128_16x16x128_8x8x32) {
|
1217 |
+
using ElementA = cutlass::uint4b_t;
|
1218 |
+
using LayoutA = cutlass::layout::RowMajor;
|
1219 |
+
using ElementB = cutlass::uint4b_t;
|
1220 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
1221 |
+
using ElementC = int32_t;
|
1222 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
1223 |
+
|
1224 |
+
cutlass::gemm::GemmCoord problem_size(32, 32, 512);
|
1225 |
+
|
1226 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 32, 128>;
|
1227 |
+
using WarpShape = cutlass::gemm::GemmShape<16, 16, 128>;
|
1228 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>;
|
1229 |
+
|
1230 |
+
float alpha = 1.f;
|
1231 |
+
float beta = 0.f;
|
1232 |
+
|
1233 |
+
// Define the MmaCore components
|
1234 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
1235 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
1236 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
1237 |
+
|
1238 |
+
dim3 grid(1, 1);
|
1239 |
+
dim3 block(32, 4, 1);
|
1240 |
+
|
1241 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
1242 |
+
problem_size.k(), alpha, beta)
|
1243 |
+
.run(grid, block);
|
1244 |
+
}
|
1245 |
+
|
1246 |
+
////////////////////////////////////////////////////////////////////////////////
|
1247 |
+
|
1248 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_64x32x128_32x16x128_8x8x32) {
|
1249 |
+
using ElementA = cutlass::uint4b_t;
|
1250 |
+
using LayoutA = cutlass::layout::RowMajor;
|
1251 |
+
using ElementB = cutlass::uint4b_t;
|
1252 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
1253 |
+
using ElementC = int32_t;
|
1254 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
1255 |
+
|
1256 |
+
cutlass::gemm::GemmCoord problem_size(64, 32, 512);
|
1257 |
+
|
1258 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 32, 128>;
|
1259 |
+
using WarpShape = cutlass::gemm::GemmShape<32, 16, 128>;
|
1260 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>;
|
1261 |
+
|
1262 |
+
float alpha = 1.f;
|
1263 |
+
float beta = 0.f;
|
1264 |
+
|
1265 |
+
// Define the MmaCore components
|
1266 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
1267 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
1268 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
1269 |
+
|
1270 |
+
dim3 grid(1, 1);
|
1271 |
+
dim3 block(32, 4, 1);
|
1272 |
+
|
1273 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
1274 |
+
problem_size.k(), alpha, beta)
|
1275 |
+
.run(grid, block);
|
1276 |
+
}
|
1277 |
+
|
1278 |
+
////////////////////////////////////////////////////////////////////////////////
|
1279 |
+
|
1280 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_32x64x128_16x32x128_8x8x32) {
|
1281 |
+
using ElementA = cutlass::uint4b_t;
|
1282 |
+
using LayoutA = cutlass::layout::RowMajor;
|
1283 |
+
using ElementB = cutlass::uint4b_t;
|
1284 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
1285 |
+
using ElementC = int32_t;
|
1286 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
1287 |
+
|
1288 |
+
cutlass::gemm::GemmCoord problem_size(32, 64, 512);
|
1289 |
+
|
1290 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 64, 128>;
|
1291 |
+
using WarpShape = cutlass::gemm::GemmShape<16, 32, 128>;
|
1292 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>;
|
1293 |
+
|
1294 |
+
float alpha = 1.f;
|
1295 |
+
float beta = 0.f;
|
1296 |
+
|
1297 |
+
// Define the MmaCore components
|
1298 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
1299 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
1300 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
1301 |
+
|
1302 |
+
dim3 grid(1, 1);
|
1303 |
+
dim3 block(32, 4, 1);
|
1304 |
+
|
1305 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
1306 |
+
problem_size.k(), alpha, beta)
|
1307 |
+
.run(grid, block);
|
1308 |
+
}
|
1309 |
+
|
1310 |
+
////////////////////////////////////////////////////////////////////////////////
|
1311 |
+
|
1312 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_64x64x128_32x32x128_8x8x32) {
|
1313 |
+
using ElementA = cutlass::uint4b_t;
|
1314 |
+
using LayoutA = cutlass::layout::RowMajor;
|
1315 |
+
using ElementB = cutlass::uint4b_t;
|
1316 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
1317 |
+
using ElementC = int32_t;
|
1318 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
1319 |
+
|
1320 |
+
cutlass::gemm::GemmCoord problem_size(64, 64, 512);
|
1321 |
+
|
1322 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 128>;
|
1323 |
+
using WarpShape = cutlass::gemm::GemmShape<32, 32, 128>;
|
1324 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>;
|
1325 |
+
|
1326 |
+
float alpha = 1.f;
|
1327 |
+
float beta = 0.f;
|
1328 |
+
|
1329 |
+
// Define the MmaCore components
|
1330 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
1331 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
1332 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
1333 |
+
|
1334 |
+
dim3 grid(1, 1);
|
1335 |
+
dim3 block(32, 4, 1);
|
1336 |
+
|
1337 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
1338 |
+
problem_size.k(), alpha, beta)
|
1339 |
+
.run(grid, block);
|
1340 |
+
}
|
1341 |
+
|
1342 |
+
////////////////////////////////////////////////////////////////////////////////
|
1343 |
+
|
1344 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_128x64x128_64x32x128_8x8x32) {
|
1345 |
+
using ElementA = cutlass::uint4b_t;
|
1346 |
+
using LayoutA = cutlass::layout::RowMajor;
|
1347 |
+
using ElementB = cutlass::uint4b_t;
|
1348 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
1349 |
+
using ElementC = int32_t;
|
1350 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
1351 |
+
|
1352 |
+
cutlass::gemm::GemmCoord problem_size(128, 64, 512);
|
1353 |
+
|
1354 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 64, 128>;
|
1355 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 32, 128>;
|
1356 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>;
|
1357 |
+
|
1358 |
+
float alpha = 1.f;
|
1359 |
+
float beta = 0.f;
|
1360 |
+
|
1361 |
+
// Define the MmaCore component
|
1362 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
1363 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
1364 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
1365 |
+
|
1366 |
+
dim3 grid(1, 1);
|
1367 |
+
dim3 block(32, 4, 1);
|
1368 |
+
|
1369 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
1370 |
+
problem_size.k(), alpha, beta)
|
1371 |
+
.run(grid, block);
|
1372 |
+
}
|
1373 |
+
|
1374 |
+
////////////////////////////////////////////////////////////////////////////////
|
1375 |
+
|
1376 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_64x128x128_32x64x128_8x8x32) {
|
1377 |
+
using ElementA = cutlass::uint4b_t;
|
1378 |
+
using LayoutA = cutlass::layout::RowMajor;
|
1379 |
+
using ElementB = cutlass::uint4b_t;
|
1380 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
1381 |
+
using ElementC = int32_t;
|
1382 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
1383 |
+
|
1384 |
+
cutlass::gemm::GemmCoord problem_size(64, 128, 512);
|
1385 |
+
|
1386 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 128, 128>;
|
1387 |
+
using WarpShape = cutlass::gemm::GemmShape<32, 64, 128>;
|
1388 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>;
|
1389 |
+
|
1390 |
+
float alpha = 1.f;
|
1391 |
+
float beta = 0.f;
|
1392 |
+
|
1393 |
+
// Define the MmaCore components
|
1394 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
1395 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
1396 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
1397 |
+
|
1398 |
+
dim3 grid(1, 1);
|
1399 |
+
dim3 block(32, 4, 1);
|
1400 |
+
|
1401 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
1402 |
+
problem_size.k(), alpha, beta)
|
1403 |
+
.run(grid, block);
|
1404 |
+
}
|
1405 |
+
|
1406 |
+
////////////////////////////////////////////////////////////////////////////////
|
1407 |
+
|
1408 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_128x128x128_64x64x128_8x8x32) {
|
1409 |
+
using ElementA = cutlass::uint4b_t;
|
1410 |
+
using LayoutA = cutlass::layout::RowMajor;
|
1411 |
+
using ElementB = cutlass::uint4b_t;
|
1412 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
1413 |
+
using ElementC = int32_t;
|
1414 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
1415 |
+
|
1416 |
+
cutlass::gemm::GemmCoord problem_size(128, 128, 512);
|
1417 |
+
|
1418 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 128>;
|
1419 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 64, 128>;
|
1420 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>;
|
1421 |
+
|
1422 |
+
float alpha = 1.f;
|
1423 |
+
float beta = 0.f;
|
1424 |
+
|
1425 |
+
// Define the MmaCore components
|
1426 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
1427 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
1428 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
1429 |
+
|
1430 |
+
dim3 grid(1, 1);
|
1431 |
+
dim3 block(32, 4, 1);
|
1432 |
+
|
1433 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
1434 |
+
problem_size.k(), alpha, beta)
|
1435 |
+
.run(grid, block);
|
1436 |
+
}
|
1437 |
+
|
1438 |
+
////////////////////////////////////////////////////////////////////////////////
|
1439 |
+
|
1440 |
+
TEST(SM75_gemm_threadblock_crosswise,
|
1441 |
+
multicta_256x256x384_128x128x128_64x64x128_8x8x32) {
|
1442 |
+
using ElementA = cutlass::uint4b_t;
|
1443 |
+
using LayoutA = cutlass::layout::RowMajor;
|
1444 |
+
using ElementB = cutlass::uint4b_t;
|
1445 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
1446 |
+
using ElementC = int32_t;
|
1447 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
1448 |
+
|
1449 |
+
cutlass::gemm::GemmCoord problem_size(256, 256, 384);
|
1450 |
+
|
1451 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 128>;
|
1452 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 64, 128>;
|
1453 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>;
|
1454 |
+
|
1455 |
+
float alpha = 1.f;
|
1456 |
+
float beta = 0.f;
|
1457 |
+
|
1458 |
+
// Define the MmaCore components
|
1459 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
1460 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
1461 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
1462 |
+
|
1463 |
+
dim3 grid(2, 2);
|
1464 |
+
dim3 block(32, 4, 1);
|
1465 |
+
|
1466 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
1467 |
+
problem_size.k(), alpha, beta)
|
1468 |
+
.run(grid, block);
|
1469 |
+
}
|
1470 |
+
|
1471 |
+
////////////////////////////////////////////////////////////////////////////////
|
1472 |
+
|
1473 |
+
TEST(SM75_gemm_threadblock_crosswise,
|
1474 |
+
multicta_512x256x1536_256x128x128_64x64x128_8x8x32) {
|
1475 |
+
using ElementA = cutlass::uint4b_t;
|
1476 |
+
using LayoutA = cutlass::layout::RowMajor;
|
1477 |
+
using ElementB = cutlass::uint4b_t;
|
1478 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
1479 |
+
using ElementC = int32_t;
|
1480 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
1481 |
+
|
1482 |
+
cutlass::gemm::GemmCoord problem_size(512, 256, 1536);
|
1483 |
+
|
1484 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<256, 128, 128>;
|
1485 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 64, 128>;
|
1486 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>;
|
1487 |
+
|
1488 |
+
float alpha = 1.f;
|
1489 |
+
float beta = 0.f;
|
1490 |
+
|
1491 |
+
// Define the MmaCore components
|
1492 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
1493 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
1494 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
1495 |
+
|
1496 |
+
dim3 grid(2, 2);
|
1497 |
+
dim3 block(32, 8, 1);
|
1498 |
+
|
1499 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
1500 |
+
problem_size.k(), alpha, beta)
|
1501 |
+
.run(grid, block);
|
1502 |
+
}
|
1503 |
+
|
1504 |
+
////////////////////////////////////////////////////////////////////////////////
|
1505 |
+
|
1506 |
+
TEST(SM75_gemm_threadblock_interleaved, tensor_op_32x32x128_16x16x128_8x8x32) {
|
1507 |
+
using ElementA = cutlass::uint4b_t;
|
1508 |
+
using LayoutA = cutlass::layout::ColumnMajorInterleaved<64>;
|
1509 |
+
using ElementB = cutlass::uint4b_t;
|
1510 |
+
using LayoutB = cutlass::layout::RowMajorInterleaved<64>;
|
1511 |
+
using ElementC = int32_t;
|
1512 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
1513 |
+
|
1514 |
+
cutlass::gemm::GemmCoord problem_size(32, 32, 512);
|
1515 |
+
|
1516 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 32, 128>;
|
1517 |
+
using WarpShape = cutlass::gemm::GemmShape<16, 16, 128>;
|
1518 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>;
|
1519 |
+
|
1520 |
+
float alpha = 1.f;
|
1521 |
+
float beta = 0.f;
|
1522 |
+
|
1523 |
+
// Define the MmaCore components
|
1524 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
1525 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
1526 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
1527 |
+
|
1528 |
+
dim3 grid(1, 1);
|
1529 |
+
dim3 block(32, 4, 1);
|
1530 |
+
|
1531 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
1532 |
+
problem_size.k(), alpha, beta)
|
1533 |
+
.run(grid, block);
|
1534 |
+
}
|
1535 |
+
|
1536 |
+
////////////////////////////////////////////////////////////////////////////////
|
1537 |
+
|
1538 |
+
TEST(SM75_gemm_threadblock_interleaved, tensor_op_64x32x128_32x16x128_8x8x32) {
|
1539 |
+
using ElementA = cutlass::uint4b_t;
|
1540 |
+
using LayoutA = cutlass::layout::ColumnMajorInterleaved<64>;
|
1541 |
+
using ElementB = cutlass::uint4b_t;
|
1542 |
+
using LayoutB = cutlass::layout::RowMajorInterleaved<64>;
|
1543 |
+
using ElementC = int32_t;
|
1544 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
1545 |
+
|
1546 |
+
cutlass::gemm::GemmCoord problem_size(64, 32, 512);
|
1547 |
+
|
1548 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 32, 128>;
|
1549 |
+
using WarpShape = cutlass::gemm::GemmShape<32, 16, 128>;
|
1550 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>;
|
1551 |
+
|
1552 |
+
float alpha = 1.f;
|
1553 |
+
float beta = 0.f;
|
1554 |
+
|
1555 |
+
// Define the MmaCore components
|
1556 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
1557 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
1558 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
1559 |
+
|
1560 |
+
dim3 grid(1, 1);
|
1561 |
+
dim3 block(32, 4, 1);
|
1562 |
+
|
1563 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
1564 |
+
problem_size.k(), alpha, beta)
|
1565 |
+
.run(grid, block);
|
1566 |
+
}
|
1567 |
+
|
1568 |
+
////////////////////////////////////////////////////////////////////////////////
|
1569 |
+
|
1570 |
+
TEST(SM75_gemm_threadblock_interleaved, tensor_op_32x64x128_16x32x128_8x8x32) {
|
1571 |
+
using ElementA = cutlass::uint4b_t;
|
1572 |
+
using LayoutA = cutlass::layout::ColumnMajorInterleaved<64>;
|
1573 |
+
using ElementB = cutlass::uint4b_t;
|
1574 |
+
using LayoutB = cutlass::layout::RowMajorInterleaved<64>;
|
1575 |
+
using ElementC = int32_t;
|
1576 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
1577 |
+
|
1578 |
+
cutlass::gemm::GemmCoord problem_size(32, 64, 512);
|
1579 |
+
|
1580 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 64, 128>;
|
1581 |
+
using WarpShape = cutlass::gemm::GemmShape<16, 32, 128>;
|
1582 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>;
|
1583 |
+
|
1584 |
+
float alpha = 1.f;
|
1585 |
+
float beta = 0.f;
|
1586 |
+
|
1587 |
+
// Define the MmaCore components
|
1588 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
1589 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
1590 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
1591 |
+
|
1592 |
+
dim3 grid(1, 1);
|
1593 |
+
dim3 block(32, 4, 1);
|
1594 |
+
|
1595 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
1596 |
+
problem_size.k(), alpha, beta)
|
1597 |
+
.run(grid, block);
|
1598 |
+
}
|
1599 |
+
|
1600 |
+
////////////////////////////////////////////////////////////////////////////////
|
1601 |
+
|
1602 |
+
TEST(SM75_gemm_threadblock_interleaved, tensor_op_64x64x128_32x32x128_8x8x32) {
|
1603 |
+
using ElementA = cutlass::uint4b_t;
|
1604 |
+
using LayoutA = cutlass::layout::ColumnMajorInterleaved<64>;
|
1605 |
+
using ElementB = cutlass::uint4b_t;
|
1606 |
+
using LayoutB = cutlass::layout::RowMajorInterleaved<64>;
|
1607 |
+
using ElementC = int32_t;
|
1608 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
1609 |
+
|
1610 |
+
cutlass::gemm::GemmCoord problem_size(64, 64, 512);
|
1611 |
+
|
1612 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 128>;
|
1613 |
+
using WarpShape = cutlass::gemm::GemmShape<32, 32, 128>;
|
1614 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>;
|
1615 |
+
|
1616 |
+
float alpha = 1.f;
|
1617 |
+
float beta = 0.f;
|
1618 |
+
|
1619 |
+
// Define the MmaCore components
|
1620 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
1621 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
1622 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
1623 |
+
|
1624 |
+
dim3 grid(1, 1);
|
1625 |
+
dim3 block(32, 4, 1);
|
1626 |
+
|
1627 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
1628 |
+
problem_size.k(), alpha, beta)
|
1629 |
+
.run(grid, block);
|
1630 |
+
}
|
1631 |
+
|
1632 |
+
////////////////////////////////////////////////////////////////////////////////
|
1633 |
+
|
1634 |
+
TEST(SM75_gemm_threadblock_interleaved, tensor_op_128x64x128_64x32x128_8x8x32) {
|
1635 |
+
using ElementA = cutlass::uint4b_t;
|
1636 |
+
using LayoutA = cutlass::layout::ColumnMajorInterleaved<64>;
|
1637 |
+
using ElementB = cutlass::uint4b_t;
|
1638 |
+
using LayoutB = cutlass::layout::RowMajorInterleaved<64>;
|
1639 |
+
using ElementC = int32_t;
|
1640 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
1641 |
+
|
1642 |
+
cutlass::gemm::GemmCoord problem_size(128, 64, 512);
|
1643 |
+
|
1644 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 64, 128>;
|
1645 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 32, 128>;
|
1646 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>;
|
1647 |
+
|
1648 |
+
float alpha = 1.f;
|
1649 |
+
float beta = 0.f;
|
1650 |
+
|
1651 |
+
// Define the MmaCore component
|
1652 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
1653 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
1654 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
1655 |
+
|
1656 |
+
dim3 grid(1, 1);
|
1657 |
+
dim3 block(32, 4, 1);
|
1658 |
+
|
1659 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
1660 |
+
problem_size.k(), alpha, beta)
|
1661 |
+
.run(grid, block);
|
1662 |
+
}
|
1663 |
+
|
1664 |
+
////////////////////////////////////////////////////////////////////////////////
|
1665 |
+
|
1666 |
+
TEST(SM75_gemm_threadblock_interleaved, tensor_op_64x128x128_32x64x128_8x8x32) {
|
1667 |
+
using ElementA = cutlass::uint4b_t;
|
1668 |
+
using LayoutA = cutlass::layout::ColumnMajorInterleaved<64>;
|
1669 |
+
using ElementB = cutlass::uint4b_t;
|
1670 |
+
using LayoutB = cutlass::layout::RowMajorInterleaved<64>;
|
1671 |
+
using ElementC = int32_t;
|
1672 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
1673 |
+
|
1674 |
+
cutlass::gemm::GemmCoord problem_size(64, 128, 512);
|
1675 |
+
|
1676 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 128, 128>;
|
1677 |
+
using WarpShape = cutlass::gemm::GemmShape<32, 64, 128>;
|
1678 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>;
|
1679 |
+
|
1680 |
+
float alpha = 1.f;
|
1681 |
+
float beta = 0.f;
|
1682 |
+
|
1683 |
+
// Define the MmaCore components
|
1684 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
1685 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
1686 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
1687 |
+
|
1688 |
+
dim3 grid(1, 1);
|
1689 |
+
dim3 block(32, 4, 1);
|
1690 |
+
|
1691 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
1692 |
+
problem_size.k(), alpha, beta)
|
1693 |
+
.run(grid, block);
|
1694 |
+
}
|
1695 |
+
|
1696 |
+
////////////////////////////////////////////////////////////////////////////////
|
1697 |
+
|
1698 |
+
TEST(SM75_gemm_threadblock_interleaved, tensor_op_128x128x128_64x64x128_8x8x32) {
|
1699 |
+
using ElementA = cutlass::uint4b_t;
|
1700 |
+
using LayoutA = cutlass::layout::ColumnMajorInterleaved<64>;
|
1701 |
+
using ElementB = cutlass::uint4b_t;
|
1702 |
+
using LayoutB = cutlass::layout::RowMajorInterleaved<64>;
|
1703 |
+
using ElementC = int32_t;
|
1704 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
1705 |
+
|
1706 |
+
cutlass::gemm::GemmCoord problem_size(128, 128, 512);
|
1707 |
+
|
1708 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 128>;
|
1709 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 64, 128>;
|
1710 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>;
|
1711 |
+
|
1712 |
+
float alpha = 1.f;
|
1713 |
+
float beta = 0.f;
|
1714 |
+
|
1715 |
+
// Define the MmaCore components
|
1716 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
1717 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
1718 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
1719 |
+
|
1720 |
+
dim3 grid(1, 1);
|
1721 |
+
dim3 block(32, 4, 1);
|
1722 |
+
|
1723 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
1724 |
+
problem_size.k(), alpha, beta)
|
1725 |
+
.run(grid, block);
|
1726 |
+
}
|
1727 |
+
|
1728 |
+
////////////////////////////////////////////////////////////////////////////////
|
1729 |
+
|
1730 |
+
TEST(SM75_gemm_threadblock_interleaved,
|
1731 |
+
multicta_256x256x384_128x128x128_64x64x128_8x8x32) {
|
1732 |
+
using ElementA = cutlass::uint4b_t;
|
1733 |
+
using LayoutA = cutlass::layout::ColumnMajorInterleaved<64>;
|
1734 |
+
using ElementB = cutlass::uint4b_t;
|
1735 |
+
using LayoutB = cutlass::layout::RowMajorInterleaved<64>;
|
1736 |
+
using ElementC = int32_t;
|
1737 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
1738 |
+
|
1739 |
+
cutlass::gemm::GemmCoord problem_size(256, 256, 384);
|
1740 |
+
|
1741 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 128>;
|
1742 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 64, 128>;
|
1743 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>;
|
1744 |
+
|
1745 |
+
float alpha = 1.f;
|
1746 |
+
float beta = 0.f;
|
1747 |
+
|
1748 |
+
// Define the MmaCore components
|
1749 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
1750 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
1751 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
1752 |
+
|
1753 |
+
dim3 grid(2, 2);
|
1754 |
+
dim3 block(32, 4, 1);
|
1755 |
+
|
1756 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
1757 |
+
problem_size.k(), alpha, beta)
|
1758 |
+
.run(grid, block);
|
1759 |
+
}
|
1760 |
+
|
1761 |
+
////////////////////////////////////////////////////////////////////////////////
|
1762 |
+
|
1763 |
+
TEST(SM75_gemm_threadblock_interleaved,
|
1764 |
+
multicta_512x256x1536_256x128x128_64x64x128_8x8x32) {
|
1765 |
+
using ElementA = cutlass::uint4b_t;
|
1766 |
+
using LayoutA = cutlass::layout::ColumnMajorInterleaved<64>;
|
1767 |
+
using ElementB = cutlass::uint4b_t;
|
1768 |
+
using LayoutB = cutlass::layout::RowMajorInterleaved<64>;
|
1769 |
+
using ElementC = int32_t;
|
1770 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
1771 |
+
|
1772 |
+
cutlass::gemm::GemmCoord problem_size(512, 256, 1536);
|
1773 |
+
|
1774 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<256, 128, 128>;
|
1775 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 64, 128>;
|
1776 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>;
|
1777 |
+
|
1778 |
+
float alpha = 1.f;
|
1779 |
+
float beta = 0.f;
|
1780 |
+
|
1781 |
+
// Define the MmaCore components
|
1782 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
1783 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
1784 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp>;
|
1785 |
+
|
1786 |
+
dim3 grid(2, 2);
|
1787 |
+
dim3 block(32, 8, 1);
|
1788 |
+
|
1789 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
1790 |
+
problem_size.k(), alpha, beta)
|
1791 |
+
.run(grid, block);
|
1792 |
+
}
|
1793 |
+
|
1794 |
+
////////////////////////////////////////////////////////////////////////////////
|
1795 |
+
|
1796 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_64x64x512_64x64x512_8x8x128) {
|
1797 |
+
using ElementA = cutlass::uint1b_t;
|
1798 |
+
using LayoutA = cutlass::layout::RowMajor;
|
1799 |
+
using ElementB = cutlass::uint1b_t;
|
1800 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
1801 |
+
using ElementC = int32_t;
|
1802 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
1803 |
+
|
1804 |
+
cutlass::gemm::GemmCoord problem_size(64, 64, 2048);
|
1805 |
+
|
1806 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 512>;
|
1807 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 64, 512>;
|
1808 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 128>;
|
1809 |
+
|
1810 |
+
float alpha = 1.f;
|
1811 |
+
float beta = 0.f;
|
1812 |
+
|
1813 |
+
// Define the MmaCore components
|
1814 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
1815 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
1816 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, 2,
|
1817 |
+
cutlass::arch::OpXorPopc>;
|
1818 |
+
|
1819 |
+
dim3 grid(1, 1);
|
1820 |
+
dim3 block(32, 1, 1);
|
1821 |
+
|
1822 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
1823 |
+
problem_size.k(), alpha, beta)
|
1824 |
+
.run(grid, block);
|
1825 |
+
}
|
1826 |
+
|
1827 |
+
////////////////////////////////////////////////////////////////////////////////
|
1828 |
+
|
1829 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_32x32x512_16x16x512_8x8x128) {
|
1830 |
+
using ElementA = cutlass::uint1b_t;
|
1831 |
+
using LayoutA = cutlass::layout::RowMajor;
|
1832 |
+
using ElementB = cutlass::uint1b_t;
|
1833 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
1834 |
+
using ElementC = int32_t;
|
1835 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
1836 |
+
|
1837 |
+
cutlass::gemm::GemmCoord problem_size(32, 32, 2048);
|
1838 |
+
|
1839 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 32, 512>;
|
1840 |
+
using WarpShape = cutlass::gemm::GemmShape<16, 16, 512>;
|
1841 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 128>;
|
1842 |
+
|
1843 |
+
float alpha = 1.f;
|
1844 |
+
float beta = 0.f;
|
1845 |
+
|
1846 |
+
// Define the MmaCore components
|
1847 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
1848 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
1849 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, 2,
|
1850 |
+
cutlass::arch::OpXorPopc>;
|
1851 |
+
|
1852 |
+
dim3 grid(1, 1);
|
1853 |
+
dim3 block(32, 4, 1);
|
1854 |
+
|
1855 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
1856 |
+
problem_size.k(), alpha, beta)
|
1857 |
+
.run(grid, block);
|
1858 |
+
}
|
1859 |
+
|
1860 |
+
////////////////////////////////////////////////////////////////////////////////
|
1861 |
+
|
1862 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_64x32x512_32x16x512_8x8x128) {
|
1863 |
+
using ElementA = cutlass::uint1b_t;
|
1864 |
+
using LayoutA = cutlass::layout::RowMajor;
|
1865 |
+
using ElementB = cutlass::uint1b_t;
|
1866 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
1867 |
+
using ElementC = int32_t;
|
1868 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
1869 |
+
|
1870 |
+
cutlass::gemm::GemmCoord problem_size(64, 32, 2048);
|
1871 |
+
|
1872 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 32, 512>;
|
1873 |
+
using WarpShape = cutlass::gemm::GemmShape<32, 16, 512>;
|
1874 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 128>;
|
1875 |
+
|
1876 |
+
float alpha = 1.f;
|
1877 |
+
float beta = 0.f;
|
1878 |
+
|
1879 |
+
// Define the MmaCore components
|
1880 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
1881 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
1882 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, 2,
|
1883 |
+
cutlass::arch::OpXorPopc>;
|
1884 |
+
|
1885 |
+
dim3 grid(1, 1);
|
1886 |
+
dim3 block(32, 4, 1);
|
1887 |
+
|
1888 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
1889 |
+
problem_size.k(), alpha, beta)
|
1890 |
+
.run(grid, block);
|
1891 |
+
}
|
1892 |
+
|
1893 |
+
////////////////////////////////////////////////////////////////////////////////
|
1894 |
+
|
1895 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_32x64x512_16x32x512_8x8x128) {
|
1896 |
+
using ElementA = cutlass::uint1b_t;
|
1897 |
+
using LayoutA = cutlass::layout::RowMajor;
|
1898 |
+
using ElementB = cutlass::uint1b_t;
|
1899 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
1900 |
+
using ElementC = int32_t;
|
1901 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
1902 |
+
|
1903 |
+
cutlass::gemm::GemmCoord problem_size(32, 64, 2048);
|
1904 |
+
|
1905 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 64, 512>;
|
1906 |
+
using WarpShape = cutlass::gemm::GemmShape<16, 32, 512>;
|
1907 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 128>;
|
1908 |
+
|
1909 |
+
float alpha = 1.f;
|
1910 |
+
float beta = 0.f;
|
1911 |
+
|
1912 |
+
// Define the MmaCore components
|
1913 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
1914 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
1915 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, 2,
|
1916 |
+
cutlass::arch::OpXorPopc>;
|
1917 |
+
|
1918 |
+
dim3 grid(1, 1);
|
1919 |
+
dim3 block(32, 4, 1);
|
1920 |
+
|
1921 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
1922 |
+
problem_size.k(), alpha, beta)
|
1923 |
+
.run(grid, block);
|
1924 |
+
}
|
1925 |
+
|
1926 |
+
////////////////////////////////////////////////////////////////////////////////
|
1927 |
+
|
1928 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_64x64x512_32x32x512_8x8x128) {
|
1929 |
+
using ElementA = cutlass::uint1b_t;
|
1930 |
+
using LayoutA = cutlass::layout::RowMajor;
|
1931 |
+
using ElementB = cutlass::uint1b_t;
|
1932 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
1933 |
+
using ElementC = int32_t;
|
1934 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
1935 |
+
|
1936 |
+
cutlass::gemm::GemmCoord problem_size(64, 64, 2048);
|
1937 |
+
|
1938 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 512>;
|
1939 |
+
using WarpShape = cutlass::gemm::GemmShape<32, 32, 512>;
|
1940 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 128>;
|
1941 |
+
|
1942 |
+
float alpha = 1.f;
|
1943 |
+
float beta = 0.f;
|
1944 |
+
|
1945 |
+
// Define the MmaCore components
|
1946 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
1947 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
1948 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, 2,
|
1949 |
+
cutlass::arch::OpXorPopc>;
|
1950 |
+
|
1951 |
+
dim3 grid(1, 1);
|
1952 |
+
dim3 block(32, 4, 1);
|
1953 |
+
|
1954 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
1955 |
+
problem_size.k(), alpha, beta)
|
1956 |
+
.run(grid, block);
|
1957 |
+
}
|
1958 |
+
|
1959 |
+
////////////////////////////////////////////////////////////////////////////////
|
1960 |
+
|
1961 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_128x64x512_64x32x512_8x8x128) {
|
1962 |
+
using ElementA = cutlass::uint1b_t;
|
1963 |
+
using LayoutA = cutlass::layout::RowMajor;
|
1964 |
+
using ElementB = cutlass::uint1b_t;
|
1965 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
1966 |
+
using ElementC = int32_t;
|
1967 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
1968 |
+
|
1969 |
+
cutlass::gemm::GemmCoord problem_size(128, 64, 2048);
|
1970 |
+
|
1971 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 64, 512>;
|
1972 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 32, 512>;
|
1973 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 128>;
|
1974 |
+
|
1975 |
+
float alpha = 1.f;
|
1976 |
+
float beta = 0.f;
|
1977 |
+
|
1978 |
+
// Define the MmaCore component
|
1979 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
1980 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
1981 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, 2,
|
1982 |
+
cutlass::arch::OpXorPopc>;
|
1983 |
+
|
1984 |
+
dim3 grid(1, 1);
|
1985 |
+
dim3 block(32, 4, 1);
|
1986 |
+
|
1987 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
1988 |
+
problem_size.k(), alpha, beta)
|
1989 |
+
.run(grid, block);
|
1990 |
+
}
|
1991 |
+
|
1992 |
+
////////////////////////////////////////////////////////////////////////////////
|
1993 |
+
|
1994 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_64x128x512_32x64x512_8x8x128) {
|
1995 |
+
using ElementA = cutlass::uint1b_t;
|
1996 |
+
using LayoutA = cutlass::layout::RowMajor;
|
1997 |
+
using ElementB = cutlass::uint1b_t;
|
1998 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
1999 |
+
using ElementC = int32_t;
|
2000 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
2001 |
+
|
2002 |
+
cutlass::gemm::GemmCoord problem_size(64, 128, 2048);
|
2003 |
+
|
2004 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 128, 512>;
|
2005 |
+
using WarpShape = cutlass::gemm::GemmShape<32, 64, 512>;
|
2006 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 128>;
|
2007 |
+
|
2008 |
+
float alpha = 1.f;
|
2009 |
+
float beta = 0.f;
|
2010 |
+
|
2011 |
+
// Define the MmaCore components
|
2012 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
2013 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
2014 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, 2,
|
2015 |
+
cutlass::arch::OpXorPopc>;
|
2016 |
+
|
2017 |
+
dim3 grid(1, 1);
|
2018 |
+
dim3 block(32, 4, 1);
|
2019 |
+
|
2020 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
2021 |
+
problem_size.k(), alpha, beta)
|
2022 |
+
.run(grid, block);
|
2023 |
+
}
|
2024 |
+
|
2025 |
+
////////////////////////////////////////////////////////////////////////////////
|
2026 |
+
|
2027 |
+
TEST(SM75_gemm_threadblock_crosswise, tensor_op_128x128x512_64x64x512_8x8x128) {
|
2028 |
+
using ElementA = cutlass::uint1b_t;
|
2029 |
+
using LayoutA = cutlass::layout::RowMajor;
|
2030 |
+
using ElementB = cutlass::uint1b_t;
|
2031 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
2032 |
+
using ElementC = int32_t;
|
2033 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
2034 |
+
|
2035 |
+
cutlass::gemm::GemmCoord problem_size(128, 128, 2048);
|
2036 |
+
|
2037 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 512>;
|
2038 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 64, 512>;
|
2039 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 128>;
|
2040 |
+
|
2041 |
+
float alpha = 1.f;
|
2042 |
+
float beta = 0.f;
|
2043 |
+
|
2044 |
+
// Define the MmaCore components
|
2045 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
2046 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
2047 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, 2,
|
2048 |
+
cutlass::arch::OpXorPopc>;
|
2049 |
+
|
2050 |
+
dim3 grid(1, 1);
|
2051 |
+
dim3 block(32, 4, 1);
|
2052 |
+
|
2053 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
2054 |
+
problem_size.k(), alpha, beta)
|
2055 |
+
.run(grid, block);
|
2056 |
+
}
|
2057 |
+
|
2058 |
+
////////////////////////////////////////////////////////////////////////////////
|
2059 |
+
|
2060 |
+
TEST(SM75_gemm_threadblock_crosswise,
|
2061 |
+
multicta_256x256x1536_128x128x512_64x64x512_8x8x128) {
|
2062 |
+
using ElementA = cutlass::uint1b_t;
|
2063 |
+
using LayoutA = cutlass::layout::RowMajor;
|
2064 |
+
using ElementB = cutlass::uint1b_t;
|
2065 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
2066 |
+
using ElementC = int32_t;
|
2067 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
2068 |
+
|
2069 |
+
cutlass::gemm::GemmCoord problem_size(256, 256, 1536);
|
2070 |
+
|
2071 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 512>;
|
2072 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 64, 512>;
|
2073 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 128>;
|
2074 |
+
|
2075 |
+
float alpha = 1.f;
|
2076 |
+
float beta = 0.f;
|
2077 |
+
|
2078 |
+
// Define the MmaCore components
|
2079 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
2080 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
2081 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, 2,
|
2082 |
+
cutlass::arch::OpXorPopc>;
|
2083 |
+
|
2084 |
+
dim3 grid(2, 2);
|
2085 |
+
dim3 block(32, 4, 1);
|
2086 |
+
|
2087 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
2088 |
+
problem_size.k(), alpha, beta)
|
2089 |
+
.run(grid, block);
|
2090 |
+
}
|
2091 |
+
|
2092 |
+
////////////////////////////////////////////////////////////////////////////////
|
2093 |
+
|
2094 |
+
TEST(SM75_gemm_threadblock_crosswise,
|
2095 |
+
multicta_512x256x6144_256x128x512_64x64x512_8x8x128) {
|
2096 |
+
using ElementA = cutlass::uint1b_t;
|
2097 |
+
using LayoutA = cutlass::layout::RowMajor;
|
2098 |
+
using ElementB = cutlass::uint1b_t;
|
2099 |
+
using LayoutB = cutlass::layout::ColumnMajor;
|
2100 |
+
using ElementC = int32_t;
|
2101 |
+
using LayoutC = cutlass::layout::ColumnMajor;
|
2102 |
+
|
2103 |
+
cutlass::gemm::GemmCoord problem_size(512, 256, 6144);
|
2104 |
+
|
2105 |
+
using ThreadBlockShape = cutlass::gemm::GemmShape<256, 128, 512>;
|
2106 |
+
using WarpShape = cutlass::gemm::GemmShape<64, 64, 512>;
|
2107 |
+
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 128>;
|
2108 |
+
|
2109 |
+
float alpha = 1.f;
|
2110 |
+
float beta = 0.f;
|
2111 |
+
|
2112 |
+
// Define the MmaCore components
|
2113 |
+
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
2114 |
+
ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA,
|
2115 |
+
ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, 2,
|
2116 |
+
cutlass::arch::OpXorPopc>;
|
2117 |
+
|
2118 |
+
dim3 grid(2, 2);
|
2119 |
+
dim3 block(32, 8, 1);
|
2120 |
+
|
2121 |
+
test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(),
|
2122 |
+
problem_size.k(), alpha, beta)
|
2123 |
+
.run(grid, block);
|
2124 |
+
}
|
2125 |
+
|
2126 |
+
////////////////////////////////////////////////////////////////////////////////
|
2127 |
+
|
2128 |
+
#endif
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/conv3d_operation_profiler.h
ADDED
@@ -0,0 +1,449 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief Defines profiling functionality for convolution
|
33 |
+
|
34 |
+
*/
|
35 |
+
|
36 |
+
#pragma once
|
37 |
+
|
38 |
+
#include <vector>
|
39 |
+
#include <string>
|
40 |
+
#include <memory>
|
41 |
+
#include <algorithm>
|
42 |
+
#include <unordered_map>
|
43 |
+
|
44 |
+
// CUTLASS Library includes
|
45 |
+
#include "cutlass/library/library.h"
|
46 |
+
#include "cutlass/library/util.h"
|
47 |
+
#include "cutlass/library/handle.h"
|
48 |
+
#include "cutlass/library/manifest.h"
|
49 |
+
#include "cutlass/library/singleton.h"
|
50 |
+
|
51 |
+
// Profiler includes
|
52 |
+
#include "options.h"
|
53 |
+
#include "device_context.h"
|
54 |
+
#include "operation_profiler.h"
|
55 |
+
#include "performance_result.h"
|
56 |
+
#include "problem_space.h"
|
57 |
+
#include "reduction_operation_profiler.h"
|
58 |
+
#if CUTLASS_ENABLE_CUDNN
|
59 |
+
#include "cudnn_helpers.h"
|
60 |
+
#endif //#if CUTLASS_ENABLE_CUDNN
|
61 |
+
#include "debug.h"
|
62 |
+
|
63 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
64 |
+
|
65 |
+
namespace cutlass {
|
66 |
+
namespace profiler {
|
67 |
+
|
68 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
69 |
+
|
70 |
+
/// Abstract base class for each math function
|
71 |
+
class Conv3dOperationProfiler : public OperationProfiler {
|
72 |
+
public:
|
73 |
+
|
74 |
+
/// Problem structure obtained from problem space
|
75 |
+
struct Conv3dProblem {
|
76 |
+
|
77 |
+
int64_t n, d, h, w, c, z, p, q, k, t, r, s;
|
78 |
+
int64_t pad_d, pad_h, pad_w;
|
79 |
+
int64_t stride_d, stride_h, stride_w;
|
80 |
+
int64_t dilation_d, dilation_h, dilation_w;
|
81 |
+
|
82 |
+
std::vector<uint8_t> alpha;
|
83 |
+
std::vector<uint8_t> beta;
|
84 |
+
|
85 |
+
library::SplitKMode split_k_mode;
|
86 |
+
int64_t split_k_slices;
|
87 |
+
|
88 |
+
library::ConvModeID conv_mode;
|
89 |
+
|
90 |
+
library::Provider eq_gemm_provider;
|
91 |
+
|
92 |
+
// convolution with parallel interleaved reduction
|
93 |
+
// convolution epilogue (alpha, beta) = (1.0, 0.0)
|
94 |
+
// reduction epilogue (alpha, beta) = (Conv3dProblem::alpha, Conv3dProblem::beta)
|
95 |
+
std::vector<uint8_t> alpha_one;
|
96 |
+
std::vector<uint8_t> beta_zero;
|
97 |
+
|
98 |
+
//
|
99 |
+
// Methods
|
100 |
+
//
|
101 |
+
|
102 |
+
/// Total number of bytes loaded
|
103 |
+
int64_t bytes(library::ConvDescription const &operation_desc) const;
|
104 |
+
|
105 |
+
/// Total number of flops computed
|
106 |
+
int64_t flops(library::ConvDescription const &operation_desc) const;
|
107 |
+
|
108 |
+
/// Infers output size from the input size, padding, stride, and dilation
|
109 |
+
void set_default_output_size() {
|
110 |
+
z = ((d + pad_d - t * dilation_d) / stride_d) + 1;
|
111 |
+
p = ((h + pad_h - r * dilation_h) / stride_h) + 1;
|
112 |
+
q = ((w + pad_w - s * dilation_w) / stride_w) + 1;
|
113 |
+
}
|
114 |
+
|
115 |
+
// Returns equivalent gemm problem size for convolution
|
116 |
+
cutlass::gemm::GemmCoord eq_gemm_size(library::ConvKind const &conv_kind) const {
|
117 |
+
|
118 |
+
switch (conv_kind) {
|
119 |
+
case library::ConvKind::kFprop: return cutlass::gemm::GemmCoord(int(n * z * p * q), int(k), int(t * r * s * c));
|
120 |
+
case library::ConvKind::kDgrad: return cutlass::gemm::GemmCoord(int(n * d * h * w), int(c), int(t * r * s * k));
|
121 |
+
case library::ConvKind::kWgrad: return cutlass::gemm::GemmCoord(int(k), int(t * r * s * c), int(n * z * p * q));
|
122 |
+
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
|
123 |
+
}
|
124 |
+
}
|
125 |
+
|
126 |
+
// Returns extent for tensor A
|
127 |
+
std::vector<int> extent_a(library::ConvKind const &conv_kind) const {
|
128 |
+
|
129 |
+
switch (conv_kind) {
|
130 |
+
case library::ConvKind::kFprop: return {int(n), int(d), int(h), int(w), int(c)};
|
131 |
+
case library::ConvKind::kDgrad: return {int(n), int(z), int(p), int(q), int(k)};
|
132 |
+
case library::ConvKind::kWgrad: return {int(n), int(z), int(p), int(q), int(k)};
|
133 |
+
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
|
134 |
+
}
|
135 |
+
}
|
136 |
+
|
137 |
+
// Returns extent for tensor B
|
138 |
+
std::vector<int> extent_b(library::ConvKind const &conv_kind) const {
|
139 |
+
|
140 |
+
switch (conv_kind) {
|
141 |
+
case library::ConvKind::kFprop: return {int(k), int(t), int(r), int(s), int(c)};
|
142 |
+
case library::ConvKind::kDgrad: return {int(k), int(t), int(r), int(s), int(c)};
|
143 |
+
case library::ConvKind::kWgrad: return {int(n), int(d), int(h), int(w), int(c)};
|
144 |
+
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
|
145 |
+
}
|
146 |
+
}
|
147 |
+
|
148 |
+
// Returns extent for tensor C
|
149 |
+
std::vector<int> extent_c(library::ConvKind const &conv_kind) const {
|
150 |
+
|
151 |
+
switch (conv_kind) {
|
152 |
+
case library::ConvKind::kFprop: return {int(n), int(z), int(p), int(q), int(k)};
|
153 |
+
case library::ConvKind::kDgrad: return {int(n), int(d), int(h), int(w), int(c)};
|
154 |
+
case library::ConvKind::kWgrad: return {int(k), int(t), int(r), int(s), int(c)};
|
155 |
+
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
|
156 |
+
}
|
157 |
+
}
|
158 |
+
|
159 |
+
// Returns layout for equivalent gemm matrix A
|
160 |
+
library::LayoutTypeID eq_gemm_layout_a(library::ConvKind const &conv_kind) const {
|
161 |
+
|
162 |
+
switch (conv_kind) {
|
163 |
+
case library::ConvKind::kFprop: return library::LayoutTypeID::kRowMajor; // TN Gemm
|
164 |
+
case library::ConvKind::kDgrad: return library::LayoutTypeID::kRowMajor; // TT Gemm
|
165 |
+
case library::ConvKind::kWgrad: return library::LayoutTypeID::kColumnMajor; // NT Gemm
|
166 |
+
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
|
167 |
+
}
|
168 |
+
}
|
169 |
+
|
170 |
+
// Returns layout for equivalent gemm matrix B
|
171 |
+
library::LayoutTypeID eq_gemm_layout_b(library::ConvKind const &conv_kind) const {
|
172 |
+
|
173 |
+
switch (conv_kind) {
|
174 |
+
case library::ConvKind::kFprop: return library::LayoutTypeID::kColumnMajor; // TN Gemm
|
175 |
+
case library::ConvKind::kDgrad: return library::LayoutTypeID::kRowMajor; // TT Gemm
|
176 |
+
case library::ConvKind::kWgrad: return library::LayoutTypeID::kRowMajor; // NT Gemm
|
177 |
+
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
|
178 |
+
}
|
179 |
+
}
|
180 |
+
|
181 |
+
// Returns layout for equivalent gemm matrix C
|
182 |
+
library::LayoutTypeID eq_gemm_layout_c(library::ConvKind const &conv_kind) const {
|
183 |
+
|
184 |
+
switch (conv_kind) {
|
185 |
+
// Gemm operator assumes column-major output
|
186 |
+
case library::ConvKind::kFprop:
|
187 |
+
case library::ConvKind::kDgrad:
|
188 |
+
case library::ConvKind::kWgrad: return library::LayoutTypeID::kColumnMajor;
|
189 |
+
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
|
190 |
+
}
|
191 |
+
}
|
192 |
+
|
193 |
+
// Returns leading dimension for equivalent gemm matrix A
|
194 |
+
int64_t eq_gemm_lda(library::ConvKind const &conv_kind) const {
|
195 |
+
|
196 |
+
switch (conv_kind) {
|
197 |
+
case library::ConvKind::kFprop: return eq_gemm_size(conv_kind).k();
|
198 |
+
case library::ConvKind::kDgrad: return eq_gemm_size(conv_kind).k();
|
199 |
+
case library::ConvKind::kWgrad: return eq_gemm_size(conv_kind).m();
|
200 |
+
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
|
201 |
+
}
|
202 |
+
}
|
203 |
+
|
204 |
+
// Returns leading dimension for equivalent gemm matrix B
|
205 |
+
int64_t eq_gemm_ldb(library::ConvKind const &conv_kind) const {
|
206 |
+
|
207 |
+
switch (conv_kind) {
|
208 |
+
case library::ConvKind::kFprop: return eq_gemm_size(conv_kind).k();
|
209 |
+
case library::ConvKind::kDgrad: return eq_gemm_size(conv_kind).n();
|
210 |
+
case library::ConvKind::kWgrad: return eq_gemm_size(conv_kind).n();
|
211 |
+
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
|
212 |
+
}
|
213 |
+
}
|
214 |
+
|
215 |
+
// Returns leading dimension for equivalent gemm matrix C
|
216 |
+
int64_t eq_gemm_ldc(library::ConvKind const &conv_kind) const {
|
217 |
+
|
218 |
+
switch (conv_kind) {
|
219 |
+
case library::ConvKind::kFprop:
|
220 |
+
case library::ConvKind::kDgrad:
|
221 |
+
case library::ConvKind::kWgrad: return eq_gemm_size(conv_kind).m();
|
222 |
+
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
|
223 |
+
}
|
224 |
+
}
|
225 |
+
};
|
226 |
+
|
227 |
+
/// Workspace used
|
228 |
+
struct Conv2dWorkspace {
|
229 |
+
|
230 |
+
/// Conv device allocations
|
231 |
+
DeviceAllocation *A;
|
232 |
+
DeviceAllocation *B;
|
233 |
+
DeviceAllocation *C;
|
234 |
+
DeviceAllocation *Computed;
|
235 |
+
DeviceAllocation *Reference;
|
236 |
+
|
237 |
+
/// Library configuration and arguments for convolution operator
|
238 |
+
library::Conv3dConfiguration configuration;
|
239 |
+
library::ConvArguments arguments;
|
240 |
+
|
241 |
+
/// Number of copies of the problem workspace which are visited sequentially during
|
242 |
+
/// profiling to avoid camping in the last level cache.
|
243 |
+
int problem_count;
|
244 |
+
|
245 |
+
/// Buffer used for the cutlass conv2d operations' host workspace
|
246 |
+
std::vector<uint8_t> host_workspace;
|
247 |
+
|
248 |
+
/// Buffer used for the cutlass operations' device workspace
|
249 |
+
DeviceAllocation device_workspace;
|
250 |
+
|
251 |
+
/// Library configuration and arguments for reduction operator
|
252 |
+
library::ReductionConfiguration reduction_configuration;
|
253 |
+
library::ReductionArguments reduction_arguments;
|
254 |
+
|
255 |
+
/// Buffer used for the cutlass reduction operations' host workspace
|
256 |
+
std::vector<uint8_t> reduction_host_workspace;
|
257 |
+
|
258 |
+
/// Host data buffers for host reference operation
|
259 |
+
/// host buffer for tensor
|
260 |
+
std::vector<uint8_t> host_tensor_a;
|
261 |
+
|
262 |
+
/// host buffer for tensor b
|
263 |
+
std::vector<uint8_t> host_tensor_b;
|
264 |
+
|
265 |
+
/// host buffer for tensor c
|
266 |
+
std::vector<uint8_t> host_tensor_c;
|
267 |
+
|
268 |
+
|
269 |
+
//
|
270 |
+
// Methods
|
271 |
+
//
|
272 |
+
|
273 |
+
Conv2dWorkspace():
|
274 |
+
A(nullptr), B(nullptr), C(nullptr), Computed(nullptr), Reference(nullptr) { }
|
275 |
+
|
276 |
+
// Returns stride vector for tensor A
|
277 |
+
std::vector<int64_t> stride_a(library::ConvKind const &conv_kind) {
|
278 |
+
return {
|
279 |
+
configuration.layout_a(conv_kind).stride()[0],
|
280 |
+
configuration.layout_a(conv_kind).stride()[1],
|
281 |
+
configuration.layout_a(conv_kind).stride()[2],
|
282 |
+
configuration.layout_a(conv_kind).stride()[3]
|
283 |
+
};
|
284 |
+
}
|
285 |
+
|
286 |
+
// Returns stride vector for tensor B
|
287 |
+
std::vector<int64_t> stride_b(library::ConvKind const &conv_kind) {
|
288 |
+
|
289 |
+
return {
|
290 |
+
configuration.layout_b(conv_kind).stride()[0],
|
291 |
+
configuration.layout_b(conv_kind).stride()[1],
|
292 |
+
configuration.layout_b(conv_kind).stride()[2],
|
293 |
+
configuration.layout_b(conv_kind).stride()[3]
|
294 |
+
};
|
295 |
+
}
|
296 |
+
|
297 |
+
// Returns stride vector for tensor C
|
298 |
+
std::vector<int64_t> stride_c(library::ConvKind const &conv_kind) {
|
299 |
+
|
300 |
+
return {
|
301 |
+
configuration.layout_c(conv_kind).stride()[0],
|
302 |
+
configuration.layout_c(conv_kind).stride()[1],
|
303 |
+
configuration.layout_c(conv_kind).stride()[2],
|
304 |
+
configuration.layout_c(conv_kind).stride()[3]
|
305 |
+
};
|
306 |
+
}
|
307 |
+
};
|
308 |
+
|
309 |
+
protected:
|
310 |
+
|
311 |
+
//
|
312 |
+
// Data members
|
313 |
+
//
|
314 |
+
|
315 |
+
/// CONV problem obtained from problem space
|
316 |
+
Conv3dProblem problem_;
|
317 |
+
|
318 |
+
/// Device memory allocations
|
319 |
+
Conv2dWorkspace conv_workspace_;
|
320 |
+
|
321 |
+
/// CUTLASS parallel reduction operation to follow this* conv2d operation
|
322 |
+
library::Operation const *reduction_op_;
|
323 |
+
|
324 |
+
public:
|
325 |
+
//
|
326 |
+
// Methods
|
327 |
+
//
|
328 |
+
|
329 |
+
/// Ctor
|
330 |
+
Conv3dOperationProfiler(Options const &options);
|
331 |
+
|
332 |
+
/// Destructor
|
333 |
+
virtual ~Conv3dOperationProfiler();
|
334 |
+
|
335 |
+
Conv3dProblem const& problem() const { return problem_; }
|
336 |
+
|
337 |
+
/// Prints usage statement for the math function
|
338 |
+
virtual void print_usage(std::ostream &out) const;
|
339 |
+
|
340 |
+
/// Prints examples
|
341 |
+
virtual void print_examples(std::ostream &out) const;
|
342 |
+
|
343 |
+
/// Extracts the problem dimensions
|
344 |
+
virtual Status initialize_configuration(
|
345 |
+
Options const &options,
|
346 |
+
PerformanceReport &report,
|
347 |
+
DeviceContext &device_context,
|
348 |
+
library::Operation const *operation,
|
349 |
+
ProblemSpace const &problem_space,
|
350 |
+
ProblemSpace::Problem const &problem);
|
351 |
+
|
352 |
+
/// Initializes workspace
|
353 |
+
virtual Status initialize_workspace(
|
354 |
+
Options const &options,
|
355 |
+
PerformanceReport &report,
|
356 |
+
DeviceContext &device_context,
|
357 |
+
library::Operation const *operation,
|
358 |
+
ProblemSpace const &problem_space,
|
359 |
+
ProblemSpace::Problem const &problem);
|
360 |
+
|
361 |
+
/// Verifies CUTLASS against references
|
362 |
+
virtual bool verify_cutlass(
|
363 |
+
Options const &options,
|
364 |
+
PerformanceReport &report,
|
365 |
+
DeviceContext &device_context,
|
366 |
+
library::Operation const *operation,
|
367 |
+
ProblemSpace const &problem_space,
|
368 |
+
ProblemSpace::Problem const &problem);
|
369 |
+
|
370 |
+
/// Measures performance results
|
371 |
+
virtual bool profile(
|
372 |
+
Options const &options,
|
373 |
+
PerformanceReport &report,
|
374 |
+
DeviceContext &device_context,
|
375 |
+
library::Operation const *operation,
|
376 |
+
ProblemSpace const &problem_space,
|
377 |
+
ProblemSpace::Problem const &problem);
|
378 |
+
|
379 |
+
protected:
|
380 |
+
|
381 |
+
/// Updates the arguments structure for the CUTLASS operator based on
|
382 |
+
/// the problem index.
|
383 |
+
void set_cutlass_operator_arguments_(int problem_idx = 0);
|
384 |
+
|
385 |
+
/// Method to profile an initialized CUTLASS operation
|
386 |
+
virtual Status profile_cutlass_(
|
387 |
+
double &runtime,
|
388 |
+
Options const &options,
|
389 |
+
library::Operation const *operation,
|
390 |
+
void *arguments,
|
391 |
+
void *host_workspace,
|
392 |
+
void *device_workspace);
|
393 |
+
|
394 |
+
/// Initialize reduction problem dimensions and library::Operation
|
395 |
+
bool initialize_reduction_configuration_(
|
396 |
+
Options const &options,
|
397 |
+
PerformanceReport &report,
|
398 |
+
DeviceContext &device_context,
|
399 |
+
library::Operation const *operation,
|
400 |
+
ProblemSpace const &problem_space,
|
401 |
+
ProblemSpace::Problem const &problem);
|
402 |
+
|
403 |
+
/// Initializes the performance result
|
404 |
+
void initialize_result_(
|
405 |
+
PerformanceResult &result,
|
406 |
+
Options const &options,
|
407 |
+
library::ConvDescription const &operation_desc,
|
408 |
+
ProblemSpace const &problem_space);
|
409 |
+
|
410 |
+
/// Verifies CUTLASS against host reference
|
411 |
+
bool verify_with_host_reference_(
|
412 |
+
Options const &options,
|
413 |
+
PerformanceReport &report,
|
414 |
+
DeviceContext &device_context,
|
415 |
+
library::Operation const *operation,
|
416 |
+
ProblemSpace const &problem_space,
|
417 |
+
ProblemSpace::Problem const &problem);
|
418 |
+
|
419 |
+
/// Verifies CUTLASS against device reference
|
420 |
+
bool verify_with_device_reference_(
|
421 |
+
Options const &options,
|
422 |
+
PerformanceReport &report,
|
423 |
+
DeviceContext &device_context,
|
424 |
+
library::Operation const *operation,
|
425 |
+
ProblemSpace const &problem_space,
|
426 |
+
ProblemSpace::Problem const &problem);
|
427 |
+
|
428 |
+
#if CUTLASS_ENABLE_CUDNN
|
429 |
+
|
430 |
+
/// Verifies CUTLASS against cudnn reference
|
431 |
+
bool verify_with_cudnn_(
|
432 |
+
Options const &options,
|
433 |
+
PerformanceReport &report,
|
434 |
+
DeviceContext &device_context,
|
435 |
+
library::Operation const *operation,
|
436 |
+
ProblemSpace const &problem_space,
|
437 |
+
ProblemSpace::Problem const &problem);
|
438 |
+
|
439 |
+
#endif //#if CUTLASS_ENABLE_CUDNN
|
440 |
+
|
441 |
+
};
|
442 |
+
|
443 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
444 |
+
|
445 |
+
} // namespace profiler
|
446 |
+
} // namespace cutlass
|
447 |
+
|
448 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
449 |
+
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/cublas_helpers.h
ADDED
@@ -0,0 +1,456 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief Helper functions for mapping CUTLASS concepts to cuBLAS.
|
33 |
+
*/
|
34 |
+
|
35 |
+
#pragma once
|
36 |
+
|
37 |
+
#if CUTLASS_ENABLE_CUBLAS
|
38 |
+
#include <cublas_v2.h>
|
39 |
+
#include <cublasLt.h>
|
40 |
+
|
41 |
+
#include "cutlass/cutlass.h"
|
42 |
+
#include "cutlass/library/library.h"
|
43 |
+
#include "cutlass/library/util.h"
|
44 |
+
#include "cutlass/blas3.h"
|
45 |
+
|
46 |
+
#include "options.h"
|
47 |
+
|
48 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
49 |
+
|
50 |
+
namespace cutlass {
|
51 |
+
namespace profiler {
|
52 |
+
|
53 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
54 |
+
|
55 |
+
/// Converts a cuBLAS status to cutlass::Status
|
56 |
+
Status get_cutlass_status(cublasStatus_t cublas);
|
57 |
+
|
58 |
+
/// Converts a cuBLAS status to cutlass::profiler::Disposition
|
59 |
+
Disposition get_cutlass_disposition(cublasStatus_t cublas_status);
|
60 |
+
|
61 |
+
/// Maps a CUTLASS tensor layout to a cuBLAS transpose operation
|
62 |
+
bool get_cublas_transpose_operation(
|
63 |
+
cublasOperation_t &operation,
|
64 |
+
library::LayoutTypeID layout,
|
65 |
+
library::ComplexTransform transform = library::ComplexTransform::kNone);
|
66 |
+
|
67 |
+
/// Maps a CUTLASS numeric type to a cuBLAS data type enumeration
|
68 |
+
bool get_cublas_datatype(cublasDataType_t &data_type, library::NumericTypeID element_type);
|
69 |
+
|
70 |
+
/// Gets the cublas algorithm given threadblock tile dimensions and math opcode class
|
71 |
+
cublasGemmAlgo_t get_cublas_gemm_algo(
|
72 |
+
int cta_m,
|
73 |
+
int cta_n,
|
74 |
+
int cta_k,
|
75 |
+
library::OpcodeClassID opcode_class);
|
76 |
+
|
77 |
+
/// Returns a status if cuBLAS can satisfy a particular GEMM description
|
78 |
+
Status cublas_satisfies(library::GemmDescription const &desc);
|
79 |
+
|
80 |
+
/// Returns a status if cuBLAS can satisfy a particular RankK description
|
81 |
+
Status cublas_satisfies(library::RankKDescription const &desc);
|
82 |
+
|
83 |
+
/// Returns a status if cuBLAS can satisfy a particular TRMM description
|
84 |
+
Status cublas_satisfies(library::TrmmDescription const &desc);
|
85 |
+
|
86 |
+
/// Returns a status if cuBLAS can satisfy a particular SYMM/HEMM description
|
87 |
+
Status cublas_satisfies(library::SymmDescription const &desc);
|
88 |
+
|
89 |
+
/// This is a helper class to create cublasHandle_t automatically on CublasCreate object creation and
|
90 |
+
/// to destroy cublasHandle_t on CublasCreate object destruction.
|
91 |
+
/// Additionally, it provides implicit cast from CublasCreate's object to cublasHandle_t's object
|
92 |
+
class CublasCreate {
|
93 |
+
private:
|
94 |
+
cublasHandle_t handle;
|
95 |
+
cublasStatus_t status;
|
96 |
+
|
97 |
+
public:
|
98 |
+
CublasCreate() {
|
99 |
+
status = cublasCreate(&handle);
|
100 |
+
}
|
101 |
+
|
102 |
+
~CublasCreate() {
|
103 |
+
cublasDestroy(handle);
|
104 |
+
}
|
105 |
+
|
106 |
+
/// Implicit cast CublasCreate object to cublasHandle_t
|
107 |
+
operator cublasHandle_t() const { return handle; }
|
108 |
+
|
109 |
+
/// returns cublasStatus_t for handle creation
|
110 |
+
cublasStatus_t get_cublas_create_status() { return status; }
|
111 |
+
};
|
112 |
+
|
113 |
+
/// This is a helper class to create cublasLtHandle_t automatically on CublasLtCreate object creation and
|
114 |
+
/// to destroy cublasLtHandle_t on CublasLtCreate object destruction.
|
115 |
+
/// Additionally, it provides implicit cast from CublasLtCreate's object to cublasLtHandle_t's object
|
116 |
+
class CublasLtCreate {
|
117 |
+
private:
|
118 |
+
cublasLtHandle_t handle;
|
119 |
+
cublasStatus_t status;
|
120 |
+
|
121 |
+
public:
|
122 |
+
CublasLtCreate() {
|
123 |
+
status = cublasLtCreate(&handle);
|
124 |
+
}
|
125 |
+
|
126 |
+
~CublasLtCreate() {
|
127 |
+
cublasLtDestroy(handle);
|
128 |
+
}
|
129 |
+
|
130 |
+
/// Implicit cast CublasLtCreate object to cublasLtHandle_t
|
131 |
+
operator cublasLtHandle_t() const { return handle; }
|
132 |
+
|
133 |
+
/// returns cublasLtStatus_t for handle creation
|
134 |
+
cublasStatus_t get_cublaslt_create_status() { return status; }
|
135 |
+
};
|
136 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
137 |
+
|
138 |
+
namespace detail {
|
139 |
+
|
140 |
+
/// Selects one or more cuBLAS algorithms.
|
141 |
+
static void select_cublas_algorithms(
|
142 |
+
std::vector<cublasGemmAlgo_t> &algorithms,
|
143 |
+
Options const &options,
|
144 |
+
library::GemmDescription const &op_desc) {
|
145 |
+
|
146 |
+
library::OpcodeClassID const & opcode_class =
|
147 |
+
op_desc.tile_description.math_instruction.opcode_class;
|
148 |
+
|
149 |
+
switch (options.library.algorithm_mode) {
|
150 |
+
case AlgorithmMode::kMatching:
|
151 |
+
{
|
152 |
+
algorithms.push_back(get_cublas_gemm_algo(
|
153 |
+
op_desc.tile_description.threadblock_shape.m(),
|
154 |
+
op_desc.tile_description.threadblock_shape.n(),
|
155 |
+
op_desc.tile_description.threadblock_shape.k(),
|
156 |
+
opcode_class));
|
157 |
+
break;
|
158 |
+
}
|
159 |
+
|
160 |
+
case AlgorithmMode::kBest:
|
161 |
+
{
|
162 |
+
// Choose first enumerated mode. If none are enumerated, choose based on opcode class
|
163 |
+
// and evaluate all of them.
|
164 |
+
|
165 |
+
if (options.library.algorithms.empty()) {
|
166 |
+
// Enumerate all algorithms
|
167 |
+
if (opcode_class == library::OpcodeClassID::kSimt) {
|
168 |
+
|
169 |
+
for (int algo = CUBLAS_GEMM_DEFAULT;
|
170 |
+
algo <= CUBLAS_GEMM_ALGO23;
|
171 |
+
++algo) {
|
172 |
+
|
173 |
+
algorithms.push_back(cublasGemmAlgo_t(algo));
|
174 |
+
}
|
175 |
+
}
|
176 |
+
else {
|
177 |
+
|
178 |
+
for (int algo = CUBLAS_GEMM_DEFAULT_TENSOR_OP;
|
179 |
+
algo <= CUBLAS_GEMM_ALGO15_TENSOR_OP;
|
180 |
+
++algo) {
|
181 |
+
|
182 |
+
algorithms.push_back(cublasGemmAlgo_t(algo));
|
183 |
+
}
|
184 |
+
}
|
185 |
+
}
|
186 |
+
else {
|
187 |
+
// Use the listed algorithms
|
188 |
+
algorithms.reserve(options.library.algorithms.size());
|
189 |
+
|
190 |
+
for (int algo : options.library.algorithms) {
|
191 |
+
algorithms.push_back(reinterpret_cast<cublasGemmAlgo_t const &>(algo));
|
192 |
+
}
|
193 |
+
}
|
194 |
+
|
195 |
+
break;
|
196 |
+
}
|
197 |
+
|
198 |
+
case AlgorithmMode::kDefault:
|
199 |
+
{
|
200 |
+
|
201 |
+
// Use the library's default algorithm
|
202 |
+
algorithms.push_back((opcode_class == library::OpcodeClassID::kSimt ?
|
203 |
+
CUBLAS_GEMM_DEFAULT : CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
204 |
+
|
205 |
+
break;
|
206 |
+
}
|
207 |
+
default:
|
208 |
+
{
|
209 |
+
break;
|
210 |
+
}
|
211 |
+
}
|
212 |
+
}
|
213 |
+
|
214 |
+
/// Dispatcher to cublasGemmEx()
|
215 |
+
struct cublasGemmExDispatcher {
|
216 |
+
|
217 |
+
//
|
218 |
+
// Data members
|
219 |
+
//
|
220 |
+
library::GemmUniversalConfiguration configuration;
|
221 |
+
library::GemmUniversalArguments arguments;
|
222 |
+
|
223 |
+
// cublas-specific data structures to fill cublas API call arguments
|
224 |
+
cublasOperation_t trans_A;
|
225 |
+
cublasOperation_t trans_B;
|
226 |
+
cudaDataType_t data_type_A;
|
227 |
+
cudaDataType_t data_type_B;
|
228 |
+
cudaDataType_t data_type_C;
|
229 |
+
cudaDataType_t compute_data_type;
|
230 |
+
|
231 |
+
#if (__CUDACC_VER_MAJOR__ >= 11)
|
232 |
+
cublasComputeType_t compute_type;
|
233 |
+
#endif
|
234 |
+
|
235 |
+
cublasGemmAlgo_t algo;
|
236 |
+
Status status;
|
237 |
+
|
238 |
+
//
|
239 |
+
// Methods
|
240 |
+
//
|
241 |
+
|
242 |
+
cublasGemmExDispatcher(
|
243 |
+
library::GemmDescription const &op_desc,
|
244 |
+
library::GemmUniversalConfiguration configuration_,
|
245 |
+
library::GemmUniversalArguments arguments_,
|
246 |
+
cublasGemmAlgo_t algorithm = CUBLAS_GEMM_DFALT
|
247 |
+
);
|
248 |
+
|
249 |
+
/// Executes GEMM using these arguments
|
250 |
+
cublasStatus_t operator()(cublasHandle_t handle);
|
251 |
+
};
|
252 |
+
|
253 |
+
/// Dispatcher to cublaslt kernels
|
254 |
+
//
|
255 |
+
struct cublasLtGemmExDispatcher {
|
256 |
+
|
257 |
+
//
|
258 |
+
// Data members
|
259 |
+
//
|
260 |
+
library::GemmDescription const &op_desc;
|
261 |
+
library::GemmUniversalConfiguration configuration;
|
262 |
+
library::GemmUniversalArguments arguments;
|
263 |
+
|
264 |
+
// cublas-specific data structures to fill cublas API call arguments
|
265 |
+
cublasOperation_t trans_A;
|
266 |
+
cublasOperation_t trans_B;
|
267 |
+
cudaDataType_t data_type_A;
|
268 |
+
cudaDataType_t data_type_B;
|
269 |
+
cudaDataType_t data_type_C;
|
270 |
+
cudaDataType_t compute_data_type = CUDA_R_32F;
|
271 |
+
|
272 |
+
//cublasLt-specific data structures
|
273 |
+
cublasLtMatmulDesc_t operationDesc = NULL;
|
274 |
+
cublasLtMatrixLayout_t Adesc = NULL, Bdesc = NULL, Cdesc = NULL, Ddesc = NULL;
|
275 |
+
cublasLtMatmulPreference_t preference = NULL;
|
276 |
+
|
277 |
+
//is set by call to get_cublaslt_algo()
|
278 |
+
cublasLtMatmulHeuristicResult_t heuristicResult_;
|
279 |
+
void *workspace = nullptr;
|
280 |
+
|
281 |
+
Status status;
|
282 |
+
|
283 |
+
#if (__CUDACC_VER_MAJOR__ >= 11)
|
284 |
+
cublasComputeType_t compute_type;
|
285 |
+
#endif
|
286 |
+
|
287 |
+
//
|
288 |
+
// Methods
|
289 |
+
//
|
290 |
+
|
291 |
+
cublasLtGemmExDispatcher(
|
292 |
+
library::GemmDescription const &op_desc,
|
293 |
+
library::GemmUniversalConfiguration configuration_,
|
294 |
+
library::GemmUniversalArguments arguments_
|
295 |
+
);
|
296 |
+
|
297 |
+
/// Initialize the cublasLt variables
|
298 |
+
void initialize_cublaslt();
|
299 |
+
|
300 |
+
|
301 |
+
/// Runs auto-tuning for the cublas heuristics
|
302 |
+
bool get_cublaslt_algo(cublasLtHandle_t handle,
|
303 |
+
AlgorithmMode algorithm_mode
|
304 |
+
);
|
305 |
+
|
306 |
+
/// Executes GEMM using these arguments
|
307 |
+
cublasStatus_t operator()(cublasLtHandle_t handle);
|
308 |
+
|
309 |
+
~cublasLtGemmExDispatcher(){
|
310 |
+
|
311 |
+
// descriptors are no longer needed as all GPU work was already enqueued
|
312 |
+
if (preference) cublasLtMatmulPreferenceDestroy(preference);
|
313 |
+
if (Ddesc) cublasLtMatrixLayoutDestroy(Ddesc);
|
314 |
+
if (Cdesc) cublasLtMatrixLayoutDestroy(Cdesc);
|
315 |
+
if (Bdesc) cublasLtMatrixLayoutDestroy(Bdesc);
|
316 |
+
if (Adesc) cublasLtMatrixLayoutDestroy(Adesc);
|
317 |
+
if (operationDesc) cublasLtMatmulDescDestroy(operationDesc);
|
318 |
+
|
319 |
+
if (workspace) {
|
320 |
+
cudaFree(workspace);
|
321 |
+
}
|
322 |
+
|
323 |
+
}
|
324 |
+
|
325 |
+
};
|
326 |
+
|
327 |
+
///////////////////////////////////////////////////////////////////////////////////////////////////
|
328 |
+
|
329 |
+
/// Dispatcher to cublas rank k update kernels
|
330 |
+
struct cublasRankKDispatcher {
|
331 |
+
|
332 |
+
//
|
333 |
+
// Data members
|
334 |
+
//
|
335 |
+
library::RankKConfiguration configuration;
|
336 |
+
library::RankKArguments arguments;
|
337 |
+
|
338 |
+
// cublas-specific data structures to fill cublas API call arguments
|
339 |
+
cublasOperation_t trans_A;
|
340 |
+
cublasFillMode_t uplo;
|
341 |
+
cudaDataType_t data_type_A;
|
342 |
+
cudaDataType_t data_type_C;
|
343 |
+
cudaDataType_t compute_data_type;
|
344 |
+
|
345 |
+
#if (__CUDACC_VER_MAJOR__ >= 11)
|
346 |
+
cublasComputeType_t compute_type;
|
347 |
+
#endif
|
348 |
+
|
349 |
+
int num_ranks; //(rank-k or rank-2k)
|
350 |
+
BlasMode blas_mode; //(symmetric or hermitian)
|
351 |
+
Status status;
|
352 |
+
|
353 |
+
//
|
354 |
+
// Methods
|
355 |
+
//
|
356 |
+
|
357 |
+
cublasRankKDispatcher(
|
358 |
+
library::RankKDescription const &op_desc,
|
359 |
+
library::RankKConfiguration configuration_,
|
360 |
+
library::RankKArguments arguments_
|
361 |
+
);
|
362 |
+
|
363 |
+
/// Executes RankK using these arguments
|
364 |
+
cublasStatus_t operator()(cublasHandle_t handle);
|
365 |
+
};
|
366 |
+
|
367 |
+
///////////////////////////////////////////////////////////////////////////////////////////////////
|
368 |
+
|
369 |
+
/// Dispatcher to cublasTrmm()
|
370 |
+
struct cublasTrmmDispatcher {
|
371 |
+
|
372 |
+
//
|
373 |
+
// Data members
|
374 |
+
//
|
375 |
+
library::TrmmConfiguration configuration;
|
376 |
+
library::TrmmArguments arguments;
|
377 |
+
|
378 |
+
// cublas-specific data structures to fill cublas API call arguments
|
379 |
+
cublasOperation_t trans_A;
|
380 |
+
cublasSideMode_t side;
|
381 |
+
cublasFillMode_t uplo;
|
382 |
+
cublasDiagType_t diag;
|
383 |
+
cudaDataType_t data_type_A;
|
384 |
+
cudaDataType_t data_type_B;
|
385 |
+
cudaDataType_t data_type_D;
|
386 |
+
cudaDataType_t compute_data_type;
|
387 |
+
|
388 |
+
#if (__CUDACC_VER_MAJOR__ >= 11)
|
389 |
+
cublasComputeType_t compute_type;
|
390 |
+
#endif
|
391 |
+
|
392 |
+
Status status;
|
393 |
+
|
394 |
+
//
|
395 |
+
// Methods
|
396 |
+
//
|
397 |
+
|
398 |
+
cublasTrmmDispatcher(
|
399 |
+
library::TrmmDescription const &op_desc,
|
400 |
+
library::TrmmConfiguration configuration_,
|
401 |
+
library::TrmmArguments arguments_
|
402 |
+
);
|
403 |
+
|
404 |
+
/// Executes TRMM using these arguments
|
405 |
+
cublasStatus_t operator()(cublasHandle_t handle);
|
406 |
+
};
|
407 |
+
|
408 |
+
///////////////////////////////////////////////////////////////////////////////////////////////////
|
409 |
+
|
410 |
+
/// Dispatcher to cublas symm/hemm update kernels
|
411 |
+
struct cublasSymmDispatcher {
|
412 |
+
|
413 |
+
//
|
414 |
+
// Data members
|
415 |
+
//
|
416 |
+
library::SymmConfiguration configuration;
|
417 |
+
library::SymmArguments arguments;
|
418 |
+
|
419 |
+
// cublas-specific data structures to fill cublas API call arguments
|
420 |
+
cublasSideMode_t side;
|
421 |
+
cublasFillMode_t uplo;
|
422 |
+
cudaDataType_t data_type_A;
|
423 |
+
cudaDataType_t data_type_B;
|
424 |
+
cudaDataType_t data_type_C;
|
425 |
+
cudaDataType_t compute_data_type;
|
426 |
+
|
427 |
+
#if (__CUDACC_VER_MAJOR__ >= 11)
|
428 |
+
cublasComputeType_t compute_type;
|
429 |
+
#endif
|
430 |
+
|
431 |
+
BlasMode blas_mode; //(symmetric or hermitian)
|
432 |
+
Status status;
|
433 |
+
|
434 |
+
//
|
435 |
+
// Methods
|
436 |
+
//
|
437 |
+
|
438 |
+
cublasSymmDispatcher(
|
439 |
+
library::SymmDescription const &op_desc,
|
440 |
+
library::SymmConfiguration configuration_,
|
441 |
+
library::SymmArguments arguments_
|
442 |
+
);
|
443 |
+
|
444 |
+
/// Executes Symm using these arguments
|
445 |
+
cublasStatus_t operator()(cublasHandle_t handle);
|
446 |
+
};
|
447 |
+
|
448 |
+
///////////////////////////////////////////////////////////////////////////////////////////////////
|
449 |
+
|
450 |
+
} // namespace detail
|
451 |
+
|
452 |
+
} // namespace profiler
|
453 |
+
} // namespace cutlass
|
454 |
+
|
455 |
+
|
456 |
+
#endif // #if CUTLASS_ENABLE_CUBLAS
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/cudnn_helpers.h
ADDED
@@ -0,0 +1,590 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief Helper functions for mapping CUTLASS concepts to cuDNN.
|
33 |
+
|
34 |
+
*/
|
35 |
+
|
36 |
+
#pragma once
|
37 |
+
#if CUTLASS_ENABLE_CUDNN
|
38 |
+
#include <cuda_runtime.h>
|
39 |
+
#include <cudnn.h>
|
40 |
+
#include <iostream>
|
41 |
+
#include "cutlass/cutlass.h"
|
42 |
+
#include "cutlass/util/device_memory.h"
|
43 |
+
#include "cutlass/library/library.h"
|
44 |
+
#include "enumerated_types.h"
|
45 |
+
|
46 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
47 |
+
|
48 |
+
namespace cutlass {
|
49 |
+
namespace profiler {
|
50 |
+
|
51 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
52 |
+
/// Converts a cuDNN status to cutlass::Status
|
53 |
+
Status get_cutlass_status(cudnnStatus_t cudnn_status);
|
54 |
+
|
55 |
+
/// Converts a cuDNN status to cutlass::profiler::Disposition
|
56 |
+
Disposition get_cutlass_disposition(cudnnStatus_t cudnn_status);
|
57 |
+
|
58 |
+
/// Checks cudnnStatus_t converts to cutlas status and returns if Status::kSuccess o.w. throws exception
|
59 |
+
Status checkCudnnErr(cudnnStatus_t cudnn_status);
|
60 |
+
|
61 |
+
/// Maps a CUTLASS conv mode to a cuDNN conv mode enumeration
|
62 |
+
bool get_cudnn_conv_mode(cudnnConvolutionMode_t &cudnn_conv_mode, conv::Mode conv_mode);
|
63 |
+
|
64 |
+
/// Maps a CUTLASS layout type to a cuDNN data type enumeration
|
65 |
+
bool get_cudnn_layout(cudnnTensorFormat_t &cudnn_layout, library::LayoutTypeID layout);
|
66 |
+
|
67 |
+
/// Maps a CUTLASS numeric type to a cuDNN data type enumeration
|
68 |
+
bool get_cudnn_datatype(cudnnDataType_t &cudnn_element_type, library::NumericTypeID element_type);
|
69 |
+
|
70 |
+
/// Maps CUTLASS math OpcodeClassID and MathOperationID to cuDNN math_type
|
71 |
+
bool get_cudnn_mathtype(cudnnMathType_t &cudnn_math_type, library::ConvDescription const &conv_desc);
|
72 |
+
|
73 |
+
/// Returns a status if cudnn can satisfy a particular Conv2d description
|
74 |
+
Status cudnn_satisfies(library::ConvDescription const &desc, library::Conv2dConfiguration const &configuration);
|
75 |
+
|
76 |
+
/// Returns a status if cudnn can satisfy a particular Conv3d description
|
77 |
+
Status cudnn_satisfies(library::ConvDescription const &desc, library::Conv3dConfiguration const &configuration);
|
78 |
+
|
79 |
+
/// Cudnn compute type seems to be hardcoded to float (To handle a possible cudnn issue)
|
80 |
+
float cast_cudnn_compute_type_to_float(library::NumericTypeID type, void const * src);
|
81 |
+
|
82 |
+
|
83 |
+
/// This is a helper class to create cudnnHandle_t automatically on CudnnCreate object creation and
|
84 |
+
/// to destroy cudnnHandle_t on CudnnCreate object destruction.
|
85 |
+
/// Additionally, it provides implicit cast from CudnnCreate's object to cudnnHandle_t's object
|
86 |
+
class CudnnCreate {
|
87 |
+
private:
|
88 |
+
cudnnHandle_t handle;
|
89 |
+
cudnnStatus_t status;
|
90 |
+
|
91 |
+
public:
|
92 |
+
CudnnCreate() {
|
93 |
+
status = cudnnCreate(&handle);
|
94 |
+
}
|
95 |
+
|
96 |
+
~CudnnCreate() {
|
97 |
+
cudnnDestroy(handle);
|
98 |
+
}
|
99 |
+
|
100 |
+
/// Implicit cast CudnnCreate object to cudnnHandle_t
|
101 |
+
operator cudnnHandle_t() const { return handle; }
|
102 |
+
|
103 |
+
/// returns cudnnStatus_t for handle creation
|
104 |
+
cudnnStatus_t get_cudnn_create_status() { return status; }
|
105 |
+
};
|
106 |
+
|
107 |
+
|
108 |
+
namespace detail {
|
109 |
+
|
110 |
+
/// Dispatcher to cudnn convolution operators
|
111 |
+
struct cudnnConvDispatcher {
|
112 |
+
|
113 |
+
//
|
114 |
+
// Data members
|
115 |
+
//
|
116 |
+
//library::Conv2dConfiguration configuration;
|
117 |
+
library::ConvArguments arguments;
|
118 |
+
library::ConvKind conv_kind;
|
119 |
+
|
120 |
+
// cudnn-specific data structures to fill cudnn API call arguments
|
121 |
+
// cudnn activation, filter, and output descriptors
|
122 |
+
cudnnTensorDescriptor_t activation_desc;
|
123 |
+
cudnnFilterDescriptor_t filter_desc;
|
124 |
+
cudnnTensorDescriptor_t output_desc;
|
125 |
+
cudnnConvolutionDescriptor_t conv_desc;
|
126 |
+
|
127 |
+
// cudnn datatypes
|
128 |
+
cudnnDataType_t data_type_activation;
|
129 |
+
cudnnDataType_t data_type_filter;
|
130 |
+
cudnnDataType_t data_type_output;
|
131 |
+
|
132 |
+
// cudnn layouts
|
133 |
+
cudnnTensorFormat_t layout_activation;
|
134 |
+
cudnnTensorFormat_t layout_filter;
|
135 |
+
cudnnTensorFormat_t layout_output;
|
136 |
+
|
137 |
+
// cudnn convolution mode
|
138 |
+
cudnnConvolutionMode_t conv_mode;
|
139 |
+
|
140 |
+
// cudnn math type (tensorop, tensorop with conversion, simt)
|
141 |
+
cudnnMathType_t math_type;
|
142 |
+
|
143 |
+
// cudnn compute data type
|
144 |
+
cudnnDataType_t compute_type;
|
145 |
+
|
146 |
+
// cudnn compute type seems to be hardcoded to float (to handle a possible a cudnn issue)
|
147 |
+
float alpha;
|
148 |
+
float beta;
|
149 |
+
|
150 |
+
// cudnn workspace
|
151 |
+
size_t workspace_size_in_bytes = 0;
|
152 |
+
cutlass::device_memory::allocation<char> workspace;
|
153 |
+
|
154 |
+
// select cudnn's implicit gemm precomputed algorithm with tensor operations
|
155 |
+
static cudnnConvolutionFwdAlgo_t const fprop_algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
|
156 |
+
static cudnnConvolutionBwdDataAlgo_t const dgrad_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
|
157 |
+
static cudnnConvolutionBwdFilterAlgo_t const wgrad_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
|
158 |
+
|
159 |
+
Status status;
|
160 |
+
|
161 |
+
//
|
162 |
+
// Methods
|
163 |
+
//
|
164 |
+
|
165 |
+
// TODO: unify ctor cudnnConvDispatcher for conv2d and conv3d by unifying Conv2dConfiguration
|
166 |
+
|
167 |
+
// ctor for conv2d
|
168 |
+
cudnnConvDispatcher(
|
169 |
+
library::ConvDescription const &op_desc,
|
170 |
+
library::Conv2dConfiguration configuration,
|
171 |
+
library::ConvArguments arguments_,
|
172 |
+
cudnnHandle_t handle
|
173 |
+
):
|
174 |
+
//configuration(configuration_),
|
175 |
+
arguments(arguments_),
|
176 |
+
conv_kind(op_desc.conv_kind),
|
177 |
+
status(Status::kSuccess) {
|
178 |
+
|
179 |
+
bool good = true;
|
180 |
+
|
181 |
+
// Get cudnn datatype, layout, and convolution mode from library::ConvDescription
|
182 |
+
good = (good && get_cudnn_datatype(data_type_activation, op_desc.A.element));
|
183 |
+
good = (good && get_cudnn_datatype(data_type_filter, op_desc.B.element));
|
184 |
+
good = (good && get_cudnn_datatype(data_type_output, op_desc.C.element));
|
185 |
+
good = (good && get_cudnn_layout(layout_activation, op_desc.A.layout));
|
186 |
+
good = (good && get_cudnn_layout(layout_filter, op_desc.B.layout));
|
187 |
+
good = (good && get_cudnn_layout(layout_output, op_desc.C.layout));
|
188 |
+
good = (good && get_cudnn_conv_mode(conv_mode, configuration.problem_size.mode));
|
189 |
+
// Get cudnn mathtype (cudnnMathType_t)
|
190 |
+
good = (good && get_cudnn_mathtype(math_type, op_desc));
|
191 |
+
good = (good && get_cudnn_datatype(
|
192 |
+
compute_type,
|
193 |
+
op_desc.tile_description.math_instruction.element_accumulator));
|
194 |
+
// Check cutlass Conv2d description has equivalent operator in cudnn
|
195 |
+
if (!good) {
|
196 |
+
status = Status::kErrorNotSupported;
|
197 |
+
return;
|
198 |
+
}
|
199 |
+
// cudnn compute type seems to be hardcoded to float (to handle a possible a cudnn issue)
|
200 |
+
alpha = cast_cudnn_compute_type_to_float(op_desc.element_epilogue, arguments.alpha);
|
201 |
+
beta = cast_cudnn_compute_type_to_float(op_desc.element_epilogue, arguments.beta);
|
202 |
+
|
203 |
+
// Create convolution descriptor object
|
204 |
+
status = get_cutlass_status(cudnnCreateConvolutionDescriptor(&conv_desc));
|
205 |
+
|
206 |
+
// Configure convolution operator
|
207 |
+
std::vector<int> padding {configuration.problem_size.pad_h, configuration.problem_size.pad_w};
|
208 |
+
std::vector<int> stride {configuration.problem_size.stride_h, configuration.problem_size.stride_w};
|
209 |
+
std::vector<int> dilation {configuration.problem_size.dilation_h, configuration.problem_size.dilation_w};
|
210 |
+
|
211 |
+
status = get_cutlass_status(
|
212 |
+
cudnnSetConvolutionNdDescriptor(
|
213 |
+
conv_desc,
|
214 |
+
op_desc.conv_dim,
|
215 |
+
padding.data(),
|
216 |
+
stride.data(),
|
217 |
+
dilation.data(),
|
218 |
+
conv_mode,
|
219 |
+
compute_type
|
220 |
+
));
|
221 |
+
|
222 |
+
// Set groups
|
223 |
+
status = get_cutlass_status(cudnnSetConvolutionGroupCount(conv_desc, configuration.problem_size.groups));
|
224 |
+
|
225 |
+
// Create activation, filter, and output descriptor objects
|
226 |
+
status = get_cutlass_status(cudnnCreateTensorDescriptor(&activation_desc));
|
227 |
+
status = get_cutlass_status(cudnnCreateFilterDescriptor(&filter_desc));
|
228 |
+
status = get_cutlass_status(cudnnCreateTensorDescriptor(&output_desc));
|
229 |
+
|
230 |
+
// Set activation, filter, and output descriptor
|
231 |
+
status = get_cutlass_status(
|
232 |
+
cudnnSetTensor4dDescriptor(
|
233 |
+
activation_desc,
|
234 |
+
layout_activation,
|
235 |
+
data_type_activation,
|
236 |
+
configuration.problem_size.N,
|
237 |
+
configuration.problem_size.C,
|
238 |
+
configuration.problem_size.H,
|
239 |
+
configuration.problem_size.W
|
240 |
+
));
|
241 |
+
|
242 |
+
status = get_cutlass_status(
|
243 |
+
cudnnSetFilter4dDescriptor(
|
244 |
+
filter_desc,
|
245 |
+
data_type_filter,
|
246 |
+
layout_filter,
|
247 |
+
configuration.problem_size.K,
|
248 |
+
configuration.problem_size.C / configuration.problem_size.groups,
|
249 |
+
configuration.problem_size.R,
|
250 |
+
configuration.problem_size.S
|
251 |
+
));
|
252 |
+
|
253 |
+
status = get_cutlass_status(
|
254 |
+
cudnnSetTensor4dDescriptor(
|
255 |
+
output_desc,
|
256 |
+
layout_output,
|
257 |
+
data_type_output,
|
258 |
+
configuration.problem_size.N,
|
259 |
+
configuration.problem_size.K,
|
260 |
+
configuration.problem_size.P,
|
261 |
+
configuration.problem_size.Q
|
262 |
+
));
|
263 |
+
|
264 |
+
// Set math instruction to tensor op
|
265 |
+
status = get_cutlass_status(
|
266 |
+
cudnnSetConvolutionMathType(conv_desc, math_type));
|
267 |
+
|
268 |
+
// Initialize workspace
|
269 |
+
switch (conv_kind) {
|
270 |
+
case library::ConvKind::kFprop:
|
271 |
+
status = get_cutlass_status(
|
272 |
+
cudnnGetConvolutionForwardWorkspaceSize(
|
273 |
+
handle,
|
274 |
+
activation_desc,
|
275 |
+
filter_desc,
|
276 |
+
conv_desc,
|
277 |
+
output_desc,
|
278 |
+
fprop_algo,
|
279 |
+
&workspace_size_in_bytes
|
280 |
+
)); break;
|
281 |
+
case library::ConvKind::kDgrad:
|
282 |
+
status = get_cutlass_status(
|
283 |
+
cudnnGetConvolutionBackwardDataWorkspaceSize(
|
284 |
+
handle,
|
285 |
+
filter_desc,
|
286 |
+
output_desc,
|
287 |
+
conv_desc,
|
288 |
+
activation_desc,
|
289 |
+
dgrad_algo,
|
290 |
+
&workspace_size_in_bytes
|
291 |
+
)); break;
|
292 |
+
case library::ConvKind::kWgrad:
|
293 |
+
status = get_cutlass_status(
|
294 |
+
cudnnGetConvolutionBackwardFilterWorkspaceSize(
|
295 |
+
handle,
|
296 |
+
activation_desc,
|
297 |
+
output_desc,
|
298 |
+
conv_desc,
|
299 |
+
filter_desc,
|
300 |
+
wgrad_algo,
|
301 |
+
&workspace_size_in_bytes
|
302 |
+
)); break;
|
303 |
+
|
304 |
+
}
|
305 |
+
|
306 |
+
workspace = cutlass::device_memory::allocation<char>(workspace_size_in_bytes);
|
307 |
+
}
|
308 |
+
|
309 |
+
|
310 |
+
// ctor for conv3d
|
311 |
+
cudnnConvDispatcher(
|
312 |
+
library::ConvDescription const &op_desc,
|
313 |
+
library::Conv3dConfiguration configuration,
|
314 |
+
library::ConvArguments arguments_,
|
315 |
+
cudnnHandle_t handle
|
316 |
+
):
|
317 |
+
//configuration(configuration_),
|
318 |
+
arguments(arguments_),
|
319 |
+
conv_kind(op_desc.conv_kind),
|
320 |
+
status(Status::kSuccess) {
|
321 |
+
|
322 |
+
bool good = true;
|
323 |
+
|
324 |
+
// Get cudnn datatype, layout, and convolution mode from library::ConvDescription
|
325 |
+
good = (good && get_cudnn_datatype(data_type_activation, op_desc.A.element));
|
326 |
+
good = (good && get_cudnn_datatype(data_type_filter, op_desc.B.element));
|
327 |
+
good = (good && get_cudnn_datatype(data_type_output, op_desc.C.element));
|
328 |
+
|
329 |
+
good = (good && get_cudnn_layout(layout_activation, op_desc.A.layout));
|
330 |
+
good = (good && get_cudnn_layout(layout_filter, op_desc.B.layout));
|
331 |
+
good = (good && get_cudnn_layout(layout_output, op_desc.C.layout));
|
332 |
+
|
333 |
+
good = (good && get_cudnn_conv_mode(conv_mode, configuration.problem_size.mode));
|
334 |
+
|
335 |
+
// cudnn compute type seems to be hardcoded to float (to handle a possible a cudnn issue)
|
336 |
+
alpha = cast_cudnn_compute_type_to_float(op_desc.element_epilogue, arguments.alpha);
|
337 |
+
beta = cast_cudnn_compute_type_to_float(op_desc.element_epilogue, arguments.beta);
|
338 |
+
|
339 |
+
good = (good && get_cudnn_datatype(
|
340 |
+
compute_type,
|
341 |
+
op_desc.tile_description.math_instruction.element_accumulator));
|
342 |
+
|
343 |
+
// Check cutlass Conv2d description has equivalent operator in cudnn
|
344 |
+
if (!good) {
|
345 |
+
status = Status::kErrorNotSupported;
|
346 |
+
}
|
347 |
+
|
348 |
+
// Create convolution descriptor object
|
349 |
+
status = get_cutlass_status(cudnnCreateConvolutionDescriptor(&conv_desc));
|
350 |
+
|
351 |
+
// Configure convolution operator
|
352 |
+
std::vector<int> padding {configuration.problem_size.pad_d, configuration.problem_size.pad_h, configuration.problem_size.pad_w};
|
353 |
+
std::vector<int> stride {configuration.problem_size.stride_d, configuration.problem_size.stride_h, configuration.problem_size.stride_w};
|
354 |
+
std::vector<int> dilation {configuration.problem_size.dilation_d, configuration.problem_size.dilation_h, configuration.problem_size.dilation_w};
|
355 |
+
|
356 |
+
status = get_cutlass_status(
|
357 |
+
cudnnSetConvolutionNdDescriptor(
|
358 |
+
conv_desc,
|
359 |
+
op_desc.conv_dim,
|
360 |
+
padding.data(),
|
361 |
+
stride.data(),
|
362 |
+
dilation.data(),
|
363 |
+
conv_mode,
|
364 |
+
compute_type
|
365 |
+
));
|
366 |
+
|
367 |
+
// Set groups
|
368 |
+
status = get_cutlass_status(cudnnSetConvolutionGroupCount(conv_desc, configuration.problem_size.groups));
|
369 |
+
|
370 |
+
// Create activation, filter, and output descriptor objects
|
371 |
+
status = get_cutlass_status(cudnnCreateTensorDescriptor(&activation_desc));
|
372 |
+
status = get_cutlass_status(cudnnCreateFilterDescriptor(&filter_desc));
|
373 |
+
status = get_cutlass_status(cudnnCreateTensorDescriptor(&output_desc));
|
374 |
+
|
375 |
+
// Set activation descriptor
|
376 |
+
std::vector<int> activation_extent {
|
377 |
+
configuration.problem_size.N,
|
378 |
+
configuration.problem_size.C,
|
379 |
+
configuration.problem_size.D,
|
380 |
+
configuration.problem_size.H,
|
381 |
+
configuration.problem_size.W
|
382 |
+
};
|
383 |
+
|
384 |
+
std::vector<int> activation_stride {
|
385 |
+
configuration.layout_activations.stride()[3],
|
386 |
+
1,
|
387 |
+
configuration.layout_activations.stride()[2],
|
388 |
+
configuration.layout_activations.stride()[1],
|
389 |
+
configuration.layout_activations.stride()[0]
|
390 |
+
};
|
391 |
+
|
392 |
+
status = get_cutlass_status(
|
393 |
+
cudnnSetTensorNdDescriptor(
|
394 |
+
activation_desc,
|
395 |
+
data_type_activation,
|
396 |
+
op_desc.conv_dim + 2,
|
397 |
+
activation_extent.data(),
|
398 |
+
activation_stride.data()
|
399 |
+
));
|
400 |
+
|
401 |
+
// Set filter descriptor
|
402 |
+
std::vector<int> filter_extent {
|
403 |
+
configuration.problem_size.K,
|
404 |
+
configuration.problem_size.C,
|
405 |
+
configuration.problem_size.T,
|
406 |
+
configuration.problem_size.R,
|
407 |
+
configuration.problem_size.S
|
408 |
+
};
|
409 |
+
|
410 |
+
std::vector<int> filter_stride {
|
411 |
+
configuration.layout_filters.stride()[3],
|
412 |
+
1,
|
413 |
+
configuration.layout_filters.stride()[2],
|
414 |
+
configuration.layout_filters.stride()[1],
|
415 |
+
configuration.layout_filters.stride()[0]
|
416 |
+
};
|
417 |
+
|
418 |
+
status = get_cutlass_status(
|
419 |
+
cudnnSetFilterNdDescriptor(
|
420 |
+
filter_desc,
|
421 |
+
data_type_filter,
|
422 |
+
layout_filter,
|
423 |
+
op_desc.conv_dim + 2,
|
424 |
+
filter_extent.data()
|
425 |
+
));
|
426 |
+
|
427 |
+
|
428 |
+
// Set output descriptor
|
429 |
+
std::vector<int> output_extent {
|
430 |
+
configuration.problem_size.N,
|
431 |
+
configuration.problem_size.K,
|
432 |
+
configuration.problem_size.Z,
|
433 |
+
configuration.problem_size.P,
|
434 |
+
configuration.problem_size.Q
|
435 |
+
};
|
436 |
+
|
437 |
+
std::vector<int> output_stride {
|
438 |
+
configuration.layout_output.stride()[3],
|
439 |
+
1,
|
440 |
+
configuration.layout_output.stride()[2],
|
441 |
+
configuration.layout_output.stride()[1],
|
442 |
+
configuration.layout_output.stride()[0]
|
443 |
+
};
|
444 |
+
|
445 |
+
status = get_cutlass_status(
|
446 |
+
cudnnSetTensorNdDescriptor(
|
447 |
+
output_desc,
|
448 |
+
data_type_output,
|
449 |
+
op_desc.conv_dim + 2,
|
450 |
+
output_extent.data(),
|
451 |
+
output_stride.data()
|
452 |
+
));
|
453 |
+
|
454 |
+
// Set math instruction to tensor op
|
455 |
+
status = get_cutlass_status(
|
456 |
+
cudnnSetConvolutionMathType(conv_desc, math_type));
|
457 |
+
|
458 |
+
// Initialize workspace
|
459 |
+
switch (conv_kind) {
|
460 |
+
case library::ConvKind::kFprop:
|
461 |
+
status = get_cutlass_status(
|
462 |
+
cudnnGetConvolutionForwardWorkspaceSize(
|
463 |
+
handle,
|
464 |
+
activation_desc,
|
465 |
+
filter_desc,
|
466 |
+
conv_desc,
|
467 |
+
output_desc,
|
468 |
+
fprop_algo,
|
469 |
+
&workspace_size_in_bytes
|
470 |
+
)); break;
|
471 |
+
case library::ConvKind::kDgrad:
|
472 |
+
status = get_cutlass_status(
|
473 |
+
cudnnGetConvolutionBackwardDataWorkspaceSize(
|
474 |
+
handle,
|
475 |
+
filter_desc,
|
476 |
+
output_desc,
|
477 |
+
conv_desc,
|
478 |
+
activation_desc,
|
479 |
+
dgrad_algo,
|
480 |
+
&workspace_size_in_bytes
|
481 |
+
)); break;
|
482 |
+
case library::ConvKind::kWgrad:
|
483 |
+
status = get_cutlass_status(
|
484 |
+
cudnnGetConvolutionBackwardFilterWorkspaceSize(
|
485 |
+
handle,
|
486 |
+
activation_desc,
|
487 |
+
output_desc,
|
488 |
+
conv_desc,
|
489 |
+
filter_desc,
|
490 |
+
wgrad_algo,
|
491 |
+
&workspace_size_in_bytes
|
492 |
+
)); break;
|
493 |
+
|
494 |
+
}
|
495 |
+
|
496 |
+
workspace = cutlass::device_memory::allocation<char>(workspace_size_in_bytes);
|
497 |
+
}
|
498 |
+
|
499 |
+
/// Executes Conv2d operator from cudnn library
|
500 |
+
cudnnStatus_t operator()(cudnnHandle_t handle) {
|
501 |
+
|
502 |
+
switch (conv_kind) {
|
503 |
+
case library::ConvKind::kFprop:
|
504 |
+
return cudnnConvolutionForward(
|
505 |
+
handle,
|
506 |
+
&alpha,
|
507 |
+
activation_desc,
|
508 |
+
activation(),
|
509 |
+
filter_desc,
|
510 |
+
filter(),
|
511 |
+
conv_desc,
|
512 |
+
fprop_algo,
|
513 |
+
workspace.get(),
|
514 |
+
workspace_size_in_bytes,
|
515 |
+
&beta,
|
516 |
+
output_desc,
|
517 |
+
arguments.D
|
518 |
+
);
|
519 |
+
case library::ConvKind::kDgrad:
|
520 |
+
return cudnnConvolutionBackwardData(
|
521 |
+
handle,
|
522 |
+
&alpha,
|
523 |
+
filter_desc,
|
524 |
+
filter(),
|
525 |
+
output_desc,
|
526 |
+
output(),
|
527 |
+
conv_desc,
|
528 |
+
dgrad_algo,
|
529 |
+
workspace.get(),
|
530 |
+
workspace_size_in_bytes,
|
531 |
+
&beta,
|
532 |
+
activation_desc,
|
533 |
+
arguments.D
|
534 |
+
);
|
535 |
+
case library::ConvKind::kWgrad:
|
536 |
+
return cudnnConvolutionBackwardFilter(
|
537 |
+
handle,
|
538 |
+
&alpha,
|
539 |
+
activation_desc,
|
540 |
+
activation(),
|
541 |
+
output_desc,
|
542 |
+
output(),
|
543 |
+
conv_desc,
|
544 |
+
wgrad_algo,
|
545 |
+
workspace.get(),
|
546 |
+
workspace_size_in_bytes,
|
547 |
+
&beta,
|
548 |
+
filter_desc,
|
549 |
+
arguments.D
|
550 |
+
);
|
551 |
+
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
|
552 |
+
}
|
553 |
+
}
|
554 |
+
|
555 |
+
// Returns Activation Tensor
|
556 |
+
void const * activation() const {
|
557 |
+
switch(conv_kind) {
|
558 |
+
case library::ConvKind::kFprop : return arguments.A;
|
559 |
+
case library::ConvKind::kDgrad : return arguments.C;
|
560 |
+
case library::ConvKind::kWgrad : return arguments.B;
|
561 |
+
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
|
562 |
+
}
|
563 |
+
}
|
564 |
+
|
565 |
+
// Returns Filter Tensor
|
566 |
+
void const *filter() const {
|
567 |
+
switch(conv_kind) {
|
568 |
+
case library::ConvKind::kFprop : return arguments.B;
|
569 |
+
case library::ConvKind::kDgrad : return arguments.B;
|
570 |
+
case library::ConvKind::kWgrad : return arguments.C;
|
571 |
+
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
|
572 |
+
}
|
573 |
+
}
|
574 |
+
|
575 |
+
// Returns Output Tensor
|
576 |
+
void const *output() const {
|
577 |
+
switch(conv_kind) {
|
578 |
+
case library::ConvKind::kFprop : return arguments.C;
|
579 |
+
case library::ConvKind::kDgrad : return arguments.A;
|
580 |
+
case library::ConvKind::kWgrad : return arguments.A;
|
581 |
+
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
|
582 |
+
}
|
583 |
+
}
|
584 |
+
};
|
585 |
+
|
586 |
+
} // namespace detail
|
587 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
588 |
+
#endif //#if CUTLASS_ENABLE_CUDNN
|
589 |
+
} // namespace profiler
|
590 |
+
} // namespace cutlass
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/cutlass_profiler.h
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief Execution environment
|
33 |
+
*/
|
34 |
+
|
35 |
+
#pragma once
|
36 |
+
// CUTLASS Library includes
|
37 |
+
#include "cutlass/library/library.h"
|
38 |
+
#include "cutlass/library/manifest.h"
|
39 |
+
#include "cutlass/library/singleton.h"
|
40 |
+
|
41 |
+
#include "options.h"
|
42 |
+
#include "operation_profiler.h"
|
43 |
+
|
44 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
45 |
+
|
46 |
+
namespace cutlass {
|
47 |
+
namespace profiler {
|
48 |
+
|
49 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
50 |
+
|
51 |
+
/// CUTLASS Profiler application
|
52 |
+
class CutlassProfiler {
|
53 |
+
private:
|
54 |
+
|
55 |
+
//
|
56 |
+
// Data members
|
57 |
+
//
|
58 |
+
|
59 |
+
/// Performance testbench options
|
60 |
+
Options options_;
|
61 |
+
|
62 |
+
/// Entry points for each operation
|
63 |
+
OperationProfilerVector operation_profilers_;
|
64 |
+
|
65 |
+
private:
|
66 |
+
|
67 |
+
/// Prints usage
|
68 |
+
void print_usage_(std::ostream &);
|
69 |
+
|
70 |
+
/// Prints usage
|
71 |
+
void print_options_(std::ostream &);
|
72 |
+
|
73 |
+
/// Enumerates all operations
|
74 |
+
void enumerate_();
|
75 |
+
|
76 |
+
/// Profiles all operations
|
77 |
+
int profile_();
|
78 |
+
|
79 |
+
public:
|
80 |
+
|
81 |
+
CutlassProfiler(Options const &options);
|
82 |
+
~CutlassProfiler();
|
83 |
+
|
84 |
+
/// Invokes profiling operations
|
85 |
+
int operator()();
|
86 |
+
};
|
87 |
+
|
88 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
89 |
+
|
90 |
+
} // namespace profiler
|
91 |
+
} // namespace cutlass
|
92 |
+
|
93 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/debug.h
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief
|
33 |
+
*/
|
34 |
+
|
35 |
+
#pragma once
|
36 |
+
|
37 |
+
#include <iostream>
|
38 |
+
|
39 |
+
//#define report(x) { std::cout << "\033[31m" << __FILE__ << ":" << __LINE__ << " " << x << "\033[0m" << std::endl; }
|
40 |
+
//#define report(x) {}
|
41 |
+
|
42 |
+
// Enable/Disable Profiler debug prints
|
43 |
+
//#define DEBUG_PROFILER
|
44 |
+
|
45 |
+
//RED 31m // profiler prints debug messages in red
|
46 |
+
//YELLOW 33m // ir prints debug messages in yellow
|
47 |
+
|
48 |
+
#ifndef DEBUG_PROFILER
|
49 |
+
#define debugprof(...)
|
50 |
+
#else
|
51 |
+
#define debugprof(...) do { \
|
52 |
+
printf("\033[33m[DEBUG PROF] %s:%d | ", __FILE__, __LINE__); \
|
53 |
+
printf(__VA_ARGS__); \
|
54 |
+
printf("\033[0m\n"); \
|
55 |
+
} while (0)
|
56 |
+
#endif
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/device_context.h
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief
|
33 |
+
*/
|
34 |
+
|
35 |
+
#pragma once
|
36 |
+
|
37 |
+
#include <map>
|
38 |
+
#include <string>
|
39 |
+
|
40 |
+
|
41 |
+
#include "cutlass/library/library.h"
|
42 |
+
#include "cutlass/library/util.h"
|
43 |
+
|
44 |
+
#include "options.h"
|
45 |
+
#include "device_allocation.h"
|
46 |
+
|
47 |
+
namespace cutlass {
|
48 |
+
namespace profiler {
|
49 |
+
|
50 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
51 |
+
|
52 |
+
/// Collection of allocations on the device
|
53 |
+
class DeviceContext {
|
54 |
+
public:
|
55 |
+
|
56 |
+
//
|
57 |
+
// Type definitions
|
58 |
+
//
|
59 |
+
using AllocationMap = std::map<std::string, DeviceAllocation *>;
|
60 |
+
|
61 |
+
private:
|
62 |
+
//
|
63 |
+
// Data members
|
64 |
+
//
|
65 |
+
|
66 |
+
/// Memory allocations that exist (owning)
|
67 |
+
DeviceAllocationList device_memory_;
|
68 |
+
|
69 |
+
/// Non-owning set of named allocations
|
70 |
+
AllocationMap allocations_;
|
71 |
+
|
72 |
+
public:
|
73 |
+
|
74 |
+
/// Allocates memory of a given type, capacity (elements), and name
|
75 |
+
DeviceAllocation *allocate_block(
|
76 |
+
Options const &options,
|
77 |
+
std::string const &name,
|
78 |
+
library::NumericTypeID type,
|
79 |
+
size_t capacity,
|
80 |
+
size_t device_index);
|
81 |
+
|
82 |
+
/// Allocates memory of a given type, capacity (elements), and name
|
83 |
+
DeviceAllocation *allocate_tensor(
|
84 |
+
Options const &options,
|
85 |
+
std::string const &name,
|
86 |
+
library::NumericTypeID type,
|
87 |
+
library::LayoutTypeID layout_id,
|
88 |
+
std::vector<int> const &extent,
|
89 |
+
std::vector<int64_t> const &stride,
|
90 |
+
int batch_count,
|
91 |
+
size_t device_index);
|
92 |
+
|
93 |
+
/// Allocates memory of a given type, capacity (elements), and name
|
94 |
+
DeviceAllocation *allocate_and_initialize_tensor(
|
95 |
+
Options const &options,
|
96 |
+
std::string const &name,
|
97 |
+
library::NumericTypeID type,
|
98 |
+
library::LayoutTypeID layout_id,
|
99 |
+
std::vector<int> const &extent,
|
100 |
+
std::vector<int64_t> const &stride,
|
101 |
+
int batch_count,
|
102 |
+
int seed_shift,
|
103 |
+
size_t device_index);
|
104 |
+
|
105 |
+
/// Allocates memory for sparse meta data
|
106 |
+
DeviceAllocation *allocate_and_initialize_sparsemeta_tensor(
|
107 |
+
Options const &options,
|
108 |
+
std::string const &name,
|
109 |
+
library::NumericTypeID type,
|
110 |
+
library::LayoutTypeID layout_id,
|
111 |
+
library::NumericTypeID type_a,
|
112 |
+
std::vector<int> const &extent,
|
113 |
+
std::vector<int64_t> const &stride,
|
114 |
+
int batch_count,
|
115 |
+
int seed_shift,
|
116 |
+
size_t device_index);
|
117 |
+
|
118 |
+
/// Clears named allocations (but does not necessarily free memory)
|
119 |
+
void clear();
|
120 |
+
|
121 |
+
/// Frees all device memory allocations
|
122 |
+
void free();
|
123 |
+
|
124 |
+
/// Gets the allocation by name
|
125 |
+
DeviceAllocation &at(std::string const &name);
|
126 |
+
|
127 |
+
size_t size() const;
|
128 |
+
|
129 |
+
AllocationMap::iterator begin();
|
130 |
+
AllocationMap::iterator end();
|
131 |
+
};
|
132 |
+
|
133 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
134 |
+
|
135 |
+
} // namespace profiler
|
136 |
+
} // namespace cutlass
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/enumerated_types.h
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief Provides several functions for filling tensors with data.
|
33 |
+
*/
|
34 |
+
|
35 |
+
#pragma once
|
36 |
+
|
37 |
+
#include <string>
|
38 |
+
#include <vector>
|
39 |
+
#include <map>
|
40 |
+
#include <iostream>
|
41 |
+
#include "cutlass/library/library.h"
|
42 |
+
|
43 |
+
#define TRACE(x) { std::cout << __FILE__ << ":" << __LINE__ << " " << x << std::endl; }
|
44 |
+
|
45 |
+
namespace cutlass {
|
46 |
+
namespace profiler {
|
47 |
+
|
48 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
49 |
+
|
50 |
+
template <typename T>
|
51 |
+
T from_string(std::string const &);
|
52 |
+
|
53 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
54 |
+
|
55 |
+
/// Enumerated type describing how the performance testbench evaluates kernels.
|
56 |
+
enum class ExecutionMode {
|
57 |
+
kProfile, ///< regular verification and profiling
|
58 |
+
kDryRun, ///< no kernels are launched or workspaces allocated; used to assess what operators might be launched
|
59 |
+
kEnumerate, ///< no kernels launched or workspaces allocated; lists all operation kind and operations
|
60 |
+
kTrace, ///< executes a single device-side computation with no other kernel launches
|
61 |
+
kInvalid
|
62 |
+
};
|
63 |
+
|
64 |
+
/// Converts a ExecutionMode enumerant to a string
|
65 |
+
char const *to_string(ExecutionMode mode, bool pretty = false);
|
66 |
+
|
67 |
+
/// Parses a ExecutionMode enumerant from a string
|
68 |
+
template <>
|
69 |
+
ExecutionMode from_string<ExecutionMode>(std::string const &str);
|
70 |
+
|
71 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
72 |
+
|
73 |
+
/// Library algorithm mode
|
74 |
+
enum class AlgorithmMode {
|
75 |
+
kMatching, ///< compare against best matching algorithm
|
76 |
+
kBest, ///< evaluate all library algorithms and report best
|
77 |
+
kDefault, ///< use the library's default algorithm option
|
78 |
+
kInvalid
|
79 |
+
};
|
80 |
+
|
81 |
+
/// Converts a ExecutionMode enumerant to a string
|
82 |
+
char const *to_string(AlgorithmMode mode, bool pretty = false);
|
83 |
+
|
84 |
+
/// Parses a ExecutionMode enumerant from a string
|
85 |
+
template <>
|
86 |
+
AlgorithmMode from_string<AlgorithmMode>(std::string const &str);
|
87 |
+
|
88 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
89 |
+
|
90 |
+
/// Outcome of a performance test
|
91 |
+
enum class Disposition {
|
92 |
+
kPassed,
|
93 |
+
kFailed,
|
94 |
+
kNotRun,
|
95 |
+
kIncorrect,
|
96 |
+
kNotVerified,
|
97 |
+
kInvalidProblem,
|
98 |
+
kNotSupported,
|
99 |
+
kInvalid
|
100 |
+
};
|
101 |
+
|
102 |
+
/// Converts a Disposition enumerant to a string
|
103 |
+
char const *to_string(Disposition disposition, bool pretty = false);
|
104 |
+
|
105 |
+
/// Parses a Disposition enumerant from a string
|
106 |
+
template <>
|
107 |
+
Disposition from_string<Disposition>(std::string const &str);
|
108 |
+
|
109 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
110 |
+
|
111 |
+
/// Indicates when to save
|
112 |
+
enum class SaveWorkspace {
|
113 |
+
kNever,
|
114 |
+
kIncorrect,
|
115 |
+
kAlways,
|
116 |
+
kInvalid
|
117 |
+
};
|
118 |
+
|
119 |
+
/// Converts a SaveWorkspace enumerant to a string
|
120 |
+
char const *to_string(SaveWorkspace save_option, bool pretty = false);
|
121 |
+
|
122 |
+
/// Parses a SaveWorkspace enumerant from a string
|
123 |
+
template <>
|
124 |
+
SaveWorkspace from_string<SaveWorkspace>(std::string const &str);
|
125 |
+
|
126 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
127 |
+
|
128 |
+
/// Indicates the type of kernel argument
|
129 |
+
// ArgumentType can be both ScalarType or NumericType. Thus, enums kScalar and kNumeric
|
130 |
+
// 1) kScalar: e.g. of a Scalar ArgumentType is u32 is a Scalar type.
|
131 |
+
// Its c++ equivalent as "type name = initializer" is "u32 m = 32"
|
132 |
+
// 2) kNumeric: e.g. of a Numeric ArgumentType is NumericTypeID is a Numeric type.
|
133 |
+
// Its c++ equivalent as "type name = initializer" is "NumericTypeID numeric_type = u32"
|
134 |
+
enum class ArgumentTypeID {
|
135 |
+
kScalar,
|
136 |
+
kInteger,
|
137 |
+
kTensor,
|
138 |
+
kBatchedTensor,
|
139 |
+
kStructure,
|
140 |
+
kEnumerated,
|
141 |
+
kInvalid
|
142 |
+
};
|
143 |
+
|
144 |
+
/// Converts a ArgumentTypeID enumerant to a string
|
145 |
+
char const *to_string(ArgumentTypeID type, bool pretty = false);
|
146 |
+
|
147 |
+
/// Parses a ArgumentTypeID enumerant from a string
|
148 |
+
template <>
|
149 |
+
ArgumentTypeID from_string<ArgumentTypeID>(std::string const &str);
|
150 |
+
|
151 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
152 |
+
// Profiler typedefs
|
153 |
+
using ProviderVector = std::vector<library::Provider>;
|
154 |
+
using DispositionMap = std::map<library::Provider, Disposition>;
|
155 |
+
|
156 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
157 |
+
|
158 |
+
// Print vector for the report
|
159 |
+
template <typename T>
|
160 |
+
std::ostream& operator<< (std::ostream& out, const std::vector<T>& v) {
|
161 |
+
for (size_t i = 0; i < v.size(); ++i) {
|
162 |
+
out << to_string(v[i], true) << (i + 1u != v.size() ? "," : "");
|
163 |
+
}
|
164 |
+
return out;
|
165 |
+
}
|
166 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
167 |
+
|
168 |
+
} // namespace profiler
|
169 |
+
} // namespace cutlass
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/gemm_operation_profiler.h
ADDED
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief Gemm Profiler
|
33 |
+
*/
|
34 |
+
|
35 |
+
#pragma once
|
36 |
+
|
37 |
+
#include <vector>
|
38 |
+
#include <string>
|
39 |
+
#include <memory>
|
40 |
+
#include <algorithm>
|
41 |
+
#include <unordered_map>
|
42 |
+
|
43 |
+
// CUTLASS Library includes
|
44 |
+
#include "cutlass/library/library.h"
|
45 |
+
#include "cutlass/library/util.h"
|
46 |
+
#include "cutlass/library/manifest.h"
|
47 |
+
|
48 |
+
// Profiler includes
|
49 |
+
#include "options.h"
|
50 |
+
#include "device_context.h"
|
51 |
+
#include "operation_profiler.h"
|
52 |
+
#include "performance_result.h"
|
53 |
+
#include "problem_space.h"
|
54 |
+
#include "reduction_operation_profiler.h"
|
55 |
+
|
56 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
57 |
+
|
58 |
+
namespace cutlass {
|
59 |
+
namespace profiler {
|
60 |
+
|
61 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
62 |
+
|
63 |
+
/// Abstract base class for each math function
|
64 |
+
class GemmOperationProfiler : public OperationProfiler {
|
65 |
+
public:
|
66 |
+
|
67 |
+
/// Problem structure obtained from problem space
|
68 |
+
struct GemmProblem {
|
69 |
+
|
70 |
+
cutlass::library::GemmUniversalMode mode{library::GemmUniversalMode::kGemm};
|
71 |
+
|
72 |
+
int64_t m{16};
|
73 |
+
int64_t n{16};
|
74 |
+
int64_t k{16};
|
75 |
+
|
76 |
+
int64_t lda{0};
|
77 |
+
int64_t ldb{0};
|
78 |
+
int64_t ldc{0};
|
79 |
+
std::vector<uint8_t> alpha;
|
80 |
+
std::vector<uint8_t> beta;
|
81 |
+
|
82 |
+
cutlass::library::SplitKMode split_k_mode{library::SplitKMode::kNone};
|
83 |
+
int split_k_slices{1};
|
84 |
+
int batch_count{1};
|
85 |
+
|
86 |
+
cutlass::library::RasterOrder raster_order{cutlass::library::RasterOrder::kHeuristic};
|
87 |
+
int swizzle_size{1};
|
88 |
+
|
89 |
+
// gemm with parallel interleaved reduction
|
90 |
+
// gemm epilogue (alpha, beta) = (1.0, 0.0)
|
91 |
+
// reduction epilogue (alpha, beta) = (GemmProblem::alpha, GemmProblem::beta)
|
92 |
+
std::vector<uint8_t> alpha_one;
|
93 |
+
std::vector<uint8_t> beta_zero;
|
94 |
+
|
95 |
+
//
|
96 |
+
// Methods
|
97 |
+
//
|
98 |
+
|
99 |
+
/// Parses the problem
|
100 |
+
Status parse(
|
101 |
+
library::GemmDescription const &operation_desc,
|
102 |
+
ProblemSpace const &problem_space,
|
103 |
+
ProblemSpace::Problem const &problem);
|
104 |
+
|
105 |
+
/// Total number of bytes loaded
|
106 |
+
int64_t bytes(library::GemmDescription const &operation_desc) const;
|
107 |
+
|
108 |
+
/// Total number of flops computed
|
109 |
+
int64_t flops(library::GemmDescription const &operation_desc) const;
|
110 |
+
|
111 |
+
/// Initializes a performance result
|
112 |
+
void initialize_result(
|
113 |
+
PerformanceResult &result,
|
114 |
+
library::GemmDescription const &operation_desc,
|
115 |
+
ProblemSpace const &problem_space);
|
116 |
+
};
|
117 |
+
|
118 |
+
/// Workspace used
|
119 |
+
struct GemmWorkspace {
|
120 |
+
|
121 |
+
DeviceAllocation *A{nullptr};
|
122 |
+
DeviceAllocation *B{nullptr};
|
123 |
+
DeviceAllocation *C{nullptr};
|
124 |
+
DeviceAllocation *Computed{nullptr};
|
125 |
+
DeviceAllocation *Reference{nullptr};
|
126 |
+
|
127 |
+
/// Number of copies of the problem workspace which are visited sequentially during
|
128 |
+
/// profiling to avoid camping in the last level cache.
|
129 |
+
int problem_count{1};
|
130 |
+
|
131 |
+
library::GemmUniversalConfiguration configuration;
|
132 |
+
library::GemmUniversalArguments arguments;
|
133 |
+
|
134 |
+
/// Buffer used for the operation's host workspace
|
135 |
+
std::vector<uint8_t> host_workspace;
|
136 |
+
|
137 |
+
/// Buffer used for the operations' device workspace
|
138 |
+
DeviceAllocation device_workspace;
|
139 |
+
|
140 |
+
/// Library configuration and arguments for reduction operator
|
141 |
+
library::ReductionConfiguration reduction_configuration;
|
142 |
+
library::ReductionArguments reduction_arguments;
|
143 |
+
|
144 |
+
/// Buffer used for the cutlass reduction operations' host workspace
|
145 |
+
std::vector<uint8_t> reduction_host_workspace;
|
146 |
+
};
|
147 |
+
|
148 |
+
protected:
|
149 |
+
|
150 |
+
//
|
151 |
+
// Data members
|
152 |
+
//
|
153 |
+
|
154 |
+
/// GEMM problem obtained from problem space
|
155 |
+
GemmProblem problem_;
|
156 |
+
|
157 |
+
/// Device memory allocations
|
158 |
+
GemmWorkspace gemm_workspace_;
|
159 |
+
|
160 |
+
/// CUTLASS parallel reduction operation to follow this* gemm operation
|
161 |
+
library::Operation const *reduction_op_;
|
162 |
+
|
163 |
+
public:
|
164 |
+
//
|
165 |
+
// Methods
|
166 |
+
//
|
167 |
+
|
168 |
+
/// Ctor
|
169 |
+
GemmOperationProfiler(Options const &options);
|
170 |
+
|
171 |
+
/// Destructor
|
172 |
+
virtual ~GemmOperationProfiler();
|
173 |
+
|
174 |
+
GemmProblem const& problem() const { return problem_; }
|
175 |
+
|
176 |
+
/// Prints usage statement for the math function
|
177 |
+
virtual void print_usage(std::ostream &out) const;
|
178 |
+
|
179 |
+
/// Prints examples
|
180 |
+
virtual void print_examples(std::ostream &out) const;
|
181 |
+
|
182 |
+
/// Extracts the problem dimensions
|
183 |
+
virtual Status initialize_configuration(
|
184 |
+
Options const &options,
|
185 |
+
PerformanceReport &report,
|
186 |
+
DeviceContext &device_context,
|
187 |
+
library::Operation const *operation,
|
188 |
+
ProblemSpace const &problem_space,
|
189 |
+
ProblemSpace::Problem const &problem);
|
190 |
+
|
191 |
+
/// Initializes workspace
|
192 |
+
virtual Status initialize_workspace(
|
193 |
+
Options const &options,
|
194 |
+
PerformanceReport &report,
|
195 |
+
DeviceContext &device_context,
|
196 |
+
library::Operation const *operation,
|
197 |
+
ProblemSpace const &problem_space,
|
198 |
+
ProblemSpace::Problem const &problem);
|
199 |
+
|
200 |
+
/// Verifies CUTLASS against references
|
201 |
+
virtual bool verify_cutlass(
|
202 |
+
Options const &options,
|
203 |
+
PerformanceReport &report,
|
204 |
+
DeviceContext &device_context,
|
205 |
+
library::Operation const *operation,
|
206 |
+
ProblemSpace const &problem_space,
|
207 |
+
ProblemSpace::Problem const &problem);
|
208 |
+
|
209 |
+
/// Measures performance results
|
210 |
+
virtual bool profile(
|
211 |
+
Options const &options,
|
212 |
+
PerformanceReport &report,
|
213 |
+
DeviceContext &device_context,
|
214 |
+
library::Operation const *operation,
|
215 |
+
ProblemSpace const &problem_space,
|
216 |
+
ProblemSpace::Problem const &problem);
|
217 |
+
|
218 |
+
protected:
|
219 |
+
|
220 |
+
/// Initializes the performance result
|
221 |
+
void initialize_result_(
|
222 |
+
PerformanceResult &result,
|
223 |
+
Options const &options,
|
224 |
+
library::GemmDescription const &operation_desc,
|
225 |
+
ProblemSpace const &problem_space);
|
226 |
+
|
227 |
+
/// Verifies CUTLASS against references
|
228 |
+
bool verify_with_cublas_(
|
229 |
+
Options const &options,
|
230 |
+
PerformanceReport &report,
|
231 |
+
DeviceContext &device_context,
|
232 |
+
library::Operation const *operation,
|
233 |
+
ProblemSpace const &problem_space,
|
234 |
+
ProblemSpace::Problem const &problem);
|
235 |
+
|
236 |
+
/// Verifies CUTLASS against host and device references
|
237 |
+
bool verify_with_reference_(
|
238 |
+
Options const &options,
|
239 |
+
PerformanceReport &report,
|
240 |
+
DeviceContext &device_context,
|
241 |
+
library::Operation const *operation,
|
242 |
+
ProblemSpace const &problem_space,
|
243 |
+
ProblemSpace::Problem const &problem,
|
244 |
+
cutlass::library::NumericTypeID element_A,
|
245 |
+
cutlass::library::NumericTypeID element_B);
|
246 |
+
|
247 |
+
/// Method to profile a CUTLASS Operation
|
248 |
+
Status profile_cutlass_(
|
249 |
+
double &runtime,
|
250 |
+
Options const &options,
|
251 |
+
library::Operation const *operation,
|
252 |
+
void *arguments,
|
253 |
+
void *host_workspace,
|
254 |
+
void *device_workspace);
|
255 |
+
|
256 |
+
/// Initialize reduction problem dimensions and library::Operation
|
257 |
+
bool initialize_reduction_configuration_(
|
258 |
+
library::Operation const *operation,
|
259 |
+
ProblemSpace::Problem const &problem);
|
260 |
+
};
|
261 |
+
|
262 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
263 |
+
|
264 |
+
} // namespace profiler
|
265 |
+
} // namespace cutlass
|
266 |
+
|
267 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
268 |
+
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/gpu_timer.h
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief Defines a math function
|
33 |
+
*/
|
34 |
+
|
35 |
+
#pragma once
|
36 |
+
|
37 |
+
#include <cuda_runtime.h>
|
38 |
+
#include "cutlass/cutlass.h"
|
39 |
+
|
40 |
+
namespace cutlass {
|
41 |
+
namespace profiler {
|
42 |
+
|
43 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
44 |
+
|
45 |
+
struct GpuTimer {
|
46 |
+
|
47 |
+
cudaEvent_t events[2];
|
48 |
+
|
49 |
+
//
|
50 |
+
// Methods
|
51 |
+
//
|
52 |
+
|
53 |
+
GpuTimer();
|
54 |
+
~GpuTimer();
|
55 |
+
|
56 |
+
/// Records a start event in the stream
|
57 |
+
void start(cudaStream_t stream = nullptr);
|
58 |
+
|
59 |
+
/// Records a stop event in the stream
|
60 |
+
void stop(cudaStream_t stream = nullptr);
|
61 |
+
|
62 |
+
/// Records a stop event in the stream and synchronizes on the stream
|
63 |
+
void stop_and_wait(cudaStream_t stream = nullptr);
|
64 |
+
|
65 |
+
/// Returns the duration in milliseconds
|
66 |
+
double duration(int iterations = 1) const;
|
67 |
+
};
|
68 |
+
|
69 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
70 |
+
|
71 |
+
} // namespace profiler
|
72 |
+
} // namespace cutlass
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/options.h
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief Command line options for performance test program
|
33 |
+
*/
|
34 |
+
|
35 |
+
#pragma once
|
36 |
+
|
37 |
+
#include <string>
|
38 |
+
#include <vector>
|
39 |
+
#include <map>
|
40 |
+
|
41 |
+
#include <cuda_runtime.h>
|
42 |
+
|
43 |
+
#include "cutlass/util/command_line.h"
|
44 |
+
#include "cutlass/util/distribution.h"
|
45 |
+
#include "cutlass/library/library.h"
|
46 |
+
|
47 |
+
#include "enumerated_types.h"
|
48 |
+
|
49 |
+
namespace cutlass {
|
50 |
+
namespace profiler {
|
51 |
+
|
52 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
53 |
+
|
54 |
+
/// Global options
|
55 |
+
class Options {
|
56 |
+
public:
|
57 |
+
|
58 |
+
/// Cublas and cuDNN options
|
59 |
+
struct Library {
|
60 |
+
|
61 |
+
//
|
62 |
+
// Data members
|
63 |
+
//
|
64 |
+
|
65 |
+
/// Algorithm mode
|
66 |
+
AlgorithmMode algorithm_mode;
|
67 |
+
|
68 |
+
/// Algorithm enumerants
|
69 |
+
std::vector<int> algorithms;
|
70 |
+
|
71 |
+
//
|
72 |
+
// Methods
|
73 |
+
//
|
74 |
+
|
75 |
+
explicit Library(CommandLine const &cmdline);
|
76 |
+
|
77 |
+
void print_usage(std::ostream &out) const;
|
78 |
+
void print_options(std::ostream &out, int indent = 0) const;
|
79 |
+
};
|
80 |
+
|
81 |
+
/// Options related to the selected device
|
82 |
+
struct Device {
|
83 |
+
|
84 |
+
/// Device ID
|
85 |
+
std::vector<int> devices;
|
86 |
+
|
87 |
+
/// Number of total devices
|
88 |
+
/// This is not set by the user, it is set by automatically
|
89 |
+
int num_devices;
|
90 |
+
|
91 |
+
/// CUDA Device properties
|
92 |
+
std::vector<cudaDeviceProp> properties;
|
93 |
+
|
94 |
+
/// Total memory allocation on each device
|
95 |
+
size_t maximum_capacity;
|
96 |
+
|
97 |
+
//
|
98 |
+
// Methods
|
99 |
+
//
|
100 |
+
|
101 |
+
explicit Device(CommandLine const &cmdline);
|
102 |
+
|
103 |
+
void print_usage(std::ostream &out) const;
|
104 |
+
void print_options(std::ostream &out, int indent = 0) const;
|
105 |
+
void print_device_info(std::ostream &out) const;
|
106 |
+
|
107 |
+
/// Returns the device ID from a device index
|
108 |
+
int device_id(size_t device_index) const;
|
109 |
+
|
110 |
+
/// Returns the compute capability of the listed devices (e.g. 61, 60, 70, 75)
|
111 |
+
int compute_capability(int device_index) const;
|
112 |
+
};
|
113 |
+
|
114 |
+
/// Options related to initializing input tensors
|
115 |
+
struct Initialization {
|
116 |
+
|
117 |
+
/// If true, data is initialized randomly. If false, no initialization is performed after
|
118 |
+
/// allocating tensors.
|
119 |
+
bool enabled;
|
120 |
+
|
121 |
+
/// If true, data distribution is set by the user and is not allowed to change
|
122 |
+
/// If false, data distribution is allowed to change based on element_type (library::NumericTypeID)
|
123 |
+
bool fix_data_distribution;
|
124 |
+
|
125 |
+
/// Data distribution for input tensors
|
126 |
+
Distribution data_distribution;
|
127 |
+
|
128 |
+
/// Source of random tensor elements
|
129 |
+
library::Provider provider;
|
130 |
+
|
131 |
+
/// Random number generator seed.
|
132 |
+
int seed;
|
133 |
+
|
134 |
+
//
|
135 |
+
// Methods
|
136 |
+
//
|
137 |
+
|
138 |
+
explicit Initialization(CommandLine const &cmdline);
|
139 |
+
|
140 |
+
void print_usage(std::ostream &out) const;
|
141 |
+
void print_options(std::ostream &out, int indent = 0) const;
|
142 |
+
|
143 |
+
/// Helper to parse a Distribution object from the command line parser
|
144 |
+
static void get_distribution(
|
145 |
+
cutlass::CommandLine const &args,
|
146 |
+
std::string const &arg,
|
147 |
+
cutlass::Distribution &dist);
|
148 |
+
};
|
149 |
+
|
150 |
+
/// Options related to verification of the result
|
151 |
+
struct Verification {
|
152 |
+
|
153 |
+
//
|
154 |
+
// Data members
|
155 |
+
//
|
156 |
+
|
157 |
+
/// If true, kernels are verified before they are profiled
|
158 |
+
bool enabled;
|
159 |
+
|
160 |
+
/// If true, causes profiler to return an error code if no reference check is run.
|
161 |
+
/// Only valid when verification is enabled.
|
162 |
+
bool required;
|
163 |
+
|
164 |
+
/// Relative error threshold - zero to require bit-level consistency
|
165 |
+
double epsilon;
|
166 |
+
|
167 |
+
/// Values smaller than this are assumed to be zero
|
168 |
+
double nonzero_floor;
|
169 |
+
|
170 |
+
/// List of providers used to verify each result
|
171 |
+
ProviderVector providers;
|
172 |
+
|
173 |
+
/// Indicates when to save the workspace
|
174 |
+
SaveWorkspace save_workspace;
|
175 |
+
|
176 |
+
//
|
177 |
+
// Methods
|
178 |
+
//
|
179 |
+
|
180 |
+
explicit Verification(CommandLine const &cmdline);
|
181 |
+
|
182 |
+
void print_usage(std::ostream &out) const;
|
183 |
+
void print_options(std::ostream &out, int indent = 0) const;
|
184 |
+
|
185 |
+
/// Returns true if a provider is enabled
|
186 |
+
bool provider_enabled(library::Provider provider) const;
|
187 |
+
|
188 |
+
/// Returns the index of a provider if its enabled
|
189 |
+
size_t index(library::Provider provider) const;
|
190 |
+
};
|
191 |
+
|
192 |
+
/// Options related to profiling
|
193 |
+
struct Profiling {
|
194 |
+
|
195 |
+
/// Number of workspaces to rotate through to avoid cache-resident working sets
|
196 |
+
int workspace_count{0};
|
197 |
+
|
198 |
+
/// Number of iterations to warmup each kernel prior to profiling
|
199 |
+
int warmup_iterations{10};
|
200 |
+
|
201 |
+
/// Number of iterations to profile each kernel - if 0, kernels are launched up to the profiling duration
|
202 |
+
int iterations{100};
|
203 |
+
|
204 |
+
/// Number of ms to sleep between profiling periods (ms)
|
205 |
+
int sleep_duration{50};
|
206 |
+
|
207 |
+
/// If true, profiling is actually conducted.
|
208 |
+
bool enabled{true};
|
209 |
+
|
210 |
+
/// If true, profiling returns an error code if no kernels are found to match the filters.
|
211 |
+
bool error_on_no_match{false};
|
212 |
+
|
213 |
+
/// If true, profiling returns an error code if no kernel are profiled
|
214 |
+
// Sometimes the kernel matches but failed to profile (e.g. can_implement() error)
|
215 |
+
bool error_if_nothing_is_profiled{false};
|
216 |
+
|
217 |
+
/// List of providers of each functionality to be profiled
|
218 |
+
ProviderVector providers;
|
219 |
+
|
220 |
+
//
|
221 |
+
// Methods
|
222 |
+
//
|
223 |
+
|
224 |
+
explicit Profiling(CommandLine const &cmdline);
|
225 |
+
|
226 |
+
void print_usage(std::ostream &out) const;
|
227 |
+
void print_options(std::ostream &out, int indent = 0) const;
|
228 |
+
|
229 |
+
/// Returns true if a provider is enabled
|
230 |
+
bool provider_enabled(library::Provider provider) const;
|
231 |
+
|
232 |
+
/// Returns the index of a provider if its enabled
|
233 |
+
size_t index(library::Provider provider) const;
|
234 |
+
};
|
235 |
+
|
236 |
+
/// Options related to reporting
|
237 |
+
struct Report {
|
238 |
+
|
239 |
+
/// If true, result is appended to possibly existing file
|
240 |
+
bool append;
|
241 |
+
|
242 |
+
/// Path to a file containing results
|
243 |
+
std::string output_path;
|
244 |
+
|
245 |
+
/// Path to a file containing junit xml results
|
246 |
+
std::string junit_output_path;
|
247 |
+
|
248 |
+
/// Sequence of tags to attach to each result
|
249 |
+
std::vector<std::pair<std::string, std::string>> pivot_tags;
|
250 |
+
|
251 |
+
/// If true, reports status of all kernels including those that were
|
252 |
+
/// not run for the given arguments
|
253 |
+
bool report_not_run;
|
254 |
+
|
255 |
+
/// Prints human-readable text to stdout. If false, nothing is written to stdout
|
256 |
+
bool verbose;
|
257 |
+
|
258 |
+
/// Sort results by (currently by flops-per-byte)
|
259 |
+
bool sort_results;
|
260 |
+
|
261 |
+
/// Prints the name of the kernel being profiled before running the kernel.
|
262 |
+
/// This is useful for determining which kernel is causing a run of the profiler to hang
|
263 |
+
bool print_kernel_before_running;
|
264 |
+
|
265 |
+
//
|
266 |
+
// Methods
|
267 |
+
//
|
268 |
+
|
269 |
+
explicit Report(CommandLine const &cmdline);
|
270 |
+
|
271 |
+
void print_usage(std::ostream &out) const;
|
272 |
+
void print_options(std::ostream &out, int indent = 0) const;
|
273 |
+
};
|
274 |
+
|
275 |
+
/// Options related to printing usage and version information
|
276 |
+
struct About {
|
277 |
+
|
278 |
+
/// If true, usage is printed and the program ends.
|
279 |
+
bool help;
|
280 |
+
|
281 |
+
/// Prints version string
|
282 |
+
bool version;
|
283 |
+
|
284 |
+
/// Print information about devices
|
285 |
+
bool device_info;
|
286 |
+
|
287 |
+
//
|
288 |
+
// Methods
|
289 |
+
//
|
290 |
+
|
291 |
+
explicit About(CommandLine const &cmdline);
|
292 |
+
|
293 |
+
void print_usage(std::ostream &out) const;
|
294 |
+
void print_options(std::ostream &out, int indent = 0) const;
|
295 |
+
|
296 |
+
static void print_version(std::ostream &out);
|
297 |
+
};
|
298 |
+
|
299 |
+
public:
|
300 |
+
|
301 |
+
//
|
302 |
+
// Data members
|
303 |
+
//
|
304 |
+
|
305 |
+
/// Top-level execution mode
|
306 |
+
ExecutionMode execution_mode;
|
307 |
+
|
308 |
+
/// Name of math function to profile
|
309 |
+
library::OperationKind operation_kind;
|
310 |
+
|
311 |
+
/// Vector of operation name substrings
|
312 |
+
std::vector<std::string> operation_names;
|
313 |
+
|
314 |
+
/// Vector of operation name substrings
|
315 |
+
std::vector<std::string> excluded_operation_names;
|
316 |
+
|
317 |
+
|
318 |
+
//
|
319 |
+
// Detailed configuration options
|
320 |
+
//
|
321 |
+
|
322 |
+
/// Configuration
|
323 |
+
CommandLine cmdline;
|
324 |
+
Device device;
|
325 |
+
Initialization initialization;
|
326 |
+
Library library;
|
327 |
+
Verification verification;
|
328 |
+
Profiling profiling;
|
329 |
+
Report report;
|
330 |
+
About about;
|
331 |
+
|
332 |
+
public:
|
333 |
+
|
334 |
+
explicit Options(CommandLine const &cmdline);
|
335 |
+
|
336 |
+
void print_usage(std::ostream &out) const;
|
337 |
+
void print_options(std::ostream &out) const;
|
338 |
+
|
339 |
+
static std::string indent_str(int indent);
|
340 |
+
};
|
341 |
+
|
342 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
343 |
+
|
344 |
+
} // namespace profiler
|
345 |
+
} // namespace cutlass
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/performance_report.h
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief Class performing output during profiling
|
33 |
+
*/
|
34 |
+
|
35 |
+
#pragma once
|
36 |
+
|
37 |
+
#include <vector>
|
38 |
+
#include <fstream>
|
39 |
+
|
40 |
+
// CUTLASS Profiler includes
|
41 |
+
#include "options.h"
|
42 |
+
#include "enumerated_types.h"
|
43 |
+
#include "performance_result.h"
|
44 |
+
|
45 |
+
// CUTLASS Library includes
|
46 |
+
#include "cutlass/library/library.h"
|
47 |
+
|
48 |
+
namespace cutlass {
|
49 |
+
namespace profiler {
|
50 |
+
|
51 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
52 |
+
|
53 |
+
class PerformanceReport {
|
54 |
+
private:
|
55 |
+
|
56 |
+
/// Reference to options
|
57 |
+
Options const &options_;
|
58 |
+
|
59 |
+
/// Operation kind
|
60 |
+
library::OperationKind op_kind_;
|
61 |
+
|
62 |
+
/// Operation file name containing performance report of op_kind
|
63 |
+
std::string op_file_name_;
|
64 |
+
|
65 |
+
/// Output file containing results
|
66 |
+
std::ofstream output_file_;
|
67 |
+
|
68 |
+
/// Operation file name containing junit performance report of op_kind
|
69 |
+
std::string op_junit_file_name_;
|
70 |
+
|
71 |
+
/// Output file containing junit results
|
72 |
+
std::ofstream junit_output_file_;
|
73 |
+
|
74 |
+
/// Flag indicating the performance report is valid
|
75 |
+
bool good_;
|
76 |
+
|
77 |
+
/// Vector of argument names
|
78 |
+
std::vector<std::string> argument_names_;
|
79 |
+
|
80 |
+
/// Counter uniquely identifying problem within the report
|
81 |
+
size_t problem_index_;
|
82 |
+
|
83 |
+
/// Collection of all results
|
84 |
+
PerformanceResultVector concatenated_results_;
|
85 |
+
|
86 |
+
public:
|
87 |
+
|
88 |
+
PerformanceReport(Options const &options, std::vector<std::string> const &argument_names, library::OperationKind const &op_kind);
|
89 |
+
~PerformanceReport();
|
90 |
+
|
91 |
+
bool good() const { return good_; }
|
92 |
+
|
93 |
+
void next_problem();
|
94 |
+
void append_result(PerformanceResult result);
|
95 |
+
void sort_results(PerformanceResultVector &results);
|
96 |
+
void append_results(PerformanceResultVector const &results);
|
97 |
+
|
98 |
+
public:
|
99 |
+
|
100 |
+
/// Prints the CSV header
|
101 |
+
std::ostream & print_csv_header_(std::ostream &out);
|
102 |
+
|
103 |
+
/// Prints the CSV
|
104 |
+
std::ostream & print_result_csv_(std::ostream &out, PerformanceResult const &result);
|
105 |
+
|
106 |
+
/// @defgroup jUnit Result Generation
|
107 |
+
/// Functions related to generation of the jUnit results
|
108 |
+
/// @{
|
109 |
+
|
110 |
+
std::ostream & print_junit_header_(std::ostream &out);
|
111 |
+
std::ostream & print_junit_result_(std::ostream &out, PerformanceResult const &result);
|
112 |
+
std::ostream & print_junit_footer_(std::ostream &out);
|
113 |
+
|
114 |
+
/// @}
|
115 |
+
|
116 |
+
/// Prints the result in human readable form
|
117 |
+
std::ostream & print_result_pretty_(
|
118 |
+
std::ostream &out,
|
119 |
+
PerformanceResult const &result,
|
120 |
+
bool use_shell_coloring = true);
|
121 |
+
};
|
122 |
+
|
123 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
124 |
+
|
125 |
+
} // namespace profiler
|
126 |
+
} // namespace cutlass
|
127 |
+
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/performance_result.h
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief Defines a math function
|
33 |
+
*/
|
34 |
+
|
35 |
+
#pragma once
|
36 |
+
|
37 |
+
#include <vector>
|
38 |
+
|
39 |
+
#include "cutlass/cutlass.h"
|
40 |
+
|
41 |
+
// CUTLASS Profiler includes
|
42 |
+
#include "enumerated_types.h"
|
43 |
+
|
44 |
+
// CUTLASS Library includes
|
45 |
+
#include "cutlass/library/library.h"
|
46 |
+
|
47 |
+
namespace cutlass {
|
48 |
+
namespace profiler {
|
49 |
+
|
50 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
51 |
+
|
52 |
+
/// Performance result object
|
53 |
+
struct PerformanceResult {
|
54 |
+
|
55 |
+
/// Index of problem
|
56 |
+
size_t problem_index;
|
57 |
+
|
58 |
+
/// library::Provider
|
59 |
+
library::Provider provider;
|
60 |
+
|
61 |
+
/// Operation kind
|
62 |
+
library::OperationKind op_kind;
|
63 |
+
|
64 |
+
/// CUTLASS status result from kernels (success or failure)
|
65 |
+
// Status does information on verification
|
66 |
+
Status status;
|
67 |
+
|
68 |
+
/// Outcome of verification (worst case verification result)
|
69 |
+
Disposition disposition;
|
70 |
+
|
71 |
+
/// Outcome of verification (all verification results)
|
72 |
+
DispositionMap verification_map;
|
73 |
+
|
74 |
+
/// Operation name
|
75 |
+
std::string operation_name;
|
76 |
+
|
77 |
+
/// Stringified vector of argument values
|
78 |
+
std::vector<std::pair<std::string, std::string> > arguments;
|
79 |
+
|
80 |
+
/// Number of bytes read or written
|
81 |
+
int64_t bytes;
|
82 |
+
|
83 |
+
/// Number of DL flops performed by the math function
|
84 |
+
int64_t flops;
|
85 |
+
|
86 |
+
/// Average runtime in ms
|
87 |
+
double runtime;
|
88 |
+
|
89 |
+
//
|
90 |
+
// Members
|
91 |
+
//
|
92 |
+
|
93 |
+
/// Ctor
|
94 |
+
PerformanceResult():
|
95 |
+
problem_index(0),
|
96 |
+
op_kind(library::OperationKind::kInvalid),
|
97 |
+
provider(library::Provider::kInvalid),
|
98 |
+
disposition(Disposition::kNotRun),
|
99 |
+
status(Status::kInvalid),
|
100 |
+
bytes(0),
|
101 |
+
flops(0),
|
102 |
+
runtime(0)
|
103 |
+
{ }
|
104 |
+
|
105 |
+
/// Returns true if the runtime is valid
|
106 |
+
bool good() const {
|
107 |
+
return runtime > 0;
|
108 |
+
}
|
109 |
+
|
110 |
+
/// Math throughput in units of GFLOP/s
|
111 |
+
double gflops_per_sec() const {
|
112 |
+
return double(flops) / runtime / 1.0e6;
|
113 |
+
}
|
114 |
+
|
115 |
+
/// memory bandwidth in units of GiB/s
|
116 |
+
double gbytes_per_sec() const {
|
117 |
+
return double(bytes) / double(1 << 30) / runtime * 1000.0;
|
118 |
+
}
|
119 |
+
|
120 |
+
};
|
121 |
+
|
122 |
+
using PerformanceResultVector = std::vector<PerformanceResult>;
|
123 |
+
|
124 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
125 |
+
|
126 |
+
} // namespace profiler
|
127 |
+
} // namespace cutlass
|
128 |
+
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/rank_2k_operation_profiler.h
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief Defines a math function
|
33 |
+
|
34 |
+
|
35 |
+
*/
|
36 |
+
|
37 |
+
#pragma once
|
38 |
+
|
39 |
+
#include <vector>
|
40 |
+
#include <string>
|
41 |
+
#include <memory>
|
42 |
+
#include <algorithm>
|
43 |
+
#include <unordered_map>
|
44 |
+
|
45 |
+
// CUTLASS Library includes
|
46 |
+
#include "cutlass/blas3.h"
|
47 |
+
#include "cutlass/library/library.h"
|
48 |
+
#include "cutlass/library/util.h"
|
49 |
+
#include "cutlass/library/manifest.h"
|
50 |
+
|
51 |
+
// Profiler includes
|
52 |
+
#include "options.h"
|
53 |
+
#include "device_context.h"
|
54 |
+
#include "operation_profiler.h"
|
55 |
+
#include "performance_result.h"
|
56 |
+
#include "problem_space.h"
|
57 |
+
|
58 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
59 |
+
|
60 |
+
namespace cutlass {
|
61 |
+
namespace profiler {
|
62 |
+
|
63 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
64 |
+
|
65 |
+
|
66 |
+
/// Abstract base class for each math function
|
67 |
+
class Rank2KOperationProfiler : public OperationProfiler {
|
68 |
+
public:
|
69 |
+
|
70 |
+
/// Problem structure obtained from problem space
|
71 |
+
struct RankKProblem {
|
72 |
+
int64_t n;
|
73 |
+
int64_t k;
|
74 |
+
int64_t lda;
|
75 |
+
int64_t ldb;
|
76 |
+
int64_t ldc;
|
77 |
+
FillMode fill_mode;
|
78 |
+
BlasMode blas_mode;
|
79 |
+
std::vector<uint8_t> alpha;
|
80 |
+
std::vector<uint8_t> beta;
|
81 |
+
int64_t split_k_slices;
|
82 |
+
int64_t batch_count;
|
83 |
+
|
84 |
+
//
|
85 |
+
// Methods
|
86 |
+
//
|
87 |
+
|
88 |
+
RankKProblem():
|
89 |
+
n(16), k(16), lda(0), ldc(0),
|
90 |
+
fill_mode(FillMode::kInvalid), blas_mode(BlasMode::kInvalid),
|
91 |
+
split_k_slices(1), batch_count(1) { }
|
92 |
+
|
93 |
+
/// Parses the problem
|
94 |
+
Status parse(
|
95 |
+
library::RankKDescription const &operation_desc,
|
96 |
+
ProblemSpace const &problem_space,
|
97 |
+
ProblemSpace::Problem const &problem);
|
98 |
+
|
99 |
+
/// Total number of bytes loaded
|
100 |
+
int64_t bytes(library::RankKDescription const &operation_desc) const;
|
101 |
+
|
102 |
+
/// Total number of flops computed
|
103 |
+
int64_t flops(library::RankKDescription const &operation_desc) const;
|
104 |
+
|
105 |
+
/// Initializes a performance result
|
106 |
+
void initialize_result(
|
107 |
+
PerformanceResult &result,
|
108 |
+
library::RankKDescription const &operation_desc,
|
109 |
+
ProblemSpace const &problem_space);
|
110 |
+
};
|
111 |
+
|
112 |
+
/// Workspace used
|
113 |
+
struct RankKWorkspace {
|
114 |
+
|
115 |
+
DeviceAllocation *A;
|
116 |
+
DeviceAllocation *B;
|
117 |
+
DeviceAllocation *C;
|
118 |
+
DeviceAllocation *Computed;
|
119 |
+
DeviceAllocation *Reference;
|
120 |
+
|
121 |
+
library::RankKConfiguration configuration;
|
122 |
+
library::RankKArguments arguments;
|
123 |
+
|
124 |
+
/// Buffer used for the operation's host workspace
|
125 |
+
std::vector<uint8_t> host_workspace;
|
126 |
+
|
127 |
+
/// Buffer used for the operations' device workspace
|
128 |
+
DeviceAllocation device_workspace;
|
129 |
+
|
130 |
+
//
|
131 |
+
// Methods
|
132 |
+
//
|
133 |
+
|
134 |
+
RankKWorkspace():
|
135 |
+
A(nullptr), B(nullptr), C(nullptr), Computed(nullptr), Reference(nullptr) { }
|
136 |
+
};
|
137 |
+
|
138 |
+
protected:
|
139 |
+
|
140 |
+
//
|
141 |
+
// Data members
|
142 |
+
//
|
143 |
+
|
144 |
+
/// GEMM problem obtained from problem space
|
145 |
+
RankKProblem problem_;
|
146 |
+
|
147 |
+
/// Device memory allocations
|
148 |
+
RankKWorkspace rank_k_workspace_;
|
149 |
+
|
150 |
+
|
151 |
+
public:
|
152 |
+
//
|
153 |
+
// Methods
|
154 |
+
//
|
155 |
+
|
156 |
+
/// Ctor
|
157 |
+
Rank2KOperationProfiler(Options const &options);
|
158 |
+
|
159 |
+
/// Destructor
|
160 |
+
virtual ~Rank2KOperationProfiler();
|
161 |
+
|
162 |
+
/// Prints usage statement for the math function
|
163 |
+
virtual void print_usage(std::ostream &out) const;
|
164 |
+
|
165 |
+
/// Prints examples
|
166 |
+
virtual void print_examples(std::ostream &out) const;
|
167 |
+
|
168 |
+
/// Extracts the problem dimensions
|
169 |
+
virtual Status initialize_configuration(
|
170 |
+
Options const &options,
|
171 |
+
PerformanceReport &report,
|
172 |
+
DeviceContext &device_context,
|
173 |
+
library::Operation const *operation,
|
174 |
+
ProblemSpace const &problem_space,
|
175 |
+
ProblemSpace::Problem const &problem);
|
176 |
+
|
177 |
+
/// Initializes workspace
|
178 |
+
virtual Status initialize_workspace(
|
179 |
+
Options const &options,
|
180 |
+
PerformanceReport &report,
|
181 |
+
DeviceContext &device_context,
|
182 |
+
library::Operation const *operation,
|
183 |
+
ProblemSpace const &problem_space,
|
184 |
+
ProblemSpace::Problem const &problem);
|
185 |
+
|
186 |
+
/// Verifies CUTLASS against references
|
187 |
+
virtual bool verify_cutlass(
|
188 |
+
Options const &options,
|
189 |
+
PerformanceReport &report,
|
190 |
+
DeviceContext &device_context,
|
191 |
+
library::Operation const *operation,
|
192 |
+
ProblemSpace const &problem_space,
|
193 |
+
ProblemSpace::Problem const &problem);
|
194 |
+
|
195 |
+
/// Measures performance results
|
196 |
+
virtual bool profile(
|
197 |
+
Options const &options,
|
198 |
+
PerformanceReport &report,
|
199 |
+
DeviceContext &device_context,
|
200 |
+
library::Operation const *operation,
|
201 |
+
ProblemSpace const &problem_space,
|
202 |
+
ProblemSpace::Problem const &problem);
|
203 |
+
|
204 |
+
protected:
|
205 |
+
|
206 |
+
/// Initializes the performance result
|
207 |
+
void initialize_result_(
|
208 |
+
PerformanceResult &result,
|
209 |
+
Options const &options,
|
210 |
+
library::RankKDescription const &operation_desc,
|
211 |
+
ProblemSpace const &problem_space);
|
212 |
+
|
213 |
+
/// Verifies CUTLASS against references
|
214 |
+
bool verify_with_cublas_(
|
215 |
+
Options const &options,
|
216 |
+
PerformanceReport &report,
|
217 |
+
DeviceContext &device_context,
|
218 |
+
library::Operation const *operation,
|
219 |
+
ProblemSpace const &problem_space,
|
220 |
+
ProblemSpace::Problem const &problem);
|
221 |
+
|
222 |
+
};
|
223 |
+
|
224 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
225 |
+
|
226 |
+
} // namespace profiler
|
227 |
+
} // namespace cutlass
|
228 |
+
|
229 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/rank_k_operation_profiler.h
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief Defines a math function
|
33 |
+
|
34 |
+
|
35 |
+
*/
|
36 |
+
|
37 |
+
#pragma once
|
38 |
+
|
39 |
+
#include <vector>
|
40 |
+
#include <string>
|
41 |
+
#include <memory>
|
42 |
+
#include <algorithm>
|
43 |
+
#include <unordered_map>
|
44 |
+
|
45 |
+
// CUTLASS Library includes
|
46 |
+
#include "cutlass/blas3.h"
|
47 |
+
#include "cutlass/library/library.h"
|
48 |
+
#include "cutlass/library/util.h"
|
49 |
+
#include "cutlass/library/manifest.h"
|
50 |
+
|
51 |
+
// Profiler includes
|
52 |
+
#include "options.h"
|
53 |
+
#include "device_context.h"
|
54 |
+
#include "operation_profiler.h"
|
55 |
+
#include "performance_result.h"
|
56 |
+
#include "problem_space.h"
|
57 |
+
|
58 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
59 |
+
|
60 |
+
namespace cutlass {
|
61 |
+
namespace profiler {
|
62 |
+
|
63 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
64 |
+
|
65 |
+
|
66 |
+
/// Abstract base class for each math function
|
67 |
+
class RankKOperationProfiler : public OperationProfiler {
|
68 |
+
public:
|
69 |
+
|
70 |
+
/// Problem structure obtained from problem space
|
71 |
+
struct RankKProblem {
|
72 |
+
int64_t n;
|
73 |
+
int64_t k;
|
74 |
+
int64_t lda;
|
75 |
+
int64_t ldc;
|
76 |
+
FillMode fill_mode;
|
77 |
+
BlasMode blas_mode;
|
78 |
+
std::vector<uint8_t> alpha;
|
79 |
+
std::vector<uint8_t> beta;
|
80 |
+
int64_t split_k_slices;
|
81 |
+
int64_t batch_count;
|
82 |
+
|
83 |
+
//
|
84 |
+
// Methods
|
85 |
+
//
|
86 |
+
|
87 |
+
RankKProblem():
|
88 |
+
n(16), k(16), lda(0), ldc(0),
|
89 |
+
fill_mode(FillMode::kInvalid), blas_mode(BlasMode::kInvalid),
|
90 |
+
split_k_slices(1), batch_count(1) { }
|
91 |
+
|
92 |
+
/// Parses the problem
|
93 |
+
Status parse(
|
94 |
+
library::RankKDescription const &operation_desc,
|
95 |
+
ProblemSpace const &problem_space,
|
96 |
+
ProblemSpace::Problem const &problem);
|
97 |
+
|
98 |
+
/// Total number of bytes loaded
|
99 |
+
int64_t bytes(library::RankKDescription const &operation_desc) const;
|
100 |
+
|
101 |
+
/// Total number of flops computed
|
102 |
+
int64_t flops(library::RankKDescription const &operation_desc) const;
|
103 |
+
|
104 |
+
/// Initializes a performance result
|
105 |
+
void initialize_result(
|
106 |
+
PerformanceResult &result,
|
107 |
+
library::RankKDescription const &operation_desc,
|
108 |
+
ProblemSpace const &problem_space);
|
109 |
+
};
|
110 |
+
|
111 |
+
/// Workspace used
|
112 |
+
struct RankKWorkspace {
|
113 |
+
|
114 |
+
DeviceAllocation *A;
|
115 |
+
DeviceAllocation *C;
|
116 |
+
DeviceAllocation *Computed;
|
117 |
+
DeviceAllocation *Reference;
|
118 |
+
|
119 |
+
library::RankKConfiguration configuration;
|
120 |
+
library::RankKArguments arguments;
|
121 |
+
|
122 |
+
/// Buffer used for the operation's host workspace
|
123 |
+
std::vector<uint8_t> host_workspace;
|
124 |
+
|
125 |
+
/// Buffer used for the operations' device workspace
|
126 |
+
DeviceAllocation device_workspace;
|
127 |
+
|
128 |
+
//
|
129 |
+
// Methods
|
130 |
+
//
|
131 |
+
|
132 |
+
RankKWorkspace():
|
133 |
+
A(nullptr), C(nullptr), Computed(nullptr), Reference(nullptr) { }
|
134 |
+
};
|
135 |
+
|
136 |
+
protected:
|
137 |
+
|
138 |
+
//
|
139 |
+
// Data members
|
140 |
+
//
|
141 |
+
|
142 |
+
/// GEMM problem obtained from problem space
|
143 |
+
RankKProblem problem_;
|
144 |
+
|
145 |
+
/// Device memory allocations
|
146 |
+
RankKWorkspace rank_k_workspace_;
|
147 |
+
|
148 |
+
|
149 |
+
public:
|
150 |
+
//
|
151 |
+
// Methods
|
152 |
+
//
|
153 |
+
|
154 |
+
/// Ctor
|
155 |
+
RankKOperationProfiler(Options const &options);
|
156 |
+
|
157 |
+
/// Destructor
|
158 |
+
virtual ~RankKOperationProfiler();
|
159 |
+
|
160 |
+
/// Prints usage statement for the math function
|
161 |
+
virtual void print_usage(std::ostream &out) const;
|
162 |
+
|
163 |
+
/// Prints examples
|
164 |
+
virtual void print_examples(std::ostream &out) const;
|
165 |
+
|
166 |
+
/// Extracts the problem dimensions
|
167 |
+
virtual Status initialize_configuration(
|
168 |
+
Options const &options,
|
169 |
+
PerformanceReport &report,
|
170 |
+
DeviceContext &device_context,
|
171 |
+
library::Operation const *operation,
|
172 |
+
ProblemSpace const &problem_space,
|
173 |
+
ProblemSpace::Problem const &problem);
|
174 |
+
|
175 |
+
/// Initializes workspace
|
176 |
+
virtual Status initialize_workspace(
|
177 |
+
Options const &options,
|
178 |
+
PerformanceReport &report,
|
179 |
+
DeviceContext &device_context,
|
180 |
+
library::Operation const *operation,
|
181 |
+
ProblemSpace const &problem_space,
|
182 |
+
ProblemSpace::Problem const &problem);
|
183 |
+
|
184 |
+
/// Verifies CUTLASS against references
|
185 |
+
virtual bool verify_cutlass(
|
186 |
+
Options const &options,
|
187 |
+
PerformanceReport &report,
|
188 |
+
DeviceContext &device_context,
|
189 |
+
library::Operation const *operation,
|
190 |
+
ProblemSpace const &problem_space,
|
191 |
+
ProblemSpace::Problem const &problem);
|
192 |
+
|
193 |
+
/// Measures performance results
|
194 |
+
virtual bool profile(
|
195 |
+
Options const &options,
|
196 |
+
PerformanceReport &report,
|
197 |
+
DeviceContext &device_context,
|
198 |
+
library::Operation const *operation,
|
199 |
+
ProblemSpace const &problem_space,
|
200 |
+
ProblemSpace::Problem const &problem);
|
201 |
+
|
202 |
+
protected:
|
203 |
+
|
204 |
+
/// Initializes the performance result
|
205 |
+
void initialize_result_(
|
206 |
+
PerformanceResult &result,
|
207 |
+
Options const &options,
|
208 |
+
library::RankKDescription const &operation_desc,
|
209 |
+
ProblemSpace const &problem_space);
|
210 |
+
|
211 |
+
/// Verifies CUTLASS against references
|
212 |
+
bool verify_with_cublas_(
|
213 |
+
Options const &options,
|
214 |
+
PerformanceReport &report,
|
215 |
+
DeviceContext &device_context,
|
216 |
+
library::Operation const *operation,
|
217 |
+
ProblemSpace const &problem_space,
|
218 |
+
ProblemSpace::Problem const &problem);
|
219 |
+
|
220 |
+
};
|
221 |
+
|
222 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
223 |
+
|
224 |
+
} // namespace profiler
|
225 |
+
} // namespace cutlass
|
226 |
+
|
227 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/sparse_gemm_operation_profiler.h
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief
|
33 |
+
|
34 |
+
*/
|
35 |
+
|
36 |
+
#pragma once
|
37 |
+
|
38 |
+
#include <vector>
|
39 |
+
#include <string>
|
40 |
+
#include <memory>
|
41 |
+
#include <algorithm>
|
42 |
+
#include <unordered_map>
|
43 |
+
|
44 |
+
// CUTLASS Library includes
|
45 |
+
#include "cutlass/library/library.h"
|
46 |
+
#include "cutlass/library/util.h"
|
47 |
+
#include "cutlass/library/manifest.h"
|
48 |
+
|
49 |
+
// Profiler includes
|
50 |
+
#include "options.h"
|
51 |
+
#include "device_context.h"
|
52 |
+
#include "operation_profiler.h"
|
53 |
+
#include "performance_result.h"
|
54 |
+
#include "problem_space.h"
|
55 |
+
#include "gemm_operation_profiler.h"
|
56 |
+
|
57 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
58 |
+
|
59 |
+
namespace cutlass {
|
60 |
+
namespace profiler {
|
61 |
+
|
62 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
63 |
+
|
64 |
+
/// Abstract base class for each math function
|
65 |
+
class SparseGemmOperationProfiler : public OperationProfiler {
|
66 |
+
public:
|
67 |
+
|
68 |
+
/// Problem structure obtained from problem space
|
69 |
+
struct SparseGemmProblem {
|
70 |
+
int64_t m;
|
71 |
+
int64_t n;
|
72 |
+
int64_t k;
|
73 |
+
int64_t lda;
|
74 |
+
int64_t ldb;
|
75 |
+
int64_t ldc;
|
76 |
+
int64_t lde;
|
77 |
+
std::vector<uint8_t> alpha;
|
78 |
+
std::vector<uint8_t> beta;
|
79 |
+
int64_t split_k_slices;
|
80 |
+
int64_t batch_count;
|
81 |
+
static int const sparse = 2;
|
82 |
+
// every 128b ElementA uses one elementE
|
83 |
+
int elements_per_128b;
|
84 |
+
|
85 |
+
//
|
86 |
+
// Methods
|
87 |
+
//
|
88 |
+
|
89 |
+
SparseGemmProblem():
|
90 |
+
m(16), n(16), k(16), lda(0), ldb(0), ldc(0), lde(0), split_k_slices(1), batch_count(1) { }
|
91 |
+
|
92 |
+
/// Parses the problem
|
93 |
+
Status parse(
|
94 |
+
library::SparseGemmDescription const &operation_desc,
|
95 |
+
ProblemSpace const &problem_space,
|
96 |
+
ProblemSpace::Problem const &problem);
|
97 |
+
|
98 |
+
/// Initializes a performance result
|
99 |
+
void initialize_result(
|
100 |
+
PerformanceResult &result,
|
101 |
+
library::SparseGemmDescription const &operation_desc,
|
102 |
+
ProblemSpace const &problem_space);
|
103 |
+
};
|
104 |
+
|
105 |
+
/// Workspace used
|
106 |
+
struct SparseGemmWorkspace {
|
107 |
+
|
108 |
+
DeviceAllocation *A;
|
109 |
+
DeviceAllocation *B;
|
110 |
+
DeviceAllocation *C;
|
111 |
+
DeviceAllocation *E;
|
112 |
+
DeviceAllocation *Computed;
|
113 |
+
DeviceAllocation *Reference;
|
114 |
+
|
115 |
+
library::SparseGemmConfiguration configuration;
|
116 |
+
library::SparseGemmArguments arguments;
|
117 |
+
|
118 |
+
/// Buffer used for the operation's host workspace
|
119 |
+
std::vector<uint8_t> host_workspace;
|
120 |
+
|
121 |
+
/// Buffer used for the operations' device workspace
|
122 |
+
DeviceAllocation device_workspace;
|
123 |
+
|
124 |
+
//
|
125 |
+
// Methods
|
126 |
+
//
|
127 |
+
|
128 |
+
SparseGemmWorkspace():
|
129 |
+
A(nullptr), B(nullptr), C(nullptr), E(nullptr), Computed(nullptr), Reference(nullptr) { }
|
130 |
+
};
|
131 |
+
|
132 |
+
protected:
|
133 |
+
|
134 |
+
//
|
135 |
+
// Data members
|
136 |
+
//
|
137 |
+
|
138 |
+
// GEMM problem
|
139 |
+
SparseGemmProblem problem_;
|
140 |
+
|
141 |
+
/// Device memory allocations
|
142 |
+
SparseGemmWorkspace gemm_workspace_;
|
143 |
+
|
144 |
+
|
145 |
+
public:
|
146 |
+
//
|
147 |
+
// Methods
|
148 |
+
//
|
149 |
+
|
150 |
+
/// Ctor
|
151 |
+
SparseGemmOperationProfiler(Options const &options);
|
152 |
+
|
153 |
+
/// Destructor
|
154 |
+
virtual ~SparseGemmOperationProfiler();
|
155 |
+
|
156 |
+
/// Prints usage statement for the math function
|
157 |
+
virtual void print_usage(std::ostream &out) const;
|
158 |
+
|
159 |
+
/// Prints examples
|
160 |
+
virtual void print_examples(std::ostream &out) const;
|
161 |
+
|
162 |
+
/// Extracts the problem dimensions
|
163 |
+
virtual Status initialize_configuration(
|
164 |
+
Options const &options,
|
165 |
+
PerformanceReport &report,
|
166 |
+
DeviceContext &device_context,
|
167 |
+
library::Operation const *operation,
|
168 |
+
ProblemSpace const &problem_space,
|
169 |
+
ProblemSpace::Problem const &problem);
|
170 |
+
|
171 |
+
/// Initializes workspace
|
172 |
+
virtual Status initialize_workspace(
|
173 |
+
Options const &options,
|
174 |
+
PerformanceReport &report,
|
175 |
+
DeviceContext &device_context,
|
176 |
+
library::Operation const *operation,
|
177 |
+
ProblemSpace const &problem_space,
|
178 |
+
ProblemSpace::Problem const &problem);
|
179 |
+
|
180 |
+
/// Verifies CUTLASS against references
|
181 |
+
virtual bool verify_cutlass(
|
182 |
+
Options const &options,
|
183 |
+
PerformanceReport &report,
|
184 |
+
DeviceContext &device_context,
|
185 |
+
library::Operation const *operation,
|
186 |
+
ProblemSpace const &problem_space,
|
187 |
+
ProblemSpace::Problem const &problem);
|
188 |
+
|
189 |
+
/// Measures performance results
|
190 |
+
virtual bool profile(
|
191 |
+
Options const &options,
|
192 |
+
PerformanceReport &report,
|
193 |
+
DeviceContext &device_context,
|
194 |
+
library::Operation const *operation,
|
195 |
+
ProblemSpace const &problem_space,
|
196 |
+
ProblemSpace::Problem const &problem);
|
197 |
+
|
198 |
+
protected:
|
199 |
+
|
200 |
+
/// Initializes the performance result
|
201 |
+
void initialize_result_(
|
202 |
+
PerformanceResult &result,
|
203 |
+
Options const &options,
|
204 |
+
library::SparseGemmDescription const &operation_desc,
|
205 |
+
ProblemSpace const &problem_space);
|
206 |
+
};
|
207 |
+
|
208 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
209 |
+
|
210 |
+
} // namespace profiler
|
211 |
+
} // namespace cutlass
|
212 |
+
|
213 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
214 |
+
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/include/cutlass/profiler/trmm_operation_profiler.h
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief Defines a math function
|
33 |
+
|
34 |
+
|
35 |
+
*/
|
36 |
+
|
37 |
+
#pragma once
|
38 |
+
|
39 |
+
#include <vector>
|
40 |
+
#include <string>
|
41 |
+
#include <memory>
|
42 |
+
#include <algorithm>
|
43 |
+
#include <unordered_map>
|
44 |
+
|
45 |
+
// CUTLASS Library includes
|
46 |
+
#include "cutlass/blas3.h"
|
47 |
+
#include "cutlass/library/library.h"
|
48 |
+
#include "cutlass/library/util.h"
|
49 |
+
#include "cutlass/library/manifest.h"
|
50 |
+
|
51 |
+
// Profiler includes
|
52 |
+
#include "options.h"
|
53 |
+
#include "device_context.h"
|
54 |
+
#include "operation_profiler.h"
|
55 |
+
#include "performance_result.h"
|
56 |
+
#include "problem_space.h"
|
57 |
+
|
58 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
59 |
+
|
60 |
+
namespace cutlass {
|
61 |
+
namespace profiler {
|
62 |
+
|
63 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
64 |
+
|
65 |
+
/// Abstract base class for each math function
|
66 |
+
class TrmmOperationProfiler : public OperationProfiler {
|
67 |
+
public:
|
68 |
+
|
69 |
+
/// Problem structure obtained from problem space
|
70 |
+
struct TrmmProblem {
|
71 |
+
int64_t m;
|
72 |
+
int64_t n;
|
73 |
+
int64_t lda;
|
74 |
+
int64_t ldb;
|
75 |
+
int64_t ldd;
|
76 |
+
SideMode side_mode;
|
77 |
+
FillMode fill_mode;
|
78 |
+
DiagType diag_type;
|
79 |
+
std::vector<uint8_t> alpha;
|
80 |
+
std::vector<uint8_t> beta;
|
81 |
+
int64_t split_k_slices;
|
82 |
+
int64_t batch_count;
|
83 |
+
|
84 |
+
//
|
85 |
+
// Methods
|
86 |
+
//
|
87 |
+
|
88 |
+
TrmmProblem():
|
89 |
+
m(16), n(16), lda(0), ldb(0), ldd(0), split_k_slices(1), batch_count(1) { }
|
90 |
+
|
91 |
+
/// Parses the problem
|
92 |
+
Status parse(
|
93 |
+
library::TrmmDescription const &operation_desc,
|
94 |
+
ProblemSpace const &problem_space,
|
95 |
+
ProblemSpace::Problem const &problem);
|
96 |
+
|
97 |
+
/// Initializes a performance result
|
98 |
+
void initialize_result(
|
99 |
+
PerformanceResult &result,
|
100 |
+
library::TrmmDescription const &operation_desc,
|
101 |
+
ProblemSpace const &problem_space);
|
102 |
+
};
|
103 |
+
|
104 |
+
/// Workspace used
|
105 |
+
struct TrmmWorkspace {
|
106 |
+
|
107 |
+
DeviceAllocation *A;
|
108 |
+
DeviceAllocation *B;
|
109 |
+
DeviceAllocation *D;
|
110 |
+
DeviceAllocation *Computed;
|
111 |
+
DeviceAllocation *Reference;
|
112 |
+
|
113 |
+
library::TrmmConfiguration configuration;
|
114 |
+
library::TrmmArguments arguments;
|
115 |
+
|
116 |
+
/// Buffer used for the operation's host workspace
|
117 |
+
std::vector<uint8_t> host_workspace;
|
118 |
+
|
119 |
+
/// Buffer used for the operations' device workspace
|
120 |
+
DeviceAllocation device_workspace;
|
121 |
+
|
122 |
+
//
|
123 |
+
// Methods
|
124 |
+
//
|
125 |
+
|
126 |
+
TrmmWorkspace():
|
127 |
+
A(nullptr), B(nullptr), D(nullptr), Computed(nullptr), Reference(nullptr) { }
|
128 |
+
};
|
129 |
+
|
130 |
+
protected:
|
131 |
+
|
132 |
+
//
|
133 |
+
// Data members
|
134 |
+
//
|
135 |
+
|
136 |
+
/// GEMM problem obtained from problem space
|
137 |
+
TrmmProblem problem_;
|
138 |
+
|
139 |
+
/// Device memory allocations
|
140 |
+
TrmmWorkspace trmm_workspace_;
|
141 |
+
|
142 |
+
|
143 |
+
public:
|
144 |
+
//
|
145 |
+
// Methods
|
146 |
+
//
|
147 |
+
|
148 |
+
/// Ctor
|
149 |
+
TrmmOperationProfiler(Options const &options);
|
150 |
+
|
151 |
+
/// Destructor
|
152 |
+
virtual ~TrmmOperationProfiler();
|
153 |
+
|
154 |
+
/// Prints usage statement for the math function
|
155 |
+
virtual void print_usage(std::ostream &out) const;
|
156 |
+
|
157 |
+
/// Prints examples
|
158 |
+
virtual void print_examples(std::ostream &out) const;
|
159 |
+
|
160 |
+
/// Extracts the problem dimensions
|
161 |
+
virtual Status initialize_configuration(
|
162 |
+
Options const &options,
|
163 |
+
PerformanceReport &report,
|
164 |
+
DeviceContext &device_context,
|
165 |
+
library::Operation const *operation,
|
166 |
+
ProblemSpace const &problem_space,
|
167 |
+
ProblemSpace::Problem const &problem);
|
168 |
+
|
169 |
+
/// Initializes workspace
|
170 |
+
virtual Status initialize_workspace(
|
171 |
+
Options const &options,
|
172 |
+
PerformanceReport &report,
|
173 |
+
DeviceContext &device_context,
|
174 |
+
library::Operation const *operation,
|
175 |
+
ProblemSpace const &problem_space,
|
176 |
+
ProblemSpace::Problem const &problem);
|
177 |
+
|
178 |
+
/// Verifies CUTLASS against references
|
179 |
+
virtual bool verify_cutlass(
|
180 |
+
Options const &options,
|
181 |
+
PerformanceReport &report,
|
182 |
+
DeviceContext &device_context,
|
183 |
+
library::Operation const *operation,
|
184 |
+
ProblemSpace const &problem_space,
|
185 |
+
ProblemSpace::Problem const &problem);
|
186 |
+
|
187 |
+
/// Measures performance results
|
188 |
+
virtual bool profile(
|
189 |
+
Options const &options,
|
190 |
+
PerformanceReport &report,
|
191 |
+
DeviceContext &device_context,
|
192 |
+
library::Operation const *operation,
|
193 |
+
ProblemSpace const &problem_space,
|
194 |
+
ProblemSpace::Problem const &problem);
|
195 |
+
|
196 |
+
protected:
|
197 |
+
|
198 |
+
/// Initializes the performance result
|
199 |
+
void initialize_result_(
|
200 |
+
PerformanceResult &result,
|
201 |
+
Options const &options,
|
202 |
+
library::TrmmDescription const &operation_desc,
|
203 |
+
ProblemSpace const &problem_space);
|
204 |
+
|
205 |
+
/// Verifies CUTLASS against references
|
206 |
+
bool verify_with_cublas_(
|
207 |
+
Options const &options,
|
208 |
+
PerformanceReport &report,
|
209 |
+
DeviceContext &device_context,
|
210 |
+
library::Operation const *operation,
|
211 |
+
ProblemSpace const &problem_space,
|
212 |
+
ProblemSpace::Problem const &problem);
|
213 |
+
|
214 |
+
};
|
215 |
+
|
216 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
217 |
+
|
218 |
+
} // namespace profiler
|
219 |
+
} // namespace cutlass
|
220 |
+
|
221 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
222 |
+
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/conv2d_operation_profiler.cu
ADDED
@@ -0,0 +1,1510 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief Convolution 2D profiling
|
33 |
+
*/
|
34 |
+
|
35 |
+
#include <iostream>
|
36 |
+
#include <stdexcept>
|
37 |
+
#include <iomanip>
|
38 |
+
#include <ios>
|
39 |
+
|
40 |
+
#include "cutlass/core_io.h"
|
41 |
+
|
42 |
+
#include "cutlass/profiler/conv2d_operation_profiler.h"
|
43 |
+
#include "cutlass/profiler/gpu_timer.h"
|
44 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
45 |
+
using namespace cutlass::library;
|
46 |
+
|
47 |
+
namespace cutlass {
|
48 |
+
namespace profiler {
|
49 |
+
|
50 |
+
|
51 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
52 |
+
|
53 |
+
/// Ctor
|
54 |
+
Conv2dOperationProfiler::Conv2dOperationProfiler(Options const &options):
|
55 |
+
OperationProfiler(
|
56 |
+
options,
|
57 |
+
library::OperationKind::kConv2d,
|
58 |
+
{
|
59 |
+
{ArgumentTypeID::kEnumerated, {"conv_kind"}, "Convolutional operator (fprop, dgrad, wgrad)"},
|
60 |
+
{ArgumentTypeID::kInteger, {"n", "input_n"}, "Input N dimension of the Conv2d problem space"},
|
61 |
+
{ArgumentTypeID::kInteger, {"h", "input_h"}, "Input H dimension of the Conv2d problem space"},
|
62 |
+
{ArgumentTypeID::kInteger, {"w", "input_w"}, "Input W dimension of the Conv2d problem space"},
|
63 |
+
{ArgumentTypeID::kInteger, {"c", "input_c"}, "Input C dimension of the Conv2d problem space"},
|
64 |
+
{ArgumentTypeID::kInteger, {"k", "filter_k"}, "Filter K dimension of the Conv2d problem space"},
|
65 |
+
{ArgumentTypeID::kInteger, {"r", "filter_r"}, "Filter R dimension of the Conv2d problem space"},
|
66 |
+
{ArgumentTypeID::kInteger, {"s", "filter_s"}, "Filter S dimension of the Conv2d problem space"},
|
67 |
+
{ArgumentTypeID::kInteger, {"p", "output_p"}, "Output P dimension of the Conv2d problem space"},
|
68 |
+
{ArgumentTypeID::kInteger, {"q", "output_q"}, "Output Q dimension of the Conv2d problem space"},
|
69 |
+
{ArgumentTypeID::kInteger, {"g", "groups"}, "Number of convolution groups"},
|
70 |
+
{ArgumentTypeID::kInteger, {"pad_h"}, "Padding in H direction"},
|
71 |
+
{ArgumentTypeID::kInteger, {"pad_w"}, "Padding in W direction"},
|
72 |
+
{ArgumentTypeID::kInteger, {"stride_h"}, "Stride in H direction"},
|
73 |
+
{ArgumentTypeID::kInteger, {"stride_w"}, "Stride in W direction"},
|
74 |
+
{ArgumentTypeID::kInteger, {"dilation_h"}, "Dilation in H direction"},
|
75 |
+
{ArgumentTypeID::kInteger, {"dilation_w"}, "Dilation in W direction"},
|
76 |
+
{ArgumentTypeID::kTensor, {"Activation"}, "Tensor storing the Activation operand"},
|
77 |
+
{ArgumentTypeID::kTensor, {"Filter"}, "Tensor storing the Filter operand"},
|
78 |
+
{ArgumentTypeID::kTensor, {"Output"}, "Tensor storing the Output operand"},
|
79 |
+
{ArgumentTypeID::kEnumerated, {"conv_mode"}, "Convolution filter mode (conv, cross)"},
|
80 |
+
{ArgumentTypeID::kEnumerated, {"iterator_algorithm", "iterator_algo"}, "Convolution iterator algorithm (analytic, optimized)"},
|
81 |
+
{ArgumentTypeID::kScalar, {"alpha", "epilogue::alpha"}, "Epilogue scalar alpha"},
|
82 |
+
{ArgumentTypeID::kScalar, {"beta", "epilogue::beta"}, "Epilogue scalar beta"},
|
83 |
+
{ArgumentTypeID::kEnumerated, {"split_k_mode", "split-k-mode"}, "SplitK mode for serial or parallel reduction (serial, parallel)"},
|
84 |
+
{ArgumentTypeID::kInteger, {"split_k_slices", "split-k-slices"}, "Number of partitions of K dimension"},
|
85 |
+
{ArgumentTypeID::kEnumerated, {"eq_gemm_provider", "eq-gemm-provider"}, "Enable profiling equivalent gemm by the following providers (cutlass)"},
|
86 |
+
},
|
87 |
+
{ library::Provider::kReferenceDevice, library::Provider::kReferenceHost, library::Provider::kCUDNN }
|
88 |
+
) {
|
89 |
+
|
90 |
+
description_ = " Conv2d operation. Output(Tensor4D) = alpha * Input(Tensor4D) * Filter(Tensor4D) + beta * Input(Tensor4D)";
|
91 |
+
|
92 |
+
}
|
93 |
+
|
94 |
+
/// Destructor
|
95 |
+
Conv2dOperationProfiler::~Conv2dOperationProfiler() {
|
96 |
+
|
97 |
+
}
|
98 |
+
|
99 |
+
|
100 |
+
/// Prints usage statement for the math function
|
101 |
+
void Conv2dOperationProfiler::print_usage(std::ostream &out) const {
|
102 |
+
out << "Conv2d" << "\n\n";
|
103 |
+
|
104 |
+
OperationProfiler::print_usage(out);
|
105 |
+
}
|
106 |
+
|
107 |
+
/// Prints examples
|
108 |
+
void Conv2dOperationProfiler::print_examples(std::ostream &out) const {
|
109 |
+
|
110 |
+
out << "\nExamples:\n\n"
|
111 |
+
<< "Profile a particular convolution (specify all the convolution parameters):\n"
|
112 |
+
<< " $ cutlass_profiler --operation=Conv2d"
|
113 |
+
" --Activation=f16:nhwc --Filter=f16:nhwc --Output=f16 --accumulator-type=f32"
|
114 |
+
" --n=32 --h=14 --w=14 --c=8 --k=64 --r=3 --s=3"
|
115 |
+
" --pad_h=1 --pad_w=1"
|
116 |
+
" --stride_h=1 --stride_w=1"
|
117 |
+
" --dilation_h=1 --dilation_w=1\n\n";
|
118 |
+
}
|
119 |
+
|
120 |
+
#if 0
|
121 |
+
// used this for debugging
|
122 |
+
static std::string byte_string(std::vector<uint8_t> const &bytes) {
|
123 |
+
std::stringstream ss;
|
124 |
+
|
125 |
+
ss << "0x";
|
126 |
+
|
127 |
+
for (size_t idx = bytes.size(); idx > 0; --idx) {
|
128 |
+
ss << std::hex << std::setw(2) << std::setfill('0') << uint32_t(bytes.at(idx - 1));
|
129 |
+
}
|
130 |
+
|
131 |
+
return ss.str();
|
132 |
+
}
|
133 |
+
#endif
|
134 |
+
|
135 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
136 |
+
|
137 |
+
/// Total number of bytes loaded
|
138 |
+
int64_t Conv2dOperationProfiler::Conv2dProblem::bytes(
|
139 |
+
library::ConvDescription const &operation_desc) const {
|
140 |
+
|
141 |
+
cutlass::gemm::GemmCoord mnk = eq_gemm_size(operation_desc.conv_kind);
|
142 |
+
|
143 |
+
// Input bytes read and Output bytes written for the gemm problem
|
144 |
+
int64_t bytes_ =
|
145 |
+
int64_t(library::sizeof_bits(operation_desc.A.element) * mnk.m() / 8) * mnk.k() +
|
146 |
+
int64_t(library::sizeof_bits(operation_desc.B.element) * mnk.n() / 8) * mnk.k() +
|
147 |
+
int64_t(library::sizeof_bits(operation_desc.C.element) * mnk.m() / 8) * mnk.n();
|
148 |
+
|
149 |
+
// Set is_beta_zero true if beta is zero
|
150 |
+
bool is_beta_zero = std::all_of(beta.begin(), beta.end(), [](uint8_t i) { return i==0; });
|
151 |
+
|
152 |
+
// Output bytes read for the gemm problem for non-zero beta values
|
153 |
+
if (!is_beta_zero) {
|
154 |
+
bytes_ += int64_t(library::sizeof_bits(operation_desc.C.element) * mnk.m() / 8) * mnk.n();
|
155 |
+
}
|
156 |
+
|
157 |
+
return bytes_;
|
158 |
+
}
|
159 |
+
|
160 |
+
/// Total number of flops computed
|
161 |
+
int64_t Conv2dOperationProfiler::Conv2dProblem::flops(
|
162 |
+
library::ConvDescription const &operation_desc) const {
|
163 |
+
|
164 |
+
cutlass::gemm::GemmCoord mnk = eq_gemm_size(operation_desc.conv_kind);
|
165 |
+
|
166 |
+
int64_t flops_mainloop_ = int64_t(mnk.m()) * mnk.n() * mnk.k() * 2;
|
167 |
+
int64_t flops_epilogue_ = int64_t(mnk.m()) * int64_t(mnk.n()) * 2;
|
168 |
+
|
169 |
+
// Adjust mainloop flop for dgrad strided
|
170 |
+
if (operation_desc.conv_kind == library::ConvKind::kDgrad) {
|
171 |
+
flops_mainloop_ = flops_mainloop_ / (stride_h * stride_w);
|
172 |
+
}
|
173 |
+
int64_t flops_total_ = flops_mainloop_ + flops_epilogue_;
|
174 |
+
|
175 |
+
//complex-valued support
|
176 |
+
switch (operation_desc.tile_description.math_instruction.math_operation) {
|
177 |
+
case library::MathOperationID::kMultiplyAddComplex:
|
178 |
+
flops_total_ *=4;
|
179 |
+
break;
|
180 |
+
|
181 |
+
default: break;
|
182 |
+
}
|
183 |
+
|
184 |
+
return flops_total_;
|
185 |
+
}
|
186 |
+
|
187 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
188 |
+
|
189 |
+
/// Extracts the problem dimensions
|
190 |
+
Status Conv2dOperationProfiler::initialize_configuration(
|
191 |
+
Options const &options,
|
192 |
+
PerformanceReport &report,
|
193 |
+
DeviceContext &device_context,
|
194 |
+
library::Operation const *operation,
|
195 |
+
ProblemSpace const &problem_space,
|
196 |
+
ProblemSpace::Problem const &problem) {
|
197 |
+
|
198 |
+
library::ConvDescription const &operation_desc =
|
199 |
+
static_cast<library::ConvDescription const &>(operation->description());
|
200 |
+
|
201 |
+
if (!arg_as_int(problem_.n, "n", problem_space, problem)) {
|
202 |
+
// default value
|
203 |
+
problem_.n = 1;
|
204 |
+
}
|
205 |
+
|
206 |
+
if (!arg_as_int(problem_.h, "h", problem_space, problem)) {
|
207 |
+
// default value
|
208 |
+
problem_.h = 16;
|
209 |
+
}
|
210 |
+
|
211 |
+
if (!arg_as_int(problem_.w, "w", problem_space, problem)) {
|
212 |
+
// default value
|
213 |
+
problem_.w = 16;
|
214 |
+
}
|
215 |
+
|
216 |
+
if (!arg_as_int(problem_.c, "c", problem_space, problem)) {
|
217 |
+
// default value
|
218 |
+
problem_.c = 64;
|
219 |
+
}
|
220 |
+
|
221 |
+
if (!arg_as_int(problem_.k, "k", problem_space, problem)) {
|
222 |
+
// default value
|
223 |
+
problem_.k = 64;
|
224 |
+
}
|
225 |
+
|
226 |
+
if (!arg_as_int(problem_.r, "r", problem_space, problem)) {
|
227 |
+
// default value
|
228 |
+
problem_.r = 3;
|
229 |
+
}
|
230 |
+
|
231 |
+
if (!arg_as_int(problem_.s, "s", problem_space, problem)) {
|
232 |
+
// default value
|
233 |
+
problem_.s = 3;
|
234 |
+
}
|
235 |
+
|
236 |
+
if (!arg_as_int(problem_.groups, "g", problem_space, problem)) {
|
237 |
+
// default value
|
238 |
+
problem_.groups = 1;
|
239 |
+
}
|
240 |
+
|
241 |
+
if (!arg_as_int(problem_.pad_h, "pad_h", problem_space, problem)) {
|
242 |
+
// default value
|
243 |
+
problem_.pad_h = 1;
|
244 |
+
}
|
245 |
+
|
246 |
+
if (!arg_as_int(problem_.pad_w, "pad_w", problem_space, problem)) {
|
247 |
+
// default value
|
248 |
+
problem_.pad_w = 1;
|
249 |
+
}
|
250 |
+
|
251 |
+
if (!arg_as_int(problem_.stride_h, "stride_h", problem_space, problem)) {
|
252 |
+
// default value
|
253 |
+
problem_.stride_h = 1;
|
254 |
+
}
|
255 |
+
|
256 |
+
if (!arg_as_int(problem_.stride_w, "stride_w", problem_space, problem)) {
|
257 |
+
// default value
|
258 |
+
problem_.stride_w = 1;
|
259 |
+
}
|
260 |
+
|
261 |
+
if (!arg_as_int(problem_.dilation_h, "dilation_h", problem_space, problem)) {
|
262 |
+
// default value
|
263 |
+
problem_.dilation_h = 1;
|
264 |
+
}
|
265 |
+
|
266 |
+
if (!arg_as_int(problem_.dilation_w, "dilation_w", problem_space, problem)) {
|
267 |
+
// default value
|
268 |
+
problem_.dilation_w = 1;
|
269 |
+
}
|
270 |
+
|
271 |
+
//////////////////////// Convolution output dimensions p and q ////////////////////////
|
272 |
+
// Cutlass convolutions support arbitrary output sizes and not constrained by //
|
273 |
+
// input, filter, padding, striding, dilation sizes. //
|
274 |
+
// cuDNN sets the output dimensions (p, q) using following equations: //
|
275 |
+
// //
|
276 |
+
// output = div_up(input + 2 * pad - ((filter - 1) * dilation + 1) + 1, stride) //
|
277 |
+
// where; div_up(a, b) : (a - 1)/b + 1 //
|
278 |
+
// //
|
279 |
+
// Thus, when output p and q dimensions are unspecified by the user //
|
280 |
+
// cutlass profiler sets p and q which are cuDNN compliant. //
|
281 |
+
// //
|
282 |
+
////////////////////////////////////////////////////////////////////////////////////////
|
283 |
+
// set convolution output p
|
284 |
+
if (!arg_as_int(problem_.p, "p", problem_space, problem)) {
|
285 |
+
// default value (set using cudnn formula for output height, when p is not provided)
|
286 |
+
problem_.p = (
|
287 |
+
problem_.h +
|
288 |
+
2 * problem_.pad_h -
|
289 |
+
((problem_.r - 1) * problem_.dilation_h + 1)
|
290 |
+
) / (problem_.stride_h)
|
291 |
+
+ 1;
|
292 |
+
}
|
293 |
+
|
294 |
+
// set convolution output q
|
295 |
+
if (!arg_as_int(problem_.q, "q", problem_space, problem)) {
|
296 |
+
// default value (set using cudnn formula for output width, when q is not provided)
|
297 |
+
problem_.q = (
|
298 |
+
problem_.w +
|
299 |
+
2 * problem_.pad_w -
|
300 |
+
((problem_.s - 1) * problem_.dilation_w + 1)
|
301 |
+
) / (problem_.stride_w)
|
302 |
+
+ 1;
|
303 |
+
}
|
304 |
+
/////////////////////////////////////////////////////////////////////////////////////////
|
305 |
+
|
306 |
+
|
307 |
+
if (!arg_as_SplitKModeID(problem_.split_k_mode, "split_k_mode", problem_space, problem)) {
|
308 |
+
// default value
|
309 |
+
problem_.split_k_mode = library::SplitKMode::kSerial;
|
310 |
+
}
|
311 |
+
|
312 |
+
if (!arg_as_int(problem_.split_k_slices, "split_k_slices", problem_space, problem)) {
|
313 |
+
// default value
|
314 |
+
problem_.split_k_slices = 1;
|
315 |
+
}
|
316 |
+
|
317 |
+
if (!arg_as_ConvModeID(problem_.conv_mode, "conv_mode", problem_space, problem)) {
|
318 |
+
// default value
|
319 |
+
problem_.conv_mode = library::ConvModeID::kCrossCorrelation;
|
320 |
+
}
|
321 |
+
|
322 |
+
if (!arg_as_ProviderID(problem_.eq_gemm_provider, "eq_gemm_provider", problem_space, problem)) {
|
323 |
+
// default value
|
324 |
+
problem_.eq_gemm_provider = library::Provider::kNone;
|
325 |
+
}
|
326 |
+
|
327 |
+
if (!conv_kind_satisfies(operation_desc.conv_kind, "conv_kind", problem_space, problem)) {
|
328 |
+
return Status::kErrorInvalidProblem;
|
329 |
+
}
|
330 |
+
|
331 |
+
if (!iterator_algorithm_satisfies(operation_desc.iterator_algorithm, "iterator_algorithm", problem_space, problem)) {
|
332 |
+
return Status::kErrorInvalidProblem;
|
333 |
+
}
|
334 |
+
|
335 |
+
if (!tensor_description_satisfies(operation_desc.activation(), "Activation", problem_space, problem)) {
|
336 |
+
return Status::kErrorInvalidProblem;
|
337 |
+
}
|
338 |
+
|
339 |
+
if (!tensor_description_satisfies(operation_desc.filter(), "Filter", problem_space, problem)) {
|
340 |
+
return Status::kErrorInvalidProblem;
|
341 |
+
}
|
342 |
+
|
343 |
+
if (!tensor_description_satisfies(operation_desc.output(), "Output", problem_space, problem)) {
|
344 |
+
return Status::kErrorInvalidProblem;
|
345 |
+
}
|
346 |
+
|
347 |
+
if (!arg_as_scalar(
|
348 |
+
problem_.alpha,
|
349 |
+
operation_desc.element_epilogue,
|
350 |
+
"alpha",
|
351 |
+
problem_space,
|
352 |
+
problem)) {
|
353 |
+
|
354 |
+
if (!cast_from_double(problem_.alpha, operation_desc.element_epilogue, 1)) {
|
355 |
+
return Status::kErrorInternal;
|
356 |
+
}
|
357 |
+
}
|
358 |
+
|
359 |
+
if (!arg_as_scalar(
|
360 |
+
problem_.beta,
|
361 |
+
operation_desc.element_epilogue,
|
362 |
+
"beta",
|
363 |
+
problem_space,
|
364 |
+
problem)) {
|
365 |
+
|
366 |
+
if (!cast_from_double(problem_.beta, operation_desc.element_epilogue, 0)) {
|
367 |
+
return Status::kErrorInternal;
|
368 |
+
}
|
369 |
+
}
|
370 |
+
|
371 |
+
// initialize library::Conv2dConfiguration
|
372 |
+
conv_workspace_.configuration.problem_size = conv::Conv2dProblemSize(
|
373 |
+
int(problem_.n),
|
374 |
+
int(problem_.h),
|
375 |
+
int(problem_.w),
|
376 |
+
int(problem_.c),
|
377 |
+
int(problem_.k),
|
378 |
+
int(problem_.r),
|
379 |
+
int(problem_.s),
|
380 |
+
int(problem_.p),
|
381 |
+
int(problem_.q),
|
382 |
+
int(problem_.pad_h),
|
383 |
+
int(problem_.pad_w),
|
384 |
+
int(problem_.stride_h),
|
385 |
+
int(problem_.stride_w),
|
386 |
+
int(problem_.dilation_h),
|
387 |
+
int(problem_.dilation_w),
|
388 |
+
static_cast<conv::Mode>(static_cast<int>(problem_.conv_mode)),
|
389 |
+
int(problem_.split_k_slices),
|
390 |
+
int(problem_.groups)
|
391 |
+
);
|
392 |
+
|
393 |
+
conv_workspace_.configuration.split_k_mode = static_cast<conv::SplitKMode>(static_cast<int>(problem_.split_k_mode));
|
394 |
+
|
395 |
+
conv_workspace_.set_stride_vector(
|
396 |
+
problem_, operation_desc.conv_kind, operation_desc.A.layout,
|
397 |
+
operation_desc.B.layout, operation_desc.C.layout);
|
398 |
+
|
399 |
+
// initialize library::ConvArguments
|
400 |
+
conv_workspace_.arguments.A = nullptr;
|
401 |
+
conv_workspace_.arguments.B = nullptr;
|
402 |
+
conv_workspace_.arguments.C = nullptr;
|
403 |
+
conv_workspace_.arguments.D = nullptr;
|
404 |
+
conv_workspace_.arguments.alpha = problem_.alpha.data();
|
405 |
+
conv_workspace_.arguments.beta = problem_.beta.data();
|
406 |
+
conv_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
407 |
+
|
408 |
+
// initialize reduction operation for parallel splitKMode
|
409 |
+
if(conv_workspace_.configuration.split_k_mode == conv::SplitKMode::kParallel) {
|
410 |
+
if(!initialize_reduction_configuration_(options, report, device_context, operation, problem_space, problem)) {
|
411 |
+
return Status::kErrorInternal;
|
412 |
+
}
|
413 |
+
}
|
414 |
+
|
415 |
+
initialize_result_(this->model_result_, options, operation_desc, problem_space);
|
416 |
+
|
417 |
+
return operation->can_implement(&conv_workspace_.configuration, &conv_workspace_.arguments);
|
418 |
+
}
|
419 |
+
|
420 |
+
/// Initializes the performance result
|
421 |
+
void Conv2dOperationProfiler::initialize_result_(
|
422 |
+
PerformanceResult &result,
|
423 |
+
Options const &options,
|
424 |
+
library::ConvDescription const &operation_desc,
|
425 |
+
ProblemSpace const &problem_space) {
|
426 |
+
|
427 |
+
result.provider = library::Provider::kCUTLASS;
|
428 |
+
result.disposition = Disposition::kNotRun;
|
429 |
+
result.status = Status::kSuccess;
|
430 |
+
result.operation_name = operation_desc.name;
|
431 |
+
|
432 |
+
result.arguments.resize(problem_space.rank());
|
433 |
+
|
434 |
+
set_argument(result, "Activation", problem_space,
|
435 |
+
std::string(library::to_string(operation_desc.activation().element))
|
436 |
+
+ ":" + library::to_string(operation_desc.activation().layout));
|
437 |
+
|
438 |
+
set_argument(result, "Filter", problem_space,
|
439 |
+
std::string(library::to_string(operation_desc.filter().element))
|
440 |
+
+ ":" + library::to_string(operation_desc.filter().layout));
|
441 |
+
|
442 |
+
set_argument(result, "Output", problem_space,
|
443 |
+
std::string(library::to_string(operation_desc.output().element))
|
444 |
+
+ ":" + library::to_string(operation_desc.output().layout));
|
445 |
+
|
446 |
+
set_argument(result, "conv_kind", problem_space, library::to_string(operation_desc.conv_kind));
|
447 |
+
|
448 |
+
set_argument(result, "iterator_algorithm", problem_space, std::string(library::to_string(operation_desc.iterator_algorithm)));
|
449 |
+
|
450 |
+
set_argument(result, "n", problem_space, problem_.n);
|
451 |
+
set_argument(result, "h", problem_space, problem_.h);
|
452 |
+
set_argument(result, "w", problem_space, problem_.w);
|
453 |
+
set_argument(result, "c", problem_space, problem_.c);
|
454 |
+
|
455 |
+
set_argument(result, "k", problem_space, problem_.k);
|
456 |
+
set_argument(result, "r", problem_space, problem_.r);
|
457 |
+
set_argument(result, "s", problem_space, problem_.s);
|
458 |
+
|
459 |
+
set_argument(result, "p", problem_space, problem_.p);
|
460 |
+
set_argument(result, "q", problem_space, problem_.q);
|
461 |
+
|
462 |
+
set_argument(result, "g", problem_space, problem_.groups);
|
463 |
+
|
464 |
+
set_argument(result, "pad_h", problem_space, problem_.pad_h);
|
465 |
+
set_argument(result, "pad_w", problem_space, problem_.pad_w);
|
466 |
+
|
467 |
+
set_argument(result, "stride_h", problem_space, problem_.stride_h);
|
468 |
+
set_argument(result, "stride_w", problem_space, problem_.stride_w);
|
469 |
+
|
470 |
+
set_argument(result, "dilation_h", problem_space, problem_.dilation_h);
|
471 |
+
set_argument(result, "dilation_w", problem_space, problem_.dilation_w);
|
472 |
+
|
473 |
+
set_argument(result, "split_k_mode", problem_space,
|
474 |
+
std::string(library::to_string(problem_.split_k_mode)));
|
475 |
+
set_argument(result, "split_k_slices", problem_space, problem_.split_k_slices);
|
476 |
+
|
477 |
+
set_argument(result, "conv_mode", problem_space,
|
478 |
+
std::string(library::to_string(problem_.conv_mode)));
|
479 |
+
|
480 |
+
set_argument(result, "alpha", problem_space,
|
481 |
+
library::lexical_cast(problem_.alpha, operation_desc.element_epilogue));
|
482 |
+
|
483 |
+
set_argument(result, "beta", problem_space,
|
484 |
+
library::lexical_cast(problem_.beta, operation_desc.element_epilogue));
|
485 |
+
|
486 |
+
set_argument(result, "eq_gemm_provider", problem_space,
|
487 |
+
std::string(library::to_string(problem_.eq_gemm_provider)));
|
488 |
+
|
489 |
+
OperationProfiler::initialize_result_(result, operation_desc, problem_space);
|
490 |
+
|
491 |
+
// Bytes of activation, filter, and output tensors
|
492 |
+
int64_t activation_bytes = int64_t(library::sizeof_bits(operation_desc.activation().element) / 8) *
|
493 |
+
conv_workspace_.configuration.problem_size.activation_size();
|
494 |
+
|
495 |
+
int64_t filter_bytes = int64_t(library::sizeof_bits(operation_desc.filter().element) / 8) *
|
496 |
+
conv_workspace_.configuration.problem_size.filter_size();
|
497 |
+
|
498 |
+
int64_t output_bytes = int64_t(library::sizeof_bits(operation_desc.output().element) / 8) *
|
499 |
+
conv_workspace_.configuration.problem_size.output_size();
|
500 |
+
|
501 |
+
// Bytes of activation, filter, and output tensors
|
502 |
+
result.bytes = problem_.bytes(operation_desc);
|
503 |
+
|
504 |
+
// Theoretical flops required for the computation
|
505 |
+
result.flops = problem_.flops(operation_desc);
|
506 |
+
|
507 |
+
// Measured runtime
|
508 |
+
result.runtime = 0;
|
509 |
+
|
510 |
+
}
|
511 |
+
|
512 |
+
/// Initialize reduction problem dimensions and library::Operation
|
513 |
+
bool Conv2dOperationProfiler::initialize_reduction_configuration_(
|
514 |
+
Options const &options,
|
515 |
+
PerformanceReport &report,
|
516 |
+
DeviceContext &device_context,
|
517 |
+
library::Operation const *operation,
|
518 |
+
ProblemSpace const &problem_space,
|
519 |
+
ProblemSpace::Problem const &problem) {
|
520 |
+
|
521 |
+
library::ConvDescription const &conv_desc =
|
522 |
+
static_cast<library::ConvDescription const &>(operation->description());
|
523 |
+
|
524 |
+
library::ConvKind const &conv_kind = conv_desc.conv_kind;
|
525 |
+
|
526 |
+
if (!cast_from_double(problem_.alpha_one, conv_desc.element_epilogue, 1)) {
|
527 |
+
return false;
|
528 |
+
}
|
529 |
+
|
530 |
+
if (!cast_from_double(problem_.beta_zero, conv_desc.element_epilogue, 0)) {
|
531 |
+
return false;
|
532 |
+
}
|
533 |
+
|
534 |
+
/// This chooses the appropriate stride element of the row-major C tensor.
|
535 |
+
int const & tensor_c_stride_idx = (conv_kind == library::ConvKind::kWgrad ? 2 : 0);
|
536 |
+
|
537 |
+
/// initialize library::ReductionConfiguration
|
538 |
+
conv_workspace_.reduction_configuration.problem_size = problem_.eq_gemm_size(conv_kind).mn();
|
539 |
+
conv_workspace_.reduction_configuration.partitions = int(problem_.split_k_slices);
|
540 |
+
conv_workspace_.reduction_configuration.partition_stride = problem_.eq_gemm_size(conv_kind).mn().product();
|
541 |
+
conv_workspace_.reduction_configuration.ldw =
|
542 |
+
conv_workspace_.configuration.stride_c[tensor_c_stride_idx];
|
543 |
+
conv_workspace_.reduction_configuration.lds =
|
544 |
+
conv_workspace_.configuration.stride_c[tensor_c_stride_idx];
|
545 |
+
conv_workspace_.reduction_configuration.ldd =
|
546 |
+
conv_workspace_.configuration.stride_c[tensor_c_stride_idx];
|
547 |
+
|
548 |
+
// find reduction operation
|
549 |
+
library::ReductionFunctionalKey reduction_key(
|
550 |
+
library::Provider::kCUTLASS,
|
551 |
+
conv_desc.tile_description.math_instruction.element_accumulator, // element workspace
|
552 |
+
conv_desc.tile_description.math_instruction.element_accumulator, // element accumulator
|
553 |
+
conv_desc.C.element, // element output
|
554 |
+
conv_desc.element_epilogue // element compute
|
555 |
+
);
|
556 |
+
|
557 |
+
#if 0// debug print to check which reduction instance is selected
|
558 |
+
std::cout << reduction_key << "\n";
|
559 |
+
#endif
|
560 |
+
auto reduction_it = Singleton::get().operation_table.reduction_operations.find(reduction_key);
|
561 |
+
|
562 |
+
if(reduction_it == Singleton::get().operation_table.reduction_operations.end()) {
|
563 |
+
|
564 |
+
return false;
|
565 |
+
}
|
566 |
+
|
567 |
+
// initialize reduction operation required for parallel split-k conv2d operator
|
568 |
+
reduction_op_ = reduction_it->second;
|
569 |
+
|
570 |
+
// reduction operation found and initialized
|
571 |
+
return true;
|
572 |
+
}
|
573 |
+
|
574 |
+
|
575 |
+
/// Initializes workspace
|
576 |
+
Status Conv2dOperationProfiler::initialize_workspace(
|
577 |
+
Options const &options,
|
578 |
+
PerformanceReport &report,
|
579 |
+
DeviceContext &device_context,
|
580 |
+
library::Operation const *operation,
|
581 |
+
ProblemSpace const &problem_space,
|
582 |
+
ProblemSpace::Problem const &problem) {
|
583 |
+
|
584 |
+
if (options.device.devices.size() != 1) {
|
585 |
+
throw std::runtime_error("This operation profiler only supports a single "
|
586 |
+
"device.");
|
587 |
+
}
|
588 |
+
|
589 |
+
cudaError_t result;
|
590 |
+
result = cudaSetDevice(options.device.device_id(0));
|
591 |
+
if (result != cudaSuccess) {
|
592 |
+
throw std::runtime_error("cudaSetDevice() failed.");
|
593 |
+
}
|
594 |
+
|
595 |
+
// initialize conv2d underlying operation to handle parallel reduction
|
596 |
+
library::Operation const* underlying_operation = operation;
|
597 |
+
|
598 |
+
if(conv_workspace_.configuration.split_k_mode == conv::SplitKMode::kParallel) {
|
599 |
+
if (!(underlying_operation = library::find_conv_operation_for_parallel_reduction(operation))) {
|
600 |
+
return Status::kErrorNotSupported;
|
601 |
+
}
|
602 |
+
}
|
603 |
+
|
604 |
+
library::ConvDescription const &operation_desc =
|
605 |
+
static_cast<library::ConvDescription const &>(underlying_operation->description());
|
606 |
+
|
607 |
+
// Compute the number of copies of the problem to avoid L2 camping.
|
608 |
+
if (!options.profiling.workspace_count) {
|
609 |
+
int64_t bytes = problem_.bytes(operation_desc);
|
610 |
+
if (bytes < 3 * int64_t(options.device.properties[0].l2CacheSize)) {
|
611 |
+
conv_workspace_.problem_count =
|
612 |
+
1 + int((3 * int64_t(options.device.properties[0].l2CacheSize)) / bytes);
|
613 |
+
}
|
614 |
+
else {
|
615 |
+
conv_workspace_.problem_count = 1;
|
616 |
+
}
|
617 |
+
}
|
618 |
+
else {
|
619 |
+
conv_workspace_.problem_count = options.profiling.workspace_count;
|
620 |
+
}
|
621 |
+
|
622 |
+
|
623 |
+
if (options.execution_mode != ExecutionMode::kDryRun) {
|
624 |
+
int seed_shift = 0;
|
625 |
+
conv_workspace_.A = device_context.allocate_and_initialize_tensor(
|
626 |
+
options,
|
627 |
+
"A",
|
628 |
+
operation_desc.A.element,
|
629 |
+
operation_desc.A.layout,
|
630 |
+
problem_.extent_a(operation_desc.conv_kind),
|
631 |
+
conv_workspace_.configuration.stride_a,
|
632 |
+
conv_workspace_.problem_count,
|
633 |
+
seed_shift++,
|
634 |
+
0 // device_index
|
635 |
+
);
|
636 |
+
|
637 |
+
conv_workspace_.B = device_context.allocate_and_initialize_tensor(
|
638 |
+
options,
|
639 |
+
"B",
|
640 |
+
operation_desc.B.element,
|
641 |
+
operation_desc.B.layout,
|
642 |
+
problem_.extent_b(operation_desc.conv_kind),
|
643 |
+
conv_workspace_.configuration.stride_b,
|
644 |
+
conv_workspace_.problem_count,
|
645 |
+
seed_shift++,
|
646 |
+
0 // device_index
|
647 |
+
);
|
648 |
+
|
649 |
+
if(problem_.groups == problem_.c && problem_.groups == problem_.k){
|
650 |
+
// Depthwise direct conv kernel needs reorder the filter.
|
651 |
+
conv_workspace_.reordered_B = device_context.allocate_and_initialize_tensor(
|
652 |
+
options,
|
653 |
+
"B",
|
654 |
+
operation_desc.B.element,
|
655 |
+
operation_desc.B.layout,
|
656 |
+
problem_.extent_b(operation_desc.conv_kind),
|
657 |
+
conv_workspace_.configuration.stride_b,
|
658 |
+
conv_workspace_.problem_count,
|
659 |
+
seed_shift++,
|
660 |
+
0 // device_index
|
661 |
+
);
|
662 |
+
}
|
663 |
+
|
664 |
+
conv_workspace_.C = device_context.allocate_and_initialize_tensor(
|
665 |
+
options,
|
666 |
+
"C",
|
667 |
+
operation_desc.C.element,
|
668 |
+
operation_desc.C.layout,
|
669 |
+
problem_.extent_c(operation_desc.conv_kind),
|
670 |
+
conv_workspace_.configuration.stride_c,
|
671 |
+
conv_workspace_.problem_count,
|
672 |
+
seed_shift++,
|
673 |
+
0 // device_index
|
674 |
+
);
|
675 |
+
|
676 |
+
conv_workspace_.Computed = device_context.allocate_tensor(
|
677 |
+
options,
|
678 |
+
"D",
|
679 |
+
operation_desc.C.element,
|
680 |
+
operation_desc.C.layout,
|
681 |
+
problem_.extent_c(operation_desc.conv_kind),
|
682 |
+
conv_workspace_.configuration.stride_c,
|
683 |
+
conv_workspace_.problem_count,
|
684 |
+
0 // device_index
|
685 |
+
);
|
686 |
+
|
687 |
+
conv_workspace_.Reference = device_context.allocate_tensor(
|
688 |
+
options,
|
689 |
+
"Reference",
|
690 |
+
operation_desc.C.element,
|
691 |
+
operation_desc.C.layout,
|
692 |
+
problem_.extent_c(operation_desc.conv_kind),
|
693 |
+
conv_workspace_.configuration.stride_c,
|
694 |
+
conv_workspace_.problem_count,
|
695 |
+
0 // device_index
|
696 |
+
);
|
697 |
+
}
|
698 |
+
|
699 |
+
//
|
700 |
+
// Initialize the CUTLASS operation
|
701 |
+
//
|
702 |
+
Status status = Status::kSuccess;
|
703 |
+
|
704 |
+
if (options.profiling.provider_enabled(library::Provider::kCUTLASS)) {
|
705 |
+
|
706 |
+
if (options.execution_mode != ExecutionMode::kDryRun) {
|
707 |
+
|
708 |
+
uint64_t workspace_size = underlying_operation->get_host_workspace_size(&conv_workspace_.configuration);
|
709 |
+
conv_workspace_.host_workspace.resize(workspace_size, 0);
|
710 |
+
|
711 |
+
workspace_size = underlying_operation->get_device_workspace_size(&conv_workspace_.configuration);
|
712 |
+
conv_workspace_.device_workspace.reset(library::NumericTypeID::kU8, workspace_size);
|
713 |
+
|
714 |
+
status = underlying_operation->initialize(
|
715 |
+
&conv_workspace_.configuration,
|
716 |
+
conv_workspace_.host_workspace.data(),
|
717 |
+
conv_workspace_.device_workspace.data());
|
718 |
+
|
719 |
+
if (status != Status::kSuccess) {
|
720 |
+
return status;
|
721 |
+
}
|
722 |
+
|
723 |
+
if (conv_workspace_.configuration.split_k_mode == conv::SplitKMode::kParallel) {
|
724 |
+
workspace_size = reduction_op_->get_host_workspace_size(&conv_workspace_.reduction_configuration);
|
725 |
+
conv_workspace_.reduction_host_workspace.resize(workspace_size, 0);
|
726 |
+
|
727 |
+
status = reduction_op_->initialize(
|
728 |
+
&conv_workspace_.reduction_configuration,
|
729 |
+
conv_workspace_.reduction_host_workspace.data(),
|
730 |
+
nullptr);
|
731 |
+
|
732 |
+
if (status != Status::kSuccess) {
|
733 |
+
return status;
|
734 |
+
}
|
735 |
+
}
|
736 |
+
}
|
737 |
+
|
738 |
+
//
|
739 |
+
// If CUTLASS is enabled, generate a result for it
|
740 |
+
//
|
741 |
+
results_.push_back(model_result_);
|
742 |
+
results_.back().provider = library::Provider::kCUTLASS;
|
743 |
+
results_.back().op_kind = library::OperationKind::kConv2d;
|
744 |
+
results_.back().disposition = Disposition::kNotRun;
|
745 |
+
|
746 |
+
for(auto provider : verification_providers_) {
|
747 |
+
results_.back().verification_map[provider] = Disposition::kNotRun;
|
748 |
+
}
|
749 |
+
}
|
750 |
+
|
751 |
+
return status;
|
752 |
+
}
|
753 |
+
|
754 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
755 |
+
|
756 |
+
/// Verifies CUTLASS against references
|
757 |
+
bool Conv2dOperationProfiler::verify_cutlass(
|
758 |
+
Options const &options,
|
759 |
+
PerformanceReport &report,
|
760 |
+
DeviceContext &device_context,
|
761 |
+
library::Operation const *operation,
|
762 |
+
ProblemSpace const &problem_space,
|
763 |
+
ProblemSpace::Problem const &problem) {
|
764 |
+
|
765 |
+
if (!options.profiling.provider_enabled(library::Provider::kCUTLASS)) {
|
766 |
+
return true;
|
767 |
+
}
|
768 |
+
|
769 |
+
if (options.execution_mode == ExecutionMode::kDryRun) {
|
770 |
+
return true;
|
771 |
+
}
|
772 |
+
|
773 |
+
cudaError_t result;
|
774 |
+
|
775 |
+
// Initialize structure containing Conv2d arguments
|
776 |
+
conv_workspace_.arguments.A = conv_workspace_.A->data();
|
777 |
+
conv_workspace_.arguments.B = conv_workspace_.B->data();
|
778 |
+
conv_workspace_.arguments.C = conv_workspace_.C->data();
|
779 |
+
conv_workspace_.arguments.D = conv_workspace_.Computed->data();
|
780 |
+
conv_workspace_.arguments.alpha = problem_.alpha.data();
|
781 |
+
conv_workspace_.arguments.beta = problem_.beta.data();
|
782 |
+
conv_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
783 |
+
|
784 |
+
if (conv_workspace_.reordered_B != nullptr){
|
785 |
+
conv_workspace_.arguments.reordered_B = conv_workspace_.reordered_B->data();
|
786 |
+
}else{
|
787 |
+
conv_workspace_.arguments.reordered_B = nullptr;
|
788 |
+
}
|
789 |
+
|
790 |
+
conv_workspace_.Computed->copy_from_device(conv_workspace_.C->data());
|
791 |
+
|
792 |
+
if (conv_workspace_.configuration.split_k_mode == conv::SplitKMode::kParallel) {
|
793 |
+
// update library::ConvArguments for parallel split-k reduction
|
794 |
+
conv_workspace_.arguments.D = conv_workspace_.device_workspace.data();
|
795 |
+
conv_workspace_.arguments.alpha = problem_.alpha_one.data();
|
796 |
+
conv_workspace_.arguments.beta = problem_.beta_zero.data();
|
797 |
+
|
798 |
+
/// initialize library::ReductionArguments
|
799 |
+
conv_workspace_.reduction_arguments.workspace = conv_workspace_.device_workspace.data();
|
800 |
+
conv_workspace_.reduction_arguments.source = conv_workspace_.C->data();
|
801 |
+
conv_workspace_.reduction_arguments.destination = conv_workspace_.Computed->data();
|
802 |
+
conv_workspace_.reduction_arguments.alpha = problem_.alpha.data();
|
803 |
+
conv_workspace_.reduction_arguments.beta = problem_.beta.data();
|
804 |
+
conv_workspace_.reduction_arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
805 |
+
}
|
806 |
+
|
807 |
+
//
|
808 |
+
// Run the CUTLASS operation
|
809 |
+
//
|
810 |
+
// initialize conv2d underlying operation to handle parallel reduction
|
811 |
+
library::Operation const* underlying_operation = operation;
|
812 |
+
|
813 |
+
if(conv_workspace_.configuration.split_k_mode == conv::SplitKMode::kParallel) {
|
814 |
+
if (!(underlying_operation = library::find_conv_operation_for_parallel_reduction(operation))) {
|
815 |
+
results_.back().disposition = Disposition::kFailed;
|
816 |
+
return false;
|
817 |
+
}
|
818 |
+
}
|
819 |
+
|
820 |
+
#if 0
|
821 |
+
std::cout << "profiling : " << std::endl
|
822 |
+
<< "conv2d : " << operation->description().name << std::endl
|
823 |
+
<< "underlying conv2d : " << underlying_operation->description().name << std::endl
|
824 |
+
<< "reduction : " << reduction_op_->description().name << std::endl;
|
825 |
+
#endif
|
826 |
+
|
827 |
+
// run cutlass conv2d operation
|
828 |
+
results_.back().status = underlying_operation->run(
|
829 |
+
&conv_workspace_.arguments,
|
830 |
+
conv_workspace_.host_workspace.data(),
|
831 |
+
conv_workspace_.device_workspace.data());
|
832 |
+
|
833 |
+
if (results_.back().status != Status::kSuccess) {
|
834 |
+
results_.back().disposition = Disposition::kFailed;
|
835 |
+
return false;
|
836 |
+
}
|
837 |
+
|
838 |
+
// Run parallel reduction kernel for parallel split_k_mode
|
839 |
+
if (conv_workspace_.configuration.split_k_mode == conv::SplitKMode::kParallel) {
|
840 |
+
|
841 |
+
results_.back().status = reduction_op_->run(
|
842 |
+
&conv_workspace_.reduction_arguments,
|
843 |
+
conv_workspace_.reduction_host_workspace.data(),
|
844 |
+
nullptr);
|
845 |
+
|
846 |
+
if (results_.back().status != Status::kSuccess) {
|
847 |
+
results_.back().disposition = Disposition::kFailed;
|
848 |
+
return false;
|
849 |
+
}
|
850 |
+
|
851 |
+
}
|
852 |
+
|
853 |
+
// Synchronize before running device reference
|
854 |
+
result = cudaDeviceSynchronize();
|
855 |
+
if (result != cudaSuccess) {
|
856 |
+
results_.back().disposition = Disposition::kFailed;
|
857 |
+
return false;
|
858 |
+
}
|
859 |
+
|
860 |
+
// CUTLASS op ran the but not yet verified against any verification provider
|
861 |
+
results_.back().disposition = Disposition::kNotVerified;
|
862 |
+
|
863 |
+
//
|
864 |
+
// Run verification providers
|
865 |
+
//
|
866 |
+
|
867 |
+
if (options.verification.enabled) {
|
868 |
+
|
869 |
+
#if CUTLASS_ENABLE_CUDNN
|
870 |
+
// Run verification cudnn reference
|
871 |
+
if (options.verification.provider_enabled(library::Provider::kCUDNN)) {
|
872 |
+
|
873 |
+
// Guard against unsupported cases
|
874 |
+
auto const & conv_desc = static_cast<library::ConvDescription const &>(operation->description());
|
875 |
+
|
876 |
+
Status status = cudnn_satisfies(conv_desc, conv_workspace_.configuration);
|
877 |
+
|
878 |
+
// Initialize reference data to the source data
|
879 |
+
conv_workspace_.Reference->copy_from_device(conv_workspace_.C->data());
|
880 |
+
|
881 |
+
if (status == Status::kSuccess) {
|
882 |
+
// call cudnn verification if supported
|
883 |
+
verify_with_cudnn_(
|
884 |
+
options,
|
885 |
+
report,
|
886 |
+
device_context,
|
887 |
+
operation,
|
888 |
+
problem_space,
|
889 |
+
problem);
|
890 |
+
}
|
891 |
+
|
892 |
+
else if (status == Status::kErrorInvalidProblem) {
|
893 |
+
results_.back().verification_map[library::Provider::kCUDNN] = Disposition::kInvalidProblem;
|
894 |
+
}
|
895 |
+
|
896 |
+
else {
|
897 |
+
// set verification map for cudnn to not supported
|
898 |
+
results_.back().verification_map[library::Provider::kCUDNN] = Disposition::kNotSupported;
|
899 |
+
}
|
900 |
+
}
|
901 |
+
#endif // #if CUTLASS_ENABLE_CUDNN
|
902 |
+
|
903 |
+
// Run verification device reference
|
904 |
+
if (options.verification.provider_enabled(library::Provider::kReferenceDevice)) {
|
905 |
+
|
906 |
+
// Restore reference data back to initial source data
|
907 |
+
conv_workspace_.Reference->copy_from_device(conv_workspace_.C->data());
|
908 |
+
|
909 |
+
verify_with_device_reference_(
|
910 |
+
options,
|
911 |
+
report,
|
912 |
+
device_context,
|
913 |
+
operation,
|
914 |
+
problem_space,
|
915 |
+
problem);
|
916 |
+
}
|
917 |
+
|
918 |
+
// Run verification host reference
|
919 |
+
if (options.verification.provider_enabled(library::Provider::kReferenceHost)) {
|
920 |
+
|
921 |
+
// Restore reference data back to initial source data
|
922 |
+
conv_workspace_.Reference->copy_from_device(conv_workspace_.C->data());
|
923 |
+
|
924 |
+
verify_with_host_reference_(
|
925 |
+
options,
|
926 |
+
report,
|
927 |
+
device_context,
|
928 |
+
operation,
|
929 |
+
problem_space,
|
930 |
+
problem);
|
931 |
+
}
|
932 |
+
|
933 |
+
// Update disposition to worst case verification outcome among all
|
934 |
+
// verification providers which are supported
|
935 |
+
bool is_any_verification_run_passed = false;
|
936 |
+
for(auto &m : results_.back().verification_map) {
|
937 |
+
if(m.second == Disposition::kFailed || m.second == Disposition::kIncorrect) {
|
938 |
+
results_.back().disposition = m.second;
|
939 |
+
return true;
|
940 |
+
}
|
941 |
+
if(!is_any_verification_run_passed && m.second == Disposition::kPassed) {
|
942 |
+
is_any_verification_run_passed = true;
|
943 |
+
}
|
944 |
+
}
|
945 |
+
|
946 |
+
if(is_any_verification_run_passed) {
|
947 |
+
results_.back().disposition = Disposition::kPassed;
|
948 |
+
}
|
949 |
+
}
|
950 |
+
|
951 |
+
// Return true means continue profiling
|
952 |
+
return true;
|
953 |
+
}
|
954 |
+
|
955 |
+
|
956 |
+
/// Verifies CUTLASS against host reference
|
957 |
+
bool Conv2dOperationProfiler::verify_with_host_reference_(
|
958 |
+
Options const &options,
|
959 |
+
PerformanceReport &report,
|
960 |
+
DeviceContext &device_context,
|
961 |
+
library::Operation const *operation,
|
962 |
+
ProblemSpace const &problem_space,
|
963 |
+
ProblemSpace::Problem const &problem) {
|
964 |
+
|
965 |
+
Status status;
|
966 |
+
|
967 |
+
//
|
968 |
+
// Find host reference operation using conv2d functional description key
|
969 |
+
//
|
970 |
+
library::OperationDescription const &desc = operation->description();
|
971 |
+
|
972 |
+
auto &conv_desc = static_cast<library::ConvDescription const &>(desc);
|
973 |
+
|
974 |
+
library::ConvFunctionalKey conv2d_key(
|
975 |
+
library::Provider::kReferenceHost,
|
976 |
+
conv_desc.conv_kind,
|
977 |
+
conv_desc.A.element,
|
978 |
+
conv_desc.A.layout,
|
979 |
+
conv_desc.B.element,
|
980 |
+
conv_desc.B.layout,
|
981 |
+
conv_desc.C.element,
|
982 |
+
conv_desc.C.layout,
|
983 |
+
conv_desc.tile_description.math_instruction.element_accumulator,
|
984 |
+
conv_desc.element_epilogue);
|
985 |
+
|
986 |
+
#if 0 // debug print to check which host reference instance is selected
|
987 |
+
std::cout << conv2d_key << "\n";
|
988 |
+
#endif
|
989 |
+
|
990 |
+
auto operators_it = Singleton::get().operation_table.conv2d_operations.find(conv2d_key);
|
991 |
+
|
992 |
+
if(operators_it == Singleton::get().operation_table.conv2d_operations.end()) {
|
993 |
+
|
994 |
+
results_.back().verification_map[library::Provider::kReferenceHost] = Disposition::kNotRun;
|
995 |
+
return true;
|
996 |
+
}
|
997 |
+
|
998 |
+
// conv2d host reference minimum cc is 0 (CPU) and no iterator algorithm
|
999 |
+
library::ConvPreferenceKey preference_key(0, library::IteratorAlgorithmID::kNone);
|
1000 |
+
auto cc_it = operators_it->second.find(preference_key);
|
1001 |
+
|
1002 |
+
if(cc_it == operators_it->second.end()) {
|
1003 |
+
results_.back().verification_map[library::Provider::kReferenceHost] = Disposition::kNotRun;
|
1004 |
+
return true;
|
1005 |
+
}
|
1006 |
+
|
1007 |
+
// host reference has only one instances in Conv2dOperationVectorMap
|
1008 |
+
library::Operation const *reference_op = cc_it->second[0];
|
1009 |
+
|
1010 |
+
//
|
1011 |
+
// Copy input tensors A, B, and C from device to host buffers
|
1012 |
+
//
|
1013 |
+
conv_workspace_.host_tensor_a.resize(conv_workspace_.A->bytes());
|
1014 |
+
conv_workspace_.host_tensor_b.resize(conv_workspace_.B->bytes());
|
1015 |
+
conv_workspace_.host_tensor_c.resize(conv_workspace_.C->bytes());
|
1016 |
+
|
1017 |
+
conv_workspace_.A->copy_to_host(conv_workspace_.host_tensor_a.data());
|
1018 |
+
conv_workspace_.B->copy_to_host(conv_workspace_.host_tensor_b.data());
|
1019 |
+
conv_workspace_.C->copy_to_host(conv_workspace_.host_tensor_c.data());
|
1020 |
+
|
1021 |
+
//
|
1022 |
+
// Initialize structure containing Conv2d arguments
|
1023 |
+
//
|
1024 |
+
conv_workspace_.arguments.A = conv_workspace_.host_tensor_a.data();
|
1025 |
+
conv_workspace_.arguments.B = conv_workspace_.host_tensor_b.data();
|
1026 |
+
conv_workspace_.arguments.C = conv_workspace_.host_tensor_c.data();
|
1027 |
+
conv_workspace_.arguments.D = conv_workspace_.host_tensor_c.data();
|
1028 |
+
|
1029 |
+
conv_workspace_.arguments.alpha = problem_.alpha.data();
|
1030 |
+
conv_workspace_.arguments.beta = problem_.beta.data();
|
1031 |
+
conv_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
1032 |
+
|
1033 |
+
//
|
1034 |
+
// Initialize host reference operation
|
1035 |
+
//
|
1036 |
+
std::vector<uint8_t> host_workspace_reference_op;
|
1037 |
+
|
1038 |
+
uint64_t workspace_size = reference_op->get_host_workspace_size(&conv_workspace_.configuration);
|
1039 |
+
host_workspace_reference_op.resize(workspace_size, 0);
|
1040 |
+
|
1041 |
+
reference_op->initialize(
|
1042 |
+
&conv_workspace_.configuration,
|
1043 |
+
host_workspace_reference_op.data());
|
1044 |
+
|
1045 |
+
//
|
1046 |
+
// Run host reference operation
|
1047 |
+
//
|
1048 |
+
status = reference_op->run(
|
1049 |
+
&conv_workspace_.arguments,
|
1050 |
+
host_workspace_reference_op.data());
|
1051 |
+
|
1052 |
+
// Handle errors
|
1053 |
+
if (status != Status::kSuccess) {
|
1054 |
+
results_.back().verification_map[library::Provider::kReferenceHost] = Disposition::kNotVerified;
|
1055 |
+
return true;
|
1056 |
+
}
|
1057 |
+
|
1058 |
+
//
|
1059 |
+
// Copy host reference output to device memory for equality check on device
|
1060 |
+
//
|
1061 |
+
conv_workspace_.Reference->copy_from_host(conv_workspace_.arguments.D);
|
1062 |
+
|
1063 |
+
//
|
1064 |
+
// Verify results
|
1065 |
+
//
|
1066 |
+
results_.back().verification_map[library::Provider::kReferenceHost] = compare_tensors(
|
1067 |
+
options,
|
1068 |
+
*conv_workspace_.Computed,
|
1069 |
+
*conv_workspace_.Reference,
|
1070 |
+
conv_workspace_.Computed->batch_stride()
|
1071 |
+
);
|
1072 |
+
|
1073 |
+
// Save workspace if incorrect
|
1074 |
+
if (options.verification.save_workspace == SaveWorkspace::kIncorrect &&
|
1075 |
+
results_.back().verification_map[library::Provider::kReferenceHost] == Disposition::kIncorrect) {
|
1076 |
+
|
1077 |
+
save_workspace(
|
1078 |
+
device_context,
|
1079 |
+
options,
|
1080 |
+
static_cast<library::ConvDescription const &>(operation->description()),
|
1081 |
+
library::Provider::kCUTLASS,
|
1082 |
+
library::Provider::kReferenceHost);
|
1083 |
+
}
|
1084 |
+
|
1085 |
+
// Return true means continue profiling
|
1086 |
+
return true;
|
1087 |
+
}
|
1088 |
+
|
1089 |
+
|
1090 |
+
/// Verifies CUTLASS against host reference
|
1091 |
+
bool Conv2dOperationProfiler::verify_with_device_reference_(
|
1092 |
+
Options const &options,
|
1093 |
+
PerformanceReport &report,
|
1094 |
+
DeviceContext &device_context,
|
1095 |
+
library::Operation const *operation,
|
1096 |
+
ProblemSpace const &problem_space,
|
1097 |
+
ProblemSpace::Problem const &problem) {
|
1098 |
+
|
1099 |
+
Status status;
|
1100 |
+
|
1101 |
+
//
|
1102 |
+
// Find device reference operation using conv2d functional description key
|
1103 |
+
//
|
1104 |
+
library::OperationDescription const &desc = operation->description();
|
1105 |
+
|
1106 |
+
auto &conv_desc = static_cast<library::ConvDescription const &>(desc);
|
1107 |
+
|
1108 |
+
library::ConvFunctionalKey conv2d_key(
|
1109 |
+
library::Provider::kReferenceDevice,
|
1110 |
+
conv_desc.conv_kind,
|
1111 |
+
conv_desc.A.element,
|
1112 |
+
conv_desc.A.layout,
|
1113 |
+
conv_desc.B.element,
|
1114 |
+
conv_desc.B.layout,
|
1115 |
+
conv_desc.C.element,
|
1116 |
+
conv_desc.C.layout,
|
1117 |
+
conv_desc.tile_description.math_instruction.element_accumulator,
|
1118 |
+
conv_desc.element_epilogue);
|
1119 |
+
|
1120 |
+
auto operators_it = Singleton::get().operation_table.conv2d_operations.find(conv2d_key);
|
1121 |
+
|
1122 |
+
if(operators_it == Singleton::get().operation_table.conv2d_operations.end()) {
|
1123 |
+
|
1124 |
+
results_.back().verification_map[library::Provider::kReferenceDevice] = Disposition::kNotRun;
|
1125 |
+
|
1126 |
+
return true;
|
1127 |
+
}
|
1128 |
+
|
1129 |
+
// conv2d device reference minimum cc is 50 and no iterator algorithm
|
1130 |
+
library::ConvPreferenceKey preference_key(50, library::IteratorAlgorithmID::kNone);
|
1131 |
+
auto cc_it = operators_it->second.find(preference_key);
|
1132 |
+
|
1133 |
+
if(cc_it == operators_it->second.end()) {
|
1134 |
+
results_.back().verification_map[library::Provider::kReferenceDevice] = Disposition::kNotRun;
|
1135 |
+
|
1136 |
+
return true;
|
1137 |
+
}
|
1138 |
+
|
1139 |
+
// device reference has only one instances in Conv2dOperationVectorMap
|
1140 |
+
library::Operation const *reference_op = cc_it->second[0];
|
1141 |
+
|
1142 |
+
//
|
1143 |
+
// Initialize device reference operation
|
1144 |
+
//
|
1145 |
+
std::vector<uint8_t> host_workspace_reference_op;
|
1146 |
+
|
1147 |
+
uint64_t workspace_size = reference_op->get_host_workspace_size(&conv_workspace_.configuration);
|
1148 |
+
host_workspace_reference_op.resize(workspace_size, 0);
|
1149 |
+
|
1150 |
+
reference_op->initialize(
|
1151 |
+
&conv_workspace_.configuration,
|
1152 |
+
host_workspace_reference_op.data());
|
1153 |
+
|
1154 |
+
// Initialize structure containing Conv2d arguments
|
1155 |
+
conv_workspace_.arguments.A = conv_workspace_.A->data();
|
1156 |
+
conv_workspace_.arguments.B = conv_workspace_.B->data();
|
1157 |
+
conv_workspace_.arguments.C = conv_workspace_.C->data();
|
1158 |
+
conv_workspace_.arguments.D = conv_workspace_.Reference->data();
|
1159 |
+
conv_workspace_.arguments.alpha = problem_.alpha.data();
|
1160 |
+
conv_workspace_.arguments.beta = problem_.beta.data();
|
1161 |
+
conv_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
1162 |
+
|
1163 |
+
//
|
1164 |
+
// Run device reference operation
|
1165 |
+
//
|
1166 |
+
status = reference_op->run(
|
1167 |
+
&conv_workspace_.arguments,
|
1168 |
+
host_workspace_reference_op.data());
|
1169 |
+
|
1170 |
+
|
1171 |
+
// Handle errors
|
1172 |
+
if (status != Status::kSuccess) {
|
1173 |
+
results_.back().verification_map[library::Provider::kReferenceDevice] = Disposition::kNotVerified;
|
1174 |
+
return true;
|
1175 |
+
}
|
1176 |
+
|
1177 |
+
//
|
1178 |
+
// Verify results
|
1179 |
+
//
|
1180 |
+
results_.back().verification_map[library::Provider::kReferenceDevice] = compare_tensors(
|
1181 |
+
options,
|
1182 |
+
*conv_workspace_.Computed,
|
1183 |
+
*conv_workspace_.Reference,
|
1184 |
+
conv_workspace_.Computed->batch_stride()
|
1185 |
+
);
|
1186 |
+
|
1187 |
+
// Save workspace if incorrect
|
1188 |
+
if (options.verification.save_workspace == SaveWorkspace::kIncorrect &&
|
1189 |
+
results_.back().verification_map[library::Provider::kReferenceDevice] == Disposition::kIncorrect) {
|
1190 |
+
|
1191 |
+
save_workspace(
|
1192 |
+
device_context,
|
1193 |
+
options,
|
1194 |
+
static_cast<library::ConvDescription const &>(operation->description()),
|
1195 |
+
library::Provider::kCUTLASS,
|
1196 |
+
library::Provider::kReferenceDevice);
|
1197 |
+
}
|
1198 |
+
|
1199 |
+
// Return true means continue profiling
|
1200 |
+
return true;
|
1201 |
+
}
|
1202 |
+
|
1203 |
+
/// Measures performance results
|
1204 |
+
bool Conv2dOperationProfiler::profile(
|
1205 |
+
Options const &options,
|
1206 |
+
PerformanceReport &report,
|
1207 |
+
DeviceContext &device_context,
|
1208 |
+
library::Operation const *operation,
|
1209 |
+
ProblemSpace const &problem_space,
|
1210 |
+
ProblemSpace::Problem const &problem) {
|
1211 |
+
|
1212 |
+
|
1213 |
+
if (options.profiling.provider_enabled(library::Provider::kCUTLASS)) {
|
1214 |
+
|
1215 |
+
// Initialize structure containing Conv2d arguments
|
1216 |
+
conv_workspace_.arguments.A = conv_workspace_.A->data();
|
1217 |
+
conv_workspace_.arguments.B = conv_workspace_.B->data();
|
1218 |
+
conv_workspace_.arguments.C = conv_workspace_.C->data();
|
1219 |
+
conv_workspace_.arguments.D = conv_workspace_.Computed->data();
|
1220 |
+
conv_workspace_.arguments.alpha = problem_.alpha.data();
|
1221 |
+
conv_workspace_.arguments.beta = problem_.beta.data();
|
1222 |
+
conv_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
1223 |
+
|
1224 |
+
if (conv_workspace_.configuration.split_k_mode == conv::SplitKMode::kParallel) {
|
1225 |
+
// update library::ConvArguments for parallel split-k reduction
|
1226 |
+
conv_workspace_.arguments.D = conv_workspace_.device_workspace.data();
|
1227 |
+
conv_workspace_.arguments.alpha = problem_.alpha_one.data();
|
1228 |
+
conv_workspace_.arguments.beta = problem_.beta_zero.data();
|
1229 |
+
|
1230 |
+
/// initialize library::ReductionArguments
|
1231 |
+
conv_workspace_.reduction_arguments.workspace = conv_workspace_.device_workspace.data();
|
1232 |
+
conv_workspace_.reduction_arguments.source = conv_workspace_.C->data();
|
1233 |
+
conv_workspace_.reduction_arguments.destination = conv_workspace_.Computed->data();
|
1234 |
+
conv_workspace_.reduction_arguments.alpha = problem_.alpha.data();
|
1235 |
+
conv_workspace_.reduction_arguments.beta = problem_.beta.data();
|
1236 |
+
conv_workspace_.reduction_arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
1237 |
+
}
|
1238 |
+
|
1239 |
+
results_.back().status = profile_cutlass_(
|
1240 |
+
results_.back().runtime,
|
1241 |
+
options,
|
1242 |
+
operation,
|
1243 |
+
&conv_workspace_.arguments,
|
1244 |
+
conv_workspace_.host_workspace.data(),
|
1245 |
+
conv_workspace_.device_workspace.data()
|
1246 |
+
);
|
1247 |
+
}
|
1248 |
+
return true;
|
1249 |
+
|
1250 |
+
}
|
1251 |
+
|
1252 |
+
/// Method to profile a CUTLASS Operation
|
1253 |
+
Status Conv2dOperationProfiler::profile_cutlass_(
|
1254 |
+
double &runtime,
|
1255 |
+
Options const &options,
|
1256 |
+
library::Operation const *operation,
|
1257 |
+
void *arguments,
|
1258 |
+
void *host_workspace,
|
1259 |
+
void *device_workspace) {
|
1260 |
+
|
1261 |
+
GpuTimer timer;
|
1262 |
+
|
1263 |
+
// initialize conv2d underlying operation to handle parallel reduction
|
1264 |
+
library::Operation const* underlying_operation = operation;
|
1265 |
+
|
1266 |
+
library::ConvArguments *conv_arguments = static_cast<library::ConvArguments *>(arguments);
|
1267 |
+
|
1268 |
+
if(conv_workspace_.configuration.split_k_mode == conv::SplitKMode::kParallel) {
|
1269 |
+
if (!(underlying_operation = library::find_conv_operation_for_parallel_reduction(operation))) {
|
1270 |
+
return Status::kErrorNotSupported;
|
1271 |
+
}
|
1272 |
+
}
|
1273 |
+
|
1274 |
+
//
|
1275 |
+
// Optional sleep to limit power consumption and thermals
|
1276 |
+
//
|
1277 |
+
|
1278 |
+
sleep(options.profiling.sleep_duration);
|
1279 |
+
|
1280 |
+
//
|
1281 |
+
// Warmup loop
|
1282 |
+
//
|
1283 |
+
|
1284 |
+
Status status;
|
1285 |
+
|
1286 |
+
for (int iteration = 0; iteration < options.profiling.warmup_iterations; ++iteration) {
|
1287 |
+
|
1288 |
+
// Setup rotating workspace
|
1289 |
+
int workspace_idx = options.profiling.warmup_iterations + iteration;
|
1290 |
+
int problem_idx = (workspace_idx % conv_workspace_.problem_count);
|
1291 |
+
|
1292 |
+
conv_arguments->A = conv_workspace_.A->batch_data(problem_idx);
|
1293 |
+
conv_arguments->B = conv_workspace_.B->batch_data(problem_idx);
|
1294 |
+
conv_arguments->C = conv_workspace_.C->batch_data(problem_idx);
|
1295 |
+
conv_arguments->D = conv_workspace_.Computed->batch_data(problem_idx);
|
1296 |
+
|
1297 |
+
if (conv_workspace_.configuration.split_k_mode == conv::SplitKMode::kParallel) {
|
1298 |
+
// update library::ConvArguments for parallel split-k reduction
|
1299 |
+
conv_arguments->D = conv_workspace_.device_workspace.data();
|
1300 |
+
|
1301 |
+
/// initialize library::ReductionArguments
|
1302 |
+
conv_workspace_.reduction_arguments.workspace = conv_workspace_.device_workspace.data();
|
1303 |
+
conv_workspace_.reduction_arguments.source = conv_workspace_.C->batch_data(problem_idx);
|
1304 |
+
conv_workspace_.reduction_arguments.destination = conv_workspace_.Computed->batch_data(problem_idx);
|
1305 |
+
}
|
1306 |
+
|
1307 |
+
// Run underlying conv2d operation
|
1308 |
+
status = underlying_operation->run(
|
1309 |
+
arguments,
|
1310 |
+
host_workspace,
|
1311 |
+
device_workspace);
|
1312 |
+
|
1313 |
+
// Run parallel reduction kernel for parallel split_k_mode
|
1314 |
+
if (conv_workspace_.configuration.split_k_mode == conv::SplitKMode::kParallel) {
|
1315 |
+
|
1316 |
+
status = reduction_op_->run(
|
1317 |
+
&conv_workspace_.reduction_arguments,
|
1318 |
+
conv_workspace_.reduction_host_workspace.data(),
|
1319 |
+
nullptr);
|
1320 |
+
}
|
1321 |
+
|
1322 |
+
if (status != Status::kSuccess) {
|
1323 |
+
return status;
|
1324 |
+
}
|
1325 |
+
}
|
1326 |
+
|
1327 |
+
//
|
1328 |
+
// Initialize GPU timer
|
1329 |
+
//
|
1330 |
+
|
1331 |
+
timer.start();
|
1332 |
+
|
1333 |
+
//
|
1334 |
+
// Profiling loop
|
1335 |
+
//
|
1336 |
+
|
1337 |
+
int Iterations = options.profiling.iterations;
|
1338 |
+
|
1339 |
+
int iteration = 0;
|
1340 |
+
for (; iteration < Iterations; ++iteration) {
|
1341 |
+
|
1342 |
+
// Setup rotating workspace
|
1343 |
+
int problem_idx = (iteration % conv_workspace_.problem_count);
|
1344 |
+
|
1345 |
+
conv_arguments->A = conv_workspace_.A->batch_data(problem_idx);
|
1346 |
+
conv_arguments->B = conv_workspace_.B->batch_data(problem_idx);
|
1347 |
+
conv_arguments->C = conv_workspace_.C->batch_data(problem_idx);
|
1348 |
+
conv_arguments->D = conv_workspace_.Computed->batch_data(problem_idx);
|
1349 |
+
|
1350 |
+
if (conv_workspace_.configuration.split_k_mode == conv::SplitKMode::kParallel) {
|
1351 |
+
// update library::ConvArguments for parallel split-k reduction
|
1352 |
+
conv_arguments->D = conv_workspace_.device_workspace.data();
|
1353 |
+
|
1354 |
+
/// initialize library::ReductionArguments
|
1355 |
+
conv_workspace_.reduction_arguments.workspace = conv_workspace_.device_workspace.data();
|
1356 |
+
conv_workspace_.reduction_arguments.source = conv_workspace_.C->batch_data(problem_idx);
|
1357 |
+
conv_workspace_.reduction_arguments.destination = conv_workspace_.Computed->batch_data(problem_idx);
|
1358 |
+
}
|
1359 |
+
|
1360 |
+
// Run underlying conv2d operation
|
1361 |
+
status = underlying_operation->run(
|
1362 |
+
arguments,
|
1363 |
+
host_workspace,
|
1364 |
+
device_workspace);
|
1365 |
+
|
1366 |
+
// Run parallel reduction kernel for parallel split_k_mode
|
1367 |
+
if (conv_workspace_.configuration.split_k_mode == conv::SplitKMode::kParallel) {
|
1368 |
+
|
1369 |
+
status = reduction_op_->run(
|
1370 |
+
&conv_workspace_.reduction_arguments,
|
1371 |
+
conv_workspace_.reduction_host_workspace.data(),
|
1372 |
+
nullptr);
|
1373 |
+
}
|
1374 |
+
|
1375 |
+
if (status != Status::kSuccess) {
|
1376 |
+
return status;
|
1377 |
+
}
|
1378 |
+
}
|
1379 |
+
|
1380 |
+
//
|
1381 |
+
// Wait for completion
|
1382 |
+
//
|
1383 |
+
|
1384 |
+
timer.stop_and_wait();
|
1385 |
+
|
1386 |
+
//
|
1387 |
+
// Update performance result
|
1388 |
+
//
|
1389 |
+
|
1390 |
+
runtime = timer.duration(iteration);
|
1391 |
+
|
1392 |
+
return status;
|
1393 |
+
}
|
1394 |
+
|
1395 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
1396 |
+
#if CUTLASS_ENABLE_CUDNN
|
1397 |
+
|
1398 |
+
/// Verifies CUTLASS against cudnn reference
|
1399 |
+
bool Conv2dOperationProfiler::verify_with_cudnn_(
|
1400 |
+
Options const &options,
|
1401 |
+
PerformanceReport &report,
|
1402 |
+
DeviceContext &device_context,
|
1403 |
+
library::Operation const *operation,
|
1404 |
+
ProblemSpace const &problem_space,
|
1405 |
+
ProblemSpace::Problem const &problem) {
|
1406 |
+
|
1407 |
+
auto &conv_desc = static_cast<library::ConvDescription const &>(operation->description());
|
1408 |
+
|
1409 |
+
//
|
1410 |
+
// Construct cudnn operators
|
1411 |
+
//
|
1412 |
+
|
1413 |
+
CudnnCreate handle;
|
1414 |
+
cudnnStatus_t status = handle.get_cudnn_create_status();
|
1415 |
+
|
1416 |
+
if (status != CUDNN_STATUS_SUCCESS) {
|
1417 |
+
|
1418 |
+
results_.back().verification_map[library::Provider::kCUDNN] = get_cutlass_disposition(status);
|
1419 |
+
return true;
|
1420 |
+
}
|
1421 |
+
|
1422 |
+
//
|
1423 |
+
// Initialize state
|
1424 |
+
//
|
1425 |
+
|
1426 |
+
// Initialize structure containing Conv2d arguments
|
1427 |
+
conv_workspace_.arguments.A = conv_workspace_.A->data();
|
1428 |
+
conv_workspace_.arguments.B = conv_workspace_.B->data();
|
1429 |
+
conv_workspace_.arguments.D = conv_workspace_.Reference->data();
|
1430 |
+
conv_workspace_.arguments.alpha = problem_.alpha.data();
|
1431 |
+
conv_workspace_.arguments.beta = problem_.beta.data();
|
1432 |
+
conv_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
1433 |
+
|
1434 |
+
// cuDNN does not support four tensor arguments, so we copy the tensor C data into
|
1435 |
+
// tensor D.
|
1436 |
+
conv_workspace_.Reference->copy_from_device(conv_workspace_.C->data());
|
1437 |
+
conv_workspace_.arguments.C = conv_workspace_.arguments.D;
|
1438 |
+
|
1439 |
+
try {
|
1440 |
+
|
1441 |
+
//
|
1442 |
+
// Construct dispatcher to cudnn operator
|
1443 |
+
//
|
1444 |
+
|
1445 |
+
detail::cudnnConvDispatcher conv_op(
|
1446 |
+
conv_desc,
|
1447 |
+
conv_workspace_.configuration,
|
1448 |
+
conv_workspace_.arguments,
|
1449 |
+
handle
|
1450 |
+
);
|
1451 |
+
|
1452 |
+
if (conv_op.status != Status::kSuccess) {
|
1453 |
+
if (conv_op.status == Status::kErrorNotSupported) {
|
1454 |
+
results_.back().verification_map[library::Provider::kCUDNN] = Disposition::kNotSupported;
|
1455 |
+
|
1456 |
+
} else {
|
1457 |
+
results_.back().verification_map[library::Provider::kCUDNN] = Disposition::kFailed;
|
1458 |
+
}
|
1459 |
+
return true;
|
1460 |
+
}
|
1461 |
+
|
1462 |
+
|
1463 |
+
status = conv_op(handle);
|
1464 |
+
|
1465 |
+
// Handle errors
|
1466 |
+
if (status != CUDNN_STATUS_SUCCESS) {
|
1467 |
+
|
1468 |
+
results_.back().verification_map[library::Provider::kCUDNN] = get_cutlass_disposition(status);
|
1469 |
+
return true;
|
1470 |
+
}
|
1471 |
+
|
1472 |
+
//
|
1473 |
+
// Verify results
|
1474 |
+
//
|
1475 |
+
|
1476 |
+
results_.back().verification_map[library::Provider::kCUDNN] = compare_tensors(
|
1477 |
+
options,
|
1478 |
+
*conv_workspace_.Computed,
|
1479 |
+
*conv_workspace_.Reference,
|
1480 |
+
conv_workspace_.Computed->batch_stride()
|
1481 |
+
);
|
1482 |
+
|
1483 |
+
// Save workspace if incorrect
|
1484 |
+
if (options.verification.save_workspace == SaveWorkspace::kIncorrect &&
|
1485 |
+
results_.back().verification_map[library::Provider::kCUDNN] == Disposition::kIncorrect) {
|
1486 |
+
|
1487 |
+
save_workspace(
|
1488 |
+
device_context,
|
1489 |
+
options,
|
1490 |
+
conv_desc,
|
1491 |
+
library::Provider::kCUTLASS,
|
1492 |
+
library::Provider::kCUDNN);
|
1493 |
+
}
|
1494 |
+
}
|
1495 |
+
catch (...) {
|
1496 |
+
results_.back().verification_map[library::Provider::kCUDNN] = Disposition::kFailed;
|
1497 |
+
}
|
1498 |
+
|
1499 |
+
// Return true means continue profiling
|
1500 |
+
return true;
|
1501 |
+
}
|
1502 |
+
|
1503 |
+
#endif // #if CUTLASS_ENABLE_CUDNN
|
1504 |
+
|
1505 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
1506 |
+
|
1507 |
+
} // namespace profiler
|
1508 |
+
} // namespace cutlass
|
1509 |
+
|
1510 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/cudnn_helpers.cpp
ADDED
@@ -0,0 +1,496 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief Helper functions for mapping CUTLASS concepts to cuDNN.
|
33 |
+
*/
|
34 |
+
#if CUTLASS_ENABLE_CUDNN
|
35 |
+
|
36 |
+
#include <stdexcept>
|
37 |
+
|
38 |
+
#include "cutlass/profiler/cudnn_helpers.h"
|
39 |
+
|
40 |
+
namespace cutlass {
|
41 |
+
namespace profiler {
|
42 |
+
|
43 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
44 |
+
/// Converts a cuDNN status to cutlass::Status
|
45 |
+
Status get_cutlass_status(cudnnStatus_t cudnn_status) {
|
46 |
+
|
47 |
+
if (cudnn_status == CUDNN_STATUS_SUCCESS) {
|
48 |
+
return Status::kSuccess;
|
49 |
+
}
|
50 |
+
else if (cudnn_status == CUDNN_STATUS_INVALID_VALUE) {
|
51 |
+
return Status::kErrorInvalidProblem;
|
52 |
+
}
|
53 |
+
if (cudnn_status == CUDNN_STATUS_NOT_SUPPORTED) {
|
54 |
+
return Status::kErrorNotSupported;
|
55 |
+
}
|
56 |
+
return Status::kErrorInternal;
|
57 |
+
}
|
58 |
+
|
59 |
+
/// Converts a cuDNN status to cutlass::profiler::Disposition
|
60 |
+
Disposition get_cutlass_disposition(cudnnStatus_t cudnn_status) {
|
61 |
+
|
62 |
+
if (cudnn_status == CUDNN_STATUS_INVALID_VALUE) {
|
63 |
+
return Disposition::kInvalidProblem;
|
64 |
+
}
|
65 |
+
else if (cudnn_status == CUDNN_STATUS_NOT_SUPPORTED) {
|
66 |
+
return Disposition::kNotSupported;
|
67 |
+
}
|
68 |
+
return Disposition::kFailed;
|
69 |
+
}
|
70 |
+
|
71 |
+
/// Checks cudnnStatus_t converts to cutlas status and returns if Status::kSuccess o.w. throws exception
|
72 |
+
Status checkCudnnErr(cudnnStatus_t cudnn_status) {
|
73 |
+
Status cutlass_status = get_cutlass_status(cudnn_status);
|
74 |
+
if(cutlass_status != Status::kSuccess) {
|
75 |
+
throw std::runtime_error("checkCudnnErr failed");
|
76 |
+
}
|
77 |
+
return cutlass_status;
|
78 |
+
}
|
79 |
+
|
80 |
+
/// Maps a CUTLASS conv mode to a cuDNN cudnnConvolutionMode_t
|
81 |
+
bool get_cudnn_conv_mode(cudnnConvolutionMode_t &cudnn_conv_mode, conv::Mode conv_mode) {
|
82 |
+
switch (conv_mode) {
|
83 |
+
case conv::Mode::kCrossCorrelation:
|
84 |
+
cudnn_conv_mode = CUDNN_CROSS_CORRELATION;
|
85 |
+
return true;
|
86 |
+
case conv::Mode::kConvolution:
|
87 |
+
cudnn_conv_mode = CUDNN_CONVOLUTION;
|
88 |
+
return true;
|
89 |
+
default: break;
|
90 |
+
}
|
91 |
+
return false;
|
92 |
+
}
|
93 |
+
|
94 |
+
/// Maps a CUTLASS tensor layout to a cuDNN cudnnTensorFormat_t
|
95 |
+
bool get_cudnn_layout(cudnnTensorFormat_t &cudnn_layout, library::LayoutTypeID layout) {
|
96 |
+
switch (layout) {
|
97 |
+
// cudnn uses the same enum for TensorNC*HW along nDim (ConvDescription::conv_dim)
|
98 |
+
case library::LayoutTypeID::kTensorNCHW:
|
99 |
+
case library::LayoutTypeID::kTensorNCDHW:
|
100 |
+
cudnn_layout = CUDNN_TENSOR_NCHW;
|
101 |
+
return true;
|
102 |
+
case library::LayoutTypeID::kTensorNHWC:
|
103 |
+
case library::LayoutTypeID::kTensorNDHWC:
|
104 |
+
cudnn_layout = CUDNN_TENSOR_NHWC;
|
105 |
+
return true;
|
106 |
+
default: break;
|
107 |
+
}
|
108 |
+
return false;
|
109 |
+
}
|
110 |
+
|
111 |
+
/// Maps a CUTLASS numeric type to a cuDNN cudnnDataType_t
|
112 |
+
bool get_cudnn_datatype(cudnnDataType_t &cudnn_element_type, library::NumericTypeID element_type) {
|
113 |
+
switch (element_type) {
|
114 |
+
case library::NumericTypeID::kF16:
|
115 |
+
cudnn_element_type = CUDNN_DATA_HALF;
|
116 |
+
return true;
|
117 |
+
|
118 |
+
case library::NumericTypeID::kF32:
|
119 |
+
cudnn_element_type = CUDNN_DATA_FLOAT;
|
120 |
+
return true;
|
121 |
+
|
122 |
+
case library::NumericTypeID::kF64:
|
123 |
+
cudnn_element_type = CUDNN_DATA_DOUBLE;
|
124 |
+
return true;
|
125 |
+
|
126 |
+
case library::NumericTypeID::kS2:
|
127 |
+
break;
|
128 |
+
|
129 |
+
case library::NumericTypeID::kS4:
|
130 |
+
break;
|
131 |
+
|
132 |
+
case library::NumericTypeID::kS8:
|
133 |
+
cudnn_element_type = CUDNN_DATA_INT8;
|
134 |
+
return true;
|
135 |
+
|
136 |
+
case library::NumericTypeID::kS16:
|
137 |
+
break;
|
138 |
+
|
139 |
+
case library::NumericTypeID::kS32:
|
140 |
+
cudnn_element_type = CUDNN_DATA_INT32;
|
141 |
+
return true;
|
142 |
+
|
143 |
+
case library::NumericTypeID::kS64:
|
144 |
+
break;
|
145 |
+
|
146 |
+
case library::NumericTypeID::kU2:
|
147 |
+
break;
|
148 |
+
|
149 |
+
case library::NumericTypeID::kU4:
|
150 |
+
break;
|
151 |
+
|
152 |
+
case library::NumericTypeID::kU8:
|
153 |
+
cudnn_element_type = CUDNN_DATA_UINT8;
|
154 |
+
return true;
|
155 |
+
|
156 |
+
case library::NumericTypeID::kU16:
|
157 |
+
break;
|
158 |
+
|
159 |
+
case library::NumericTypeID::kU32:
|
160 |
+
break;
|
161 |
+
|
162 |
+
case library::NumericTypeID::kU64:
|
163 |
+
break;
|
164 |
+
|
165 |
+
case library::NumericTypeID::kB1:
|
166 |
+
break;
|
167 |
+
|
168 |
+
case library::NumericTypeID::kInvalid:
|
169 |
+
|
170 |
+
default:
|
171 |
+
break;
|
172 |
+
}
|
173 |
+
|
174 |
+
return false;
|
175 |
+
}
|
176 |
+
|
177 |
+
/// Maps CUTLASS math OpcodeClassID and MathOperationID to cuDNN math_type
|
178 |
+
bool get_cudnn_mathtype(cudnnMathType_t &cudnn_math_type, library::ConvDescription const &conv_desc) {
|
179 |
+
|
180 |
+
switch (conv_desc.tile_description.math_instruction.opcode_class) {
|
181 |
+
|
182 |
+
case library::OpcodeClassID::kTensorOp:
|
183 |
+
{
|
184 |
+
cudnn_math_type = CUDNN_TENSOR_OP_MATH;
|
185 |
+
|
186 |
+
library::MathOperationID math_op = conv_desc.tile_description.math_instruction.math_operation;
|
187 |
+
|
188 |
+
// Allow conversion on input data type for fast math operations
|
189 |
+
if (math_op == library::MathOperationID::kMultiplyAddFastF16 ||
|
190 |
+
math_op == library::MathOperationID::kMultiplyAddFastBF16)
|
191 |
+
{
|
192 |
+
cudnn_math_type = CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION;
|
193 |
+
}
|
194 |
+
|
195 |
+
return true;
|
196 |
+
}
|
197 |
+
case library::OpcodeClassID::kSimt:
|
198 |
+
#if (defined(CUDNN_VERSION) && CUDNN_VERSION <= 8000)
|
199 |
+
cudnn_math_type = CUDNN_DEFAULT_MATH;
|
200 |
+
#else
|
201 |
+
cudnn_math_type = CUDNN_FMA_MATH;
|
202 |
+
#endif
|
203 |
+
return true;
|
204 |
+
}
|
205 |
+
|
206 |
+
return false;
|
207 |
+
}
|
208 |
+
|
209 |
+
/// Cudnn compute type seems to be hardcoded to float (To handle a possible cudnn issue)
|
210 |
+
float cast_cudnn_compute_type_to_float(library::NumericTypeID type, void const * src) {
|
211 |
+
|
212 |
+
switch (type) {
|
213 |
+
case library::NumericTypeID::kF16:
|
214 |
+
{
|
215 |
+
return float(*(static_cast<half_t const*>(src)));
|
216 |
+
}
|
217 |
+
case library::NumericTypeID::kF32:
|
218 |
+
{
|
219 |
+
return float(*(static_cast<float const*>(src)));
|
220 |
+
}
|
221 |
+
case library::NumericTypeID::kS32:
|
222 |
+
{
|
223 |
+
return float(*(static_cast<int const*>(src)));
|
224 |
+
}
|
225 |
+
default:
|
226 |
+
throw std::runtime_error("Data type handled in cast_compute_type_to_float");
|
227 |
+
}
|
228 |
+
}
|
229 |
+
|
230 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
231 |
+
/// Returns a status if cuDNN can satisfy a particular Conv2d description
|
232 |
+
Status cudnn_satisfies(
|
233 |
+
library::ConvDescription const &desc,
|
234 |
+
library::Conv2dConfiguration const &configuration) {
|
235 |
+
|
236 |
+
auto const &a_tensor = desc.A;
|
237 |
+
auto const &b_tensor = desc.B;
|
238 |
+
auto const &c_tensor = desc.C;
|
239 |
+
auto const &math_instruction = desc.tile_description.math_instruction;
|
240 |
+
|
241 |
+
if(a_tensor.element != b_tensor.element) {
|
242 |
+
return Status::kErrorInvalidDataType;
|
243 |
+
}
|
244 |
+
|
245 |
+
//////////////////////// Convolution output dimensions p and q ///////////////////////
|
246 |
+
// Cutlass convolutions support arbitrary output dimensions and not constrained by //
|
247 |
+
// input, filter, padding, striding, dilation sizes. //
|
248 |
+
// cuDNN sets the output dimensions (p, q) using following equations: //
|
249 |
+
// //
|
250 |
+
// output = div_up(input + 2 * pad - ((filter - 1) * dilation + 1) + 1, stride) //
|
251 |
+
// where; div_up(a, b) : (a - 1)/b + 1 //
|
252 |
+
// //
|
253 |
+
// Before launching cudnn verification or profiling check that output p and q //
|
254 |
+
// dimensions are cuDNN compliant. //
|
255 |
+
// //
|
256 |
+
// If user sets output p and q which do not follow above constraints, cutlass conv, //
|
257 |
+
// host reference, device reference can run. However, cudnn convolution returns //
|
258 |
+
// "Invalid problem" //
|
259 |
+
// //
|
260 |
+
///////////////////////////////////////////////////////////////////////////////////////
|
261 |
+
|
262 |
+
// check conv output dimension p for cudnn
|
263 |
+
int cudnn_output_p =
|
264 |
+
(
|
265 |
+
(
|
266 |
+
configuration.problem_size.H +
|
267 |
+
2 * configuration.problem_size.pad_h -
|
268 |
+
((configuration.problem_size.R - 1) *
|
269 |
+
configuration.problem_size.dilation_h + 1)
|
270 |
+
) /
|
271 |
+
(configuration.problem_size.stride_h)
|
272 |
+
+ 1
|
273 |
+
);
|
274 |
+
|
275 |
+
if (cudnn_output_p != configuration.problem_size.P) {
|
276 |
+
return Status::kErrorInvalidProblem;
|
277 |
+
}
|
278 |
+
|
279 |
+
// check conv output dimension q for cudnn
|
280 |
+
int cudnn_output_q =
|
281 |
+
(
|
282 |
+
(
|
283 |
+
configuration.problem_size.W +
|
284 |
+
2 * configuration.problem_size.pad_w -
|
285 |
+
((configuration.problem_size.S - 1) *
|
286 |
+
configuration.problem_size.dilation_w + 1)
|
287 |
+
) /
|
288 |
+
(configuration.problem_size.stride_w)
|
289 |
+
+ 1
|
290 |
+
);
|
291 |
+
|
292 |
+
if (cudnn_output_q != configuration.problem_size.Q) {
|
293 |
+
return Status::kErrorInvalidProblem;
|
294 |
+
}
|
295 |
+
//////////////////////////////////////////////////////////////////////////////////////
|
296 |
+
|
297 |
+
// conv operator with input=FP16, accumulator=FP32, output=FP32 datatype
|
298 |
+
if (a_tensor.element == library::NumericTypeID::kF16 &&
|
299 |
+
b_tensor.element == library::NumericTypeID::kF16 &&
|
300 |
+
math_instruction.element_accumulator == library::NumericTypeID::kF32 &&
|
301 |
+
c_tensor.element == library::NumericTypeID::kF32
|
302 |
+
) {
|
303 |
+
|
304 |
+
return Status::kErrorNotSupported;
|
305 |
+
}
|
306 |
+
|
307 |
+
if (a_tensor.element == library::NumericTypeID::kBF16 ||
|
308 |
+
b_tensor.element == library::NumericTypeID::kBF16 ||
|
309 |
+
c_tensor.element == library::NumericTypeID::kBF16
|
310 |
+
) {
|
311 |
+
|
312 |
+
return Status::kErrorNotSupported;
|
313 |
+
}
|
314 |
+
|
315 |
+
// TF32 input not supported in cuDNN
|
316 |
+
if (a_tensor.element == library::NumericTypeID::kTF32 ||
|
317 |
+
b_tensor.element == library::NumericTypeID::kTF32 ||
|
318 |
+
c_tensor.element == library::NumericTypeID::kTF32
|
319 |
+
) {
|
320 |
+
|
321 |
+
return Status::kErrorNotSupported;
|
322 |
+
}
|
323 |
+
|
324 |
+
if (a_tensor.element == library::NumericTypeID::kS8 ||
|
325 |
+
b_tensor.element == library::NumericTypeID::kS8 ||
|
326 |
+
c_tensor.element == library::NumericTypeID::kS8
|
327 |
+
) {
|
328 |
+
|
329 |
+
return Status::kErrorNotSupported;
|
330 |
+
}
|
331 |
+
|
332 |
+
if (a_tensor.element == library::NumericTypeID::kU8 ||
|
333 |
+
b_tensor.element == library::NumericTypeID::kU8 ||
|
334 |
+
c_tensor.element == library::NumericTypeID::kU8
|
335 |
+
) {
|
336 |
+
|
337 |
+
return Status::kErrorNotSupported;
|
338 |
+
}
|
339 |
+
|
340 |
+
if (a_tensor.element == library::NumericTypeID::kS4 ||
|
341 |
+
b_tensor.element == library::NumericTypeID::kS4 ||
|
342 |
+
c_tensor.element == library::NumericTypeID::kS4
|
343 |
+
) {
|
344 |
+
|
345 |
+
return Status::kErrorNotSupported;
|
346 |
+
}
|
347 |
+
|
348 |
+
if (a_tensor.element == library::NumericTypeID::kU4 ||
|
349 |
+
b_tensor.element == library::NumericTypeID::kU4 ||
|
350 |
+
c_tensor.element == library::NumericTypeID::kU4
|
351 |
+
) {
|
352 |
+
|
353 |
+
return Status::kErrorNotSupported;
|
354 |
+
}
|
355 |
+
|
356 |
+
return Status::kSuccess;
|
357 |
+
}
|
358 |
+
|
359 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
360 |
+
|
361 |
+
/// Returns a status if cuDNN can satisfy a particular Conv3d description
|
362 |
+
Status cudnn_satisfies(
|
363 |
+
library::ConvDescription const &desc,
|
364 |
+
library::Conv3dConfiguration const &configuration) {
|
365 |
+
|
366 |
+
auto const &a_tensor = desc.A;
|
367 |
+
auto const &b_tensor = desc.B;
|
368 |
+
auto const &c_tensor = desc.C;
|
369 |
+
auto const &math_instruction = desc.tile_description.math_instruction;
|
370 |
+
|
371 |
+
if(a_tensor.element != b_tensor.element) {
|
372 |
+
return Status::kErrorInvalidDataType;
|
373 |
+
}
|
374 |
+
|
375 |
+
//////////////////////// Convolution output dimensions p and q ///////////////////////
|
376 |
+
// Cutlass convolutions support arbitrary output dimensions and not constrained by //
|
377 |
+
// input, filter, padding, striding, dilation sizes. //
|
378 |
+
// cuDNN sets the output dimensions (p, q) using following equations: //
|
379 |
+
// //
|
380 |
+
// output = div_up(input + 2 * pad - ((filter - 1) * dilation + 1) + 1, stride) //
|
381 |
+
// where; div_up(a, b) : (a - 1)/b + 1 //
|
382 |
+
// //
|
383 |
+
// Before launching cudnn verification or profiling check that output p and q //
|
384 |
+
// dimensions are cuDNN compliant. //
|
385 |
+
// //
|
386 |
+
// If user sets output p and q which do not follow above constraints, cutlass conv, //
|
387 |
+
// host reference, device reference can run. However, cudnn convolution returns //
|
388 |
+
// "Invalid problem" //
|
389 |
+
// //
|
390 |
+
///////////////////////////////////////////////////////////////////////////////////////
|
391 |
+
|
392 |
+
// check conv output dimension z for cudnn
|
393 |
+
int cudnn_output_z =
|
394 |
+
(
|
395 |
+
(
|
396 |
+
configuration.problem_size.D +
|
397 |
+
2 * configuration.problem_size.pad_d -
|
398 |
+
((configuration.problem_size.T - 1) *
|
399 |
+
configuration.problem_size.dilation_d + 1)
|
400 |
+
) /
|
401 |
+
(configuration.problem_size.stride_d)
|
402 |
+
+ 1
|
403 |
+
);
|
404 |
+
|
405 |
+
if (cudnn_output_z != configuration.problem_size.Z) {
|
406 |
+
return Status::kErrorInvalidProblem;
|
407 |
+
}
|
408 |
+
|
409 |
+
// check conv output dimension p for cudnn
|
410 |
+
int cudnn_output_p =
|
411 |
+
(
|
412 |
+
(
|
413 |
+
configuration.problem_size.H +
|
414 |
+
2 * configuration.problem_size.pad_h -
|
415 |
+
((configuration.problem_size.R - 1) *
|
416 |
+
configuration.problem_size.dilation_h + 1)
|
417 |
+
) /
|
418 |
+
(configuration.problem_size.stride_h)
|
419 |
+
+ 1
|
420 |
+
);
|
421 |
+
|
422 |
+
if (cudnn_output_p != configuration.problem_size.P) {
|
423 |
+
return Status::kErrorInvalidProblem;
|
424 |
+
}
|
425 |
+
|
426 |
+
// check conv output dimension q for cudnn
|
427 |
+
int cudnn_output_q =
|
428 |
+
(
|
429 |
+
(
|
430 |
+
configuration.problem_size.W +
|
431 |
+
2 * configuration.problem_size.pad_w -
|
432 |
+
((configuration.problem_size.S - 1) *
|
433 |
+
configuration.problem_size.dilation_w + 1)
|
434 |
+
) /
|
435 |
+
(configuration.problem_size.stride_w)
|
436 |
+
+ 1
|
437 |
+
);
|
438 |
+
|
439 |
+
if (cudnn_output_q != configuration.problem_size.Q) {
|
440 |
+
return Status::kErrorInvalidProblem;
|
441 |
+
}
|
442 |
+
//////////////////////////////////////////////////////////////////////////////////////
|
443 |
+
|
444 |
+
// conv operator with input, accumulator, output datatype of (hss) are not supported
|
445 |
+
// in cuDNN
|
446 |
+
if (a_tensor.element == library::NumericTypeID::kF16 &&
|
447 |
+
b_tensor.element == library::NumericTypeID::kF16 &&
|
448 |
+
math_instruction.element_accumulator == library::NumericTypeID::kF32 &&
|
449 |
+
c_tensor.element == library::NumericTypeID::kF32
|
450 |
+
) {
|
451 |
+
|
452 |
+
return Status::kErrorNotSupported;
|
453 |
+
}
|
454 |
+
|
455 |
+
if (a_tensor.element == library::NumericTypeID::kBF16 ||
|
456 |
+
b_tensor.element == library::NumericTypeID::kBF16 ||
|
457 |
+
c_tensor.element == library::NumericTypeID::kBF16
|
458 |
+
) {
|
459 |
+
|
460 |
+
return Status::kErrorNotSupported;
|
461 |
+
}
|
462 |
+
|
463 |
+
if (a_tensor.element == library::NumericTypeID::kTF32 ||
|
464 |
+
b_tensor.element == library::NumericTypeID::kTF32 ||
|
465 |
+
c_tensor.element == library::NumericTypeID::kTF32
|
466 |
+
) {
|
467 |
+
|
468 |
+
return Status::kErrorNotSupported;
|
469 |
+
}
|
470 |
+
|
471 |
+
if (a_tensor.element == library::NumericTypeID::kS8 ||
|
472 |
+
b_tensor.element == library::NumericTypeID::kS8 ||
|
473 |
+
c_tensor.element == library::NumericTypeID::kS8
|
474 |
+
) {
|
475 |
+
|
476 |
+
return Status::kErrorNotSupported;
|
477 |
+
}
|
478 |
+
|
479 |
+
// S4 not supported in cuDNN
|
480 |
+
if (a_tensor.element == library::NumericTypeID::kS4 ||
|
481 |
+
b_tensor.element == library::NumericTypeID::kS4 ||
|
482 |
+
c_tensor.element == library::NumericTypeID::kS4
|
483 |
+
) {
|
484 |
+
|
485 |
+
return Status::kErrorNotSupported;
|
486 |
+
}
|
487 |
+
|
488 |
+
return Status::kSuccess;
|
489 |
+
}
|
490 |
+
|
491 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
492 |
+
|
493 |
+
} // namespace profiler
|
494 |
+
} // namespace cutlass
|
495 |
+
|
496 |
+
#endif
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/cutlass_profiler.cu
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief Execution environment
|
33 |
+
*/
|
34 |
+
|
35 |
+
#include <iostream>
|
36 |
+
#include <stdexcept>
|
37 |
+
|
38 |
+
// Profiler includes
|
39 |
+
#include "cutlass/profiler/cutlass_profiler.h"
|
40 |
+
#include "cutlass/profiler/gemm_operation_profiler.h"
|
41 |
+
#include "cutlass/profiler/rank_k_operation_profiler.h"
|
42 |
+
#include "cutlass/profiler/rank_2k_operation_profiler.h"
|
43 |
+
#include "cutlass/profiler/trmm_operation_profiler.h"
|
44 |
+
#include "cutlass/profiler/symm_operation_profiler.h"
|
45 |
+
#include "cutlass/profiler/conv2d_operation_profiler.h"
|
46 |
+
#include "cutlass/profiler/conv3d_operation_profiler.h"
|
47 |
+
#include "cutlass/profiler/sparse_gemm_operation_profiler.h"
|
48 |
+
|
49 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
50 |
+
|
51 |
+
namespace cutlass {
|
52 |
+
namespace profiler {
|
53 |
+
|
54 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
55 |
+
|
56 |
+
CutlassProfiler::CutlassProfiler(
|
57 |
+
Options const &options
|
58 |
+
):
|
59 |
+
options_(options) {
|
60 |
+
|
61 |
+
operation_profilers_.emplace_back(new GemmOperationProfiler(options));
|
62 |
+
|
63 |
+
operation_profilers_.emplace_back(new SparseGemmOperationProfiler(options));
|
64 |
+
|
65 |
+
operation_profilers_.emplace_back(new Conv2dOperationProfiler(options));
|
66 |
+
|
67 |
+
operation_profilers_.emplace_back(new Conv3dOperationProfiler(options));
|
68 |
+
|
69 |
+
operation_profilers_.emplace_back(new RankKOperationProfiler(options));
|
70 |
+
|
71 |
+
operation_profilers_.emplace_back(new Rank2KOperationProfiler(options));
|
72 |
+
|
73 |
+
operation_profilers_.emplace_back(new TrmmOperationProfiler(options));
|
74 |
+
|
75 |
+
operation_profilers_.emplace_back(new SymmOperationProfiler(options));
|
76 |
+
}
|
77 |
+
|
78 |
+
CutlassProfiler::~CutlassProfiler() {
|
79 |
+
|
80 |
+
}
|
81 |
+
|
82 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
83 |
+
|
84 |
+
/// Execute the program
|
85 |
+
int CutlassProfiler::operator()() {
|
86 |
+
|
87 |
+
if (options_.cmdline.num_naked_args() > 0) {
|
88 |
+
std::cerr << "Unknown args: \n";
|
89 |
+
options_.cmdline.print_naked_args(std::cerr);
|
90 |
+
std::cerr << "\n\n\n";
|
91 |
+
|
92 |
+
print_usage_(std::cout);
|
93 |
+
return 1;
|
94 |
+
}
|
95 |
+
|
96 |
+
if (options_.about.help) {
|
97 |
+
if (options_.operation_kind == library::OperationKind::kInvalid) {
|
98 |
+
print_usage_(std::cout);
|
99 |
+
}
|
100 |
+
else {
|
101 |
+
for (auto & profiler : operation_profilers_) {
|
102 |
+
if (profiler->kind() == options_.operation_kind) {
|
103 |
+
profiler->print_usage(std::cout);
|
104 |
+
profiler->print_examples(std::cout);
|
105 |
+
return 0;
|
106 |
+
}
|
107 |
+
}
|
108 |
+
}
|
109 |
+
return 0;
|
110 |
+
}
|
111 |
+
else if (options_.about.version) {
|
112 |
+
options_.about.print_version(std::cout);
|
113 |
+
|
114 |
+
std::cout << std::endl;
|
115 |
+
return 0;
|
116 |
+
}
|
117 |
+
else if (options_.about.device_info) {
|
118 |
+
options_.device.print_device_info(std::cout);
|
119 |
+
return 0;
|
120 |
+
}
|
121 |
+
|
122 |
+
if (options_.execution_mode == ExecutionMode::kProfile ||
|
123 |
+
options_.execution_mode == ExecutionMode::kDryRun ||
|
124 |
+
options_.execution_mode == ExecutionMode::kTrace) {
|
125 |
+
|
126 |
+
// Profiles all operations
|
127 |
+
return profile_();
|
128 |
+
}
|
129 |
+
else if (options_.execution_mode == ExecutionMode::kEnumerate) {
|
130 |
+
// Enumerates all operations
|
131 |
+
enumerate_();
|
132 |
+
}
|
133 |
+
return 0;
|
134 |
+
}
|
135 |
+
|
136 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
137 |
+
|
138 |
+
/// Enumerates all operations
|
139 |
+
void CutlassProfiler::enumerate_() {
|
140 |
+
|
141 |
+
}
|
142 |
+
|
143 |
+
/// Profiles all operations
|
144 |
+
int CutlassProfiler::profile_() {
|
145 |
+
|
146 |
+
// Keep track of all device memory tensor in map
|
147 |
+
DeviceContext device_context;
|
148 |
+
|
149 |
+
int result = 0;
|
150 |
+
// For all profilers (e.g. gemm/sparse_gemm/conv2d...)
|
151 |
+
for (auto & profiler : operation_profilers_) {
|
152 |
+
|
153 |
+
if (options_.operation_kind == library::OperationKind::kInvalid ||
|
154 |
+
options_.operation_kind == profiler->kind()) {
|
155 |
+
|
156 |
+
result = profiler->profile_all(options_, library::Singleton::get().manifest, device_context);
|
157 |
+
|
158 |
+
// If some profile failed, terminate immediately
|
159 |
+
if (result) {
|
160 |
+
return result;
|
161 |
+
}
|
162 |
+
}
|
163 |
+
}
|
164 |
+
|
165 |
+
return result;
|
166 |
+
}
|
167 |
+
|
168 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
169 |
+
|
170 |
+
/// Prints all options
|
171 |
+
void CutlassProfiler::print_usage_(std::ostream &out) {
|
172 |
+
options_.print_usage(out);
|
173 |
+
|
174 |
+
out << "\nOperations:\n\n";
|
175 |
+
|
176 |
+
// For all profilers
|
177 |
+
for (auto & profiler : operation_profilers_) {
|
178 |
+
|
179 |
+
|
180 |
+
std::string kind_str = library::to_string(profiler->kind());
|
181 |
+
|
182 |
+
size_t kAlignment = 40;
|
183 |
+
size_t columns = 0;
|
184 |
+
|
185 |
+
if (kind_str.size() < kAlignment) {
|
186 |
+
columns = kAlignment - kind_str.size();
|
187 |
+
}
|
188 |
+
|
189 |
+
out << " " << kind_str << std::string(columns, ' ') << profiler->description() << "\n";
|
190 |
+
|
191 |
+
}
|
192 |
+
|
193 |
+
out << "\n\nFor details about a particular function, specify the function name with --help.\n\nExample:\n\n"
|
194 |
+
<< " $ cutlass_profiler --operation=Gemm --help\n\n"
|
195 |
+
<< " $ cutlass_profiler --operation=RankK --help\n\n"
|
196 |
+
<< " $ cutlass_profiler --operation=Trmm --help\n\n"
|
197 |
+
<< " $ cutlass_profiler --operation=Symm --help\n\n"
|
198 |
+
<< " $ cutlass_profiler --operation=Conv3d --help\n\n"
|
199 |
+
<< " $ cutlass_profiler --operation=Conv2d --help\n\n"
|
200 |
+
<< " $ cutlass_profiler --operation=SparseGemm --help\n\n"
|
201 |
+
;
|
202 |
+
}
|
203 |
+
|
204 |
+
/// Prints usage
|
205 |
+
void CutlassProfiler::print_options_(std::ostream &out) {
|
206 |
+
options_.print_options(out);
|
207 |
+
}
|
208 |
+
|
209 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
210 |
+
|
211 |
+
} // namespace profiler
|
212 |
+
} // namespace cutlass
|
213 |
+
|
214 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/device_allocation.cu
ADDED
@@ -0,0 +1,2483 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief Execution environment
|
33 |
+
*/
|
34 |
+
|
35 |
+
#include <cstring>
|
36 |
+
|
37 |
+
#include "cutlass/numeric_types.h"
|
38 |
+
#include "cutlass/layout/matrix.h"
|
39 |
+
#include "cutlass/layout/tensor.h"
|
40 |
+
|
41 |
+
#include "cutlass/util/reference/device/tensor_compare.h"
|
42 |
+
#include "cutlass/util/reference/device/tensor_fill.h"
|
43 |
+
#include "cutlass/util/reference/host/tensor_fill.h"
|
44 |
+
#include "cutlass/util/host_tensor.h"
|
45 |
+
#include "cutlass/util/tensor_view_io.h"
|
46 |
+
|
47 |
+
#include "cutlass/library/util.h"
|
48 |
+
|
49 |
+
#include "cutlass/profiler/device_allocation.h"
|
50 |
+
|
51 |
+
namespace cutlass {
|
52 |
+
namespace profiler {
|
53 |
+
|
54 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
55 |
+
|
56 |
+
size_t DeviceAllocation::bytes(library::NumericTypeID type, size_t capacity) {
|
57 |
+
return size_t(cutlass::library::sizeof_bits(type)) * capacity / 8;
|
58 |
+
}
|
59 |
+
|
60 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
61 |
+
|
62 |
+
template <typename Layout>
|
63 |
+
static std::vector<int64_t> get_packed_layout_stride(std::vector<int> const &extent) {
|
64 |
+
|
65 |
+
typename Layout::TensorCoord extent_coord;
|
66 |
+
typename Layout::Stride stride_coord;
|
67 |
+
|
68 |
+
if (extent.size() != size_t(Layout::kRank)) {
|
69 |
+
throw std::runtime_error("Layout does not have same rank as extent vector.");
|
70 |
+
}
|
71 |
+
|
72 |
+
for (int i = 0; i < Layout::kRank; ++i) {
|
73 |
+
extent_coord[i] = extent.at(i);
|
74 |
+
}
|
75 |
+
|
76 |
+
std::vector<int64_t> stride;
|
77 |
+
stride.resize(Layout::kStrideRank, 0);
|
78 |
+
|
79 |
+
Layout layout = Layout::packed(extent_coord);
|
80 |
+
stride_coord = layout.stride();
|
81 |
+
|
82 |
+
for (int i = 0; i < Layout::kStrideRank; ++i) {
|
83 |
+
stride.at(i) = (int64_t)stride_coord[i];
|
84 |
+
}
|
85 |
+
|
86 |
+
return stride;
|
87 |
+
}
|
88 |
+
|
89 |
+
/// Returns the stride of a packed layout
|
90 |
+
std::vector<int64_t> DeviceAllocation::get_packed_layout(
|
91 |
+
library::LayoutTypeID layout_id,
|
92 |
+
std::vector<int> const &extent) {
|
93 |
+
|
94 |
+
std::vector<int64_t> stride;
|
95 |
+
|
96 |
+
switch (layout_id) {
|
97 |
+
case library::LayoutTypeID::kColumnMajor:
|
98 |
+
stride = get_packed_layout_stride<cutlass::layout::ColumnMajor>(extent);
|
99 |
+
break;
|
100 |
+
case library::LayoutTypeID::kRowMajor:
|
101 |
+
stride = get_packed_layout_stride<cutlass::layout::RowMajor>(extent);
|
102 |
+
break;
|
103 |
+
case library::LayoutTypeID::kColumnMajorInterleavedK2:
|
104 |
+
stride = get_packed_layout_stride<cutlass::layout::ColumnMajorInterleaved<2>>(extent);
|
105 |
+
break;
|
106 |
+
case library::LayoutTypeID::kRowMajorInterleavedK2:
|
107 |
+
stride = get_packed_layout_stride<cutlass::layout::RowMajorInterleaved<2>>(extent);
|
108 |
+
break;
|
109 |
+
case library::LayoutTypeID::kColumnMajorInterleavedK4:
|
110 |
+
stride = get_packed_layout_stride<cutlass::layout::ColumnMajorInterleaved<4>>(extent);
|
111 |
+
break;
|
112 |
+
case library::LayoutTypeID::kRowMajorInterleavedK4:
|
113 |
+
stride = get_packed_layout_stride<cutlass::layout::RowMajorInterleaved<4>>(extent);
|
114 |
+
break;
|
115 |
+
case library::LayoutTypeID::kColumnMajorInterleavedK16:
|
116 |
+
stride = get_packed_layout_stride<cutlass::layout::ColumnMajorInterleaved<16>>(extent);
|
117 |
+
break;
|
118 |
+
case library::LayoutTypeID::kRowMajorInterleavedK16:
|
119 |
+
stride = get_packed_layout_stride<cutlass::layout::RowMajorInterleaved<16>>(extent);
|
120 |
+
break;
|
121 |
+
case library::LayoutTypeID::kColumnMajorInterleavedK32:
|
122 |
+
stride = get_packed_layout_stride<cutlass::layout::ColumnMajorInterleaved<32>>(extent);
|
123 |
+
break;
|
124 |
+
case library::LayoutTypeID::kRowMajorInterleavedK32:
|
125 |
+
stride = get_packed_layout_stride<cutlass::layout::RowMajorInterleaved<32>>(extent);
|
126 |
+
break;
|
127 |
+
case library::LayoutTypeID::kColumnMajorInterleavedK64:
|
128 |
+
stride = get_packed_layout_stride<cutlass::layout::ColumnMajorInterleaved<64>>(extent);
|
129 |
+
break;
|
130 |
+
case library::LayoutTypeID::kRowMajorInterleavedK64:
|
131 |
+
stride = get_packed_layout_stride<cutlass::layout::RowMajorInterleaved<64>>(extent);
|
132 |
+
break;
|
133 |
+
case library::LayoutTypeID::kTensorNCHW:
|
134 |
+
stride = get_packed_layout_stride<cutlass::layout::TensorNCHW>(extent);
|
135 |
+
break;
|
136 |
+
case library::LayoutTypeID::kTensorNHWC:
|
137 |
+
stride = get_packed_layout_stride<cutlass::layout::TensorNHWC>(extent);
|
138 |
+
break;
|
139 |
+
case library::LayoutTypeID::kTensorNDHWC:
|
140 |
+
stride = get_packed_layout_stride<cutlass::layout::TensorNDHWC>(extent);
|
141 |
+
break;
|
142 |
+
case library::LayoutTypeID::kTensorNC32HW32:
|
143 |
+
stride = get_packed_layout_stride<cutlass::layout::TensorNCxHWx<32>>(extent);
|
144 |
+
break;
|
145 |
+
case library::LayoutTypeID::kTensorNC64HW64:
|
146 |
+
stride = get_packed_layout_stride<cutlass::layout::TensorNCxHWx<64>>(extent);
|
147 |
+
break;
|
148 |
+
case library::LayoutTypeID::kTensorC32RSK32:
|
149 |
+
stride = get_packed_layout_stride<cutlass::layout::TensorCxRSKx<32>>(extent);
|
150 |
+
break;
|
151 |
+
case library::LayoutTypeID::kTensorC64RSK64:
|
152 |
+
stride = get_packed_layout_stride<cutlass::layout::TensorCxRSKx<64>>(extent);
|
153 |
+
break;
|
154 |
+
default: break;
|
155 |
+
}
|
156 |
+
|
157 |
+
return stride;
|
158 |
+
}
|
159 |
+
|
160 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
161 |
+
|
162 |
+
/// Template to use CUTLASS Layout functions to
|
163 |
+
template <typename Layout>
|
164 |
+
static size_t construct_layout_(
|
165 |
+
void *bytes,
|
166 |
+
library::LayoutTypeID layout_id,
|
167 |
+
std::vector<int> const &extent,
|
168 |
+
std::vector<int64_t> &stride) {
|
169 |
+
|
170 |
+
if (extent.size() != Layout::kRank) {
|
171 |
+
throw std::runtime_error(
|
172 |
+
"Layout must have same rank as extent vector.");
|
173 |
+
}
|
174 |
+
|
175 |
+
if (Layout::kStrideRank && stride.empty()) {
|
176 |
+
|
177 |
+
stride = get_packed_layout_stride<Layout>(extent);
|
178 |
+
|
179 |
+
return construct_layout_<Layout>(
|
180 |
+
bytes,
|
181 |
+
layout_id,
|
182 |
+
extent,
|
183 |
+
stride);
|
184 |
+
}
|
185 |
+
else if (Layout::kStrideRank && stride.size() != Layout::kStrideRank) {
|
186 |
+
throw std::runtime_error(
|
187 |
+
"Layout requires either empty stride or stride vector matching Layout::kStrideRank");
|
188 |
+
}
|
189 |
+
|
190 |
+
typename Layout::Stride stride_coord;
|
191 |
+
for (int i = 0; i < Layout::kStrideRank; ++i) {
|
192 |
+
stride_coord[i] = (int)stride.at(i);
|
193 |
+
}
|
194 |
+
|
195 |
+
typename Layout::TensorCoord extent_coord;
|
196 |
+
for (int i = 0; i < Layout::kRank; ++i) {
|
197 |
+
extent_coord[i] = extent.at(i);
|
198 |
+
}
|
199 |
+
|
200 |
+
// Construct the CUTLASS layout object from the stride object
|
201 |
+
Layout layout(stride_coord);
|
202 |
+
|
203 |
+
// Pack it into bytes
|
204 |
+
if (bytes) {
|
205 |
+
*reinterpret_cast<Layout *>(bytes) = layout;
|
206 |
+
}
|
207 |
+
|
208 |
+
// Return capacity
|
209 |
+
size_t capacity_ = layout.capacity(extent_coord);
|
210 |
+
|
211 |
+
return capacity_;
|
212 |
+
}
|
213 |
+
|
214 |
+
/// returns the capacity needed
|
215 |
+
size_t DeviceAllocation::construct_layout(
|
216 |
+
void *bytes,
|
217 |
+
library::LayoutTypeID layout_id,
|
218 |
+
std::vector<int> const &extent,
|
219 |
+
std::vector<int64_t> &stride) {
|
220 |
+
|
221 |
+
switch (layout_id) {
|
222 |
+
case library::LayoutTypeID::kColumnMajor:
|
223 |
+
return construct_layout_<cutlass::layout::ColumnMajor>(bytes, layout_id, extent, stride);
|
224 |
+
|
225 |
+
case library::LayoutTypeID::kRowMajor:
|
226 |
+
return construct_layout_<cutlass::layout::RowMajor>(bytes, layout_id, extent, stride);
|
227 |
+
|
228 |
+
case library::LayoutTypeID::kColumnMajorInterleavedK2:
|
229 |
+
return construct_layout_<cutlass::layout::ColumnMajorInterleaved<2>>(bytes, layout_id, extent, stride);
|
230 |
+
|
231 |
+
case library::LayoutTypeID::kRowMajorInterleavedK2:
|
232 |
+
return construct_layout_<cutlass::layout::RowMajorInterleaved<2>>(bytes, layout_id, extent, stride);
|
233 |
+
|
234 |
+
case library::LayoutTypeID::kColumnMajorInterleavedK4:
|
235 |
+
return construct_layout_<cutlass::layout::ColumnMajorInterleaved<4>>(bytes, layout_id, extent, stride);
|
236 |
+
|
237 |
+
case library::LayoutTypeID::kRowMajorInterleavedK4:
|
238 |
+
return construct_layout_<cutlass::layout::RowMajorInterleaved<4>>(bytes, layout_id, extent, stride);
|
239 |
+
|
240 |
+
case library::LayoutTypeID::kColumnMajorInterleavedK16:
|
241 |
+
return construct_layout_<cutlass::layout::ColumnMajorInterleaved<16>>(bytes, layout_id, extent, stride);
|
242 |
+
|
243 |
+
case library::LayoutTypeID::kRowMajorInterleavedK16:
|
244 |
+
return construct_layout_<cutlass::layout::RowMajorInterleaved<16>>(bytes, layout_id, extent, stride);
|
245 |
+
|
246 |
+
case library::LayoutTypeID::kColumnMajorInterleavedK32:
|
247 |
+
return construct_layout_<cutlass::layout::ColumnMajorInterleaved<32>>(bytes, layout_id, extent, stride);
|
248 |
+
|
249 |
+
case library::LayoutTypeID::kRowMajorInterleavedK32:
|
250 |
+
return construct_layout_<cutlass::layout::RowMajorInterleaved<32>>(bytes, layout_id, extent, stride);
|
251 |
+
|
252 |
+
case library::LayoutTypeID::kColumnMajorInterleavedK64:
|
253 |
+
return construct_layout_<cutlass::layout::ColumnMajorInterleaved<64>>(bytes, layout_id, extent, stride);
|
254 |
+
|
255 |
+
case library::LayoutTypeID::kRowMajorInterleavedK64:
|
256 |
+
return construct_layout_<cutlass::layout::RowMajorInterleaved<64>>(bytes, layout_id, extent, stride);
|
257 |
+
|
258 |
+
case library::LayoutTypeID::kTensorNCHW:
|
259 |
+
return construct_layout_<cutlass::layout::TensorNHWC>(bytes, layout_id, extent, stride);
|
260 |
+
|
261 |
+
case library::LayoutTypeID::kTensorNHWC:
|
262 |
+
return construct_layout_<cutlass::layout::TensorNHWC>(bytes, layout_id, extent, stride);
|
263 |
+
|
264 |
+
case library::LayoutTypeID::kTensorNDHWC:
|
265 |
+
return construct_layout_<cutlass::layout::TensorNDHWC>(bytes, layout_id, extent, stride);
|
266 |
+
|
267 |
+
case library::LayoutTypeID::kTensorNC32HW32:
|
268 |
+
return construct_layout_<cutlass::layout::TensorNCxHWx<32>>(bytes, layout_id, extent, stride);
|
269 |
+
|
270 |
+
case library::LayoutTypeID::kTensorNC64HW64:
|
271 |
+
return construct_layout_<cutlass::layout::TensorNCxHWx<64>>(bytes, layout_id, extent, stride);
|
272 |
+
|
273 |
+
case library::LayoutTypeID::kTensorC32RSK32:
|
274 |
+
return construct_layout_<cutlass::layout::TensorCxRSKx<32>>(bytes, layout_id, extent, stride);
|
275 |
+
|
276 |
+
case library::LayoutTypeID::kTensorC64RSK64:
|
277 |
+
return construct_layout_<cutlass::layout::TensorCxRSKx<64>>(bytes, layout_id, extent, stride);
|
278 |
+
|
279 |
+
default: break;
|
280 |
+
}
|
281 |
+
|
282 |
+
return 0;
|
283 |
+
}
|
284 |
+
|
285 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
286 |
+
|
287 |
+
DeviceAllocation::DeviceAllocation():
|
288 |
+
type_(library::NumericTypeID::kInvalid),
|
289 |
+
batch_stride_(0),
|
290 |
+
capacity_(0),
|
291 |
+
pointer_(nullptr),
|
292 |
+
layout_(library::LayoutTypeID::kUnknown),
|
293 |
+
batch_count_(1),
|
294 |
+
device_(-1) {
|
295 |
+
|
296 |
+
}
|
297 |
+
|
298 |
+
DeviceAllocation::DeviceAllocation(
|
299 |
+
library::NumericTypeID type,
|
300 |
+
size_t capacity,
|
301 |
+
int device
|
302 |
+
):
|
303 |
+
type_(type), batch_stride_(capacity), capacity_(capacity), pointer_(nullptr),
|
304 |
+
layout_(library::LayoutTypeID::kUnknown), batch_count_(1), device_(device) {
|
305 |
+
|
306 |
+
cudaError_t result = this->malloc((void **)&pointer_, bytes(type, capacity));
|
307 |
+
|
308 |
+
if (result != cudaSuccess) {
|
309 |
+
type_ = library::NumericTypeID::kInvalid;
|
310 |
+
capacity_ = 0;
|
311 |
+
pointer_ = nullptr;
|
312 |
+
throw std::bad_alloc();
|
313 |
+
}
|
314 |
+
}
|
315 |
+
|
316 |
+
DeviceAllocation::DeviceAllocation(
|
317 |
+
library::NumericTypeID type,
|
318 |
+
library::LayoutTypeID layout_id,
|
319 |
+
std::vector<int> const &extent,
|
320 |
+
std::vector<int64_t> const &stride,
|
321 |
+
int batch_count,
|
322 |
+
int device
|
323 |
+
):
|
324 |
+
type_(type), batch_stride_(size_t(0)), capacity_(size_t(0)),
|
325 |
+
pointer_(nullptr), batch_count_(1), device_(device) {
|
326 |
+
|
327 |
+
reset(type, layout_id, extent, stride, batch_count);
|
328 |
+
}
|
329 |
+
|
330 |
+
DeviceAllocation::~DeviceAllocation() {
|
331 |
+
if (pointer_) {
|
332 |
+
cudaFree(pointer_);
|
333 |
+
}
|
334 |
+
}
|
335 |
+
|
336 |
+
DeviceAllocation &DeviceAllocation::reset() {
|
337 |
+
if (pointer_) {
|
338 |
+
cudaFree(pointer_);
|
339 |
+
}
|
340 |
+
|
341 |
+
type_ = library::NumericTypeID::kInvalid;
|
342 |
+
batch_stride_ = 0;
|
343 |
+
capacity_ = 0;
|
344 |
+
pointer_ = nullptr;
|
345 |
+
layout_ = library::LayoutTypeID::kUnknown;
|
346 |
+
stride_.clear();
|
347 |
+
extent_.clear();
|
348 |
+
tensor_ref_buffer_.clear();
|
349 |
+
batch_count_ = 1;
|
350 |
+
|
351 |
+
return *this;
|
352 |
+
}
|
353 |
+
|
354 |
+
DeviceAllocation &DeviceAllocation::reset(library::NumericTypeID type, size_t capacity) {
|
355 |
+
|
356 |
+
reset();
|
357 |
+
|
358 |
+
type_ = type;
|
359 |
+
batch_stride_ = capacity;
|
360 |
+
capacity_ = capacity;
|
361 |
+
|
362 |
+
cudaError_t result = this->malloc((void **)&pointer_, bytes(type_, capacity_));
|
363 |
+
if (result != cudaSuccess) {
|
364 |
+
throw std::bad_alloc();
|
365 |
+
}
|
366 |
+
|
367 |
+
layout_ = library::LayoutTypeID::kUnknown;
|
368 |
+
stride_.clear();
|
369 |
+
extent_.clear();
|
370 |
+
batch_count_ = 1;
|
371 |
+
|
372 |
+
tensor_ref_buffer_.resize(sizeof(pointer_), 0);
|
373 |
+
std::memcpy(tensor_ref_buffer_.data(), &pointer_, sizeof(pointer_));
|
374 |
+
|
375 |
+
return *this;
|
376 |
+
}
|
377 |
+
|
378 |
+
/// Allocates memory for a given layout and tensor
|
379 |
+
DeviceAllocation &DeviceAllocation::reset(
|
380 |
+
library::NumericTypeID type,
|
381 |
+
library::LayoutTypeID layout_id,
|
382 |
+
std::vector<int> const &extent,
|
383 |
+
std::vector<int64_t> const &stride,
|
384 |
+
int batch_count) {
|
385 |
+
|
386 |
+
reset();
|
387 |
+
|
388 |
+
tensor_ref_buffer_.resize(sizeof(pointer_) + (sizeof(int64_t) * library::get_layout_stride_rank(layout_id)), 0);
|
389 |
+
|
390 |
+
type_ = type;
|
391 |
+
|
392 |
+
layout_ = layout_id;
|
393 |
+
stride_ = stride;
|
394 |
+
extent_ = extent;
|
395 |
+
batch_count_ = batch_count;
|
396 |
+
|
397 |
+
batch_stride_ = construct_layout(
|
398 |
+
tensor_ref_buffer_.data() + sizeof(pointer_),
|
399 |
+
layout_id,
|
400 |
+
extent,
|
401 |
+
stride_);
|
402 |
+
|
403 |
+
capacity_ = batch_stride_ * batch_count_;
|
404 |
+
|
405 |
+
cudaError_t result = this->malloc((void **)&pointer_, bytes(type, capacity_));
|
406 |
+
if (result != cudaSuccess) {
|
407 |
+
throw std::bad_alloc();
|
408 |
+
}
|
409 |
+
|
410 |
+
std::memcpy(tensor_ref_buffer_.data(), &pointer_, sizeof(pointer_));
|
411 |
+
|
412 |
+
return *this;
|
413 |
+
}
|
414 |
+
|
415 |
+
bool DeviceAllocation::good() const {
|
416 |
+
return (capacity_ && pointer_);
|
417 |
+
}
|
418 |
+
|
419 |
+
library::NumericTypeID DeviceAllocation::type() const {
|
420 |
+
return type_;
|
421 |
+
}
|
422 |
+
|
423 |
+
void *DeviceAllocation::data() const {
|
424 |
+
return pointer_;
|
425 |
+
}
|
426 |
+
|
427 |
+
void *DeviceAllocation::batch_data(int batch_idx) const {
|
428 |
+
return static_cast<char *>(data()) + batch_stride_bytes() * batch_idx;
|
429 |
+
}
|
430 |
+
|
431 |
+
library::LayoutTypeID DeviceAllocation::layout() const {
|
432 |
+
return layout_;
|
433 |
+
}
|
434 |
+
|
435 |
+
std::vector<int64_t> const & DeviceAllocation::stride() const {
|
436 |
+
return stride_;
|
437 |
+
}
|
438 |
+
|
439 |
+
/// Gets the extent vector
|
440 |
+
std::vector<int> const & DeviceAllocation::extent() const {
|
441 |
+
return extent_;
|
442 |
+
}
|
443 |
+
|
444 |
+
/// Gets the number of adjacent tensors in memory
|
445 |
+
int DeviceAllocation::batch_count() const {
|
446 |
+
return batch_count_;
|
447 |
+
}
|
448 |
+
|
449 |
+
/// Gets the stride (in units of elements) between items
|
450 |
+
int64_t DeviceAllocation::batch_stride() const {
|
451 |
+
return batch_stride_;
|
452 |
+
}
|
453 |
+
|
454 |
+
/// Gets the stride (in units of bytes) between items
|
455 |
+
int64_t DeviceAllocation::batch_stride_bytes() const {
|
456 |
+
return bytes(type_, batch_stride_);
|
457 |
+
}
|
458 |
+
|
459 |
+
size_t DeviceAllocation::capacity() const {
|
460 |
+
return capacity_;
|
461 |
+
}
|
462 |
+
|
463 |
+
size_t DeviceAllocation::bytes() const {
|
464 |
+
return bytes(type_, capacity_);
|
465 |
+
}
|
466 |
+
|
467 |
+
/// Copies from an equivalent-sized tensor in device memory
|
468 |
+
void DeviceAllocation::copy_from_device(void const *ptr) {
|
469 |
+
if (!bytes()) {
|
470 |
+
#ifndef NDEBUG
|
471 |
+
std::cout << "Skipping copy of size 0 allocation\n";
|
472 |
+
#endif
|
473 |
+
return;
|
474 |
+
}
|
475 |
+
|
476 |
+
cudaError_t result = cudaMemcpy(data(), ptr, bytes(), cudaMemcpyDeviceToDevice);
|
477 |
+
if (result != cudaSuccess) {
|
478 |
+
throw std::runtime_error("Failed device-to-device copy");
|
479 |
+
}
|
480 |
+
}
|
481 |
+
|
482 |
+
/// Copies from an equivalent-sized tensor in device memory
|
483 |
+
void DeviceAllocation::copy_from_host(void const *ptr) {
|
484 |
+
if (!bytes()) {
|
485 |
+
#ifndef NDEBUG
|
486 |
+
std::cout << "Skipping copy of size 0 allocation\n";
|
487 |
+
#endif
|
488 |
+
return;
|
489 |
+
}
|
490 |
+
|
491 |
+
cudaError_t result = cudaMemcpy(data(), ptr, bytes(), cudaMemcpyHostToDevice);
|
492 |
+
if (result != cudaSuccess) {
|
493 |
+
throw std::runtime_error("Failed host-to-device copy");
|
494 |
+
}
|
495 |
+
}
|
496 |
+
|
497 |
+
/// Copies from an equivalent-sized tensor in device memory
|
498 |
+
void DeviceAllocation::copy_to_host(void *ptr) {
|
499 |
+
if (!bytes()) {
|
500 |
+
#ifndef NDEBUG
|
501 |
+
std::cout << "Skipping copy of size 0 allocation\n";
|
502 |
+
#endif
|
503 |
+
return;
|
504 |
+
}
|
505 |
+
|
506 |
+
cudaError_t result = cudaMemcpy(ptr, data(), bytes(), cudaMemcpyDeviceToHost);
|
507 |
+
if (result != cudaSuccess) {
|
508 |
+
throw std::runtime_error("Failed device-to-host copy");
|
509 |
+
}
|
510 |
+
}
|
511 |
+
|
512 |
+
void DeviceAllocation::initialize_random_device(int seed, Distribution dist) {
|
513 |
+
if (!bytes()) {
|
514 |
+
#ifndef NDEBUG
|
515 |
+
std::cout << "Skipping initialization of size 0 allocation\n";
|
516 |
+
#endif
|
517 |
+
return;
|
518 |
+
}
|
519 |
+
|
520 |
+
if (!data()) {
|
521 |
+
throw std::runtime_error("Attempting to initialize invalid allocation.");
|
522 |
+
}
|
523 |
+
|
524 |
+
// Instantiate calls to CURAND here. This file takes a long time to compile for
|
525 |
+
// this reason.
|
526 |
+
|
527 |
+
switch (type_) {
|
528 |
+
case library::NumericTypeID::kF16:
|
529 |
+
cutlass::reference::device::BlockFillRandom<cutlass::half_t>(
|
530 |
+
reinterpret_cast<cutlass::half_t *>(pointer_),
|
531 |
+
capacity_,
|
532 |
+
seed,
|
533 |
+
dist
|
534 |
+
);
|
535 |
+
break;
|
536 |
+
case library::NumericTypeID::kBF16:
|
537 |
+
cutlass::reference::device::BlockFillRandom<cutlass::bfloat16_t>(
|
538 |
+
reinterpret_cast<cutlass::bfloat16_t *>(pointer_),
|
539 |
+
capacity_,
|
540 |
+
seed,
|
541 |
+
dist
|
542 |
+
);
|
543 |
+
break;
|
544 |
+
case library::NumericTypeID::kTF32:
|
545 |
+
cutlass::reference::device::BlockFillRandom<cutlass::tfloat32_t>(
|
546 |
+
reinterpret_cast<cutlass::tfloat32_t *>(pointer_),
|
547 |
+
capacity_,
|
548 |
+
seed,
|
549 |
+
dist
|
550 |
+
);
|
551 |
+
break;
|
552 |
+
case library::NumericTypeID::kF32:
|
553 |
+
cutlass::reference::device::BlockFillRandom<float>(
|
554 |
+
reinterpret_cast<float *>(pointer_),
|
555 |
+
capacity_,
|
556 |
+
seed,
|
557 |
+
dist
|
558 |
+
);
|
559 |
+
break;
|
560 |
+
case library::NumericTypeID::kCBF16:
|
561 |
+
cutlass::reference::device::BlockFillRandom<complex<bfloat16_t>>(
|
562 |
+
reinterpret_cast<complex<bfloat16_t> *>(pointer_),
|
563 |
+
capacity_,
|
564 |
+
seed,
|
565 |
+
dist
|
566 |
+
);
|
567 |
+
break;
|
568 |
+
case library::NumericTypeID::kCTF32:
|
569 |
+
cutlass::reference::device::BlockFillRandom<cutlass::complex<cutlass::tfloat32_t>>(
|
570 |
+
reinterpret_cast<cutlass::complex<cutlass::tfloat32_t> *>(pointer_),
|
571 |
+
capacity_,
|
572 |
+
seed,
|
573 |
+
dist
|
574 |
+
);
|
575 |
+
break;
|
576 |
+
case library::NumericTypeID::kCF32:
|
577 |
+
cutlass::reference::device::BlockFillRandom<cutlass::complex<float>>(
|
578 |
+
reinterpret_cast<cutlass::complex<float> *>(pointer_),
|
579 |
+
capacity_,
|
580 |
+
seed,
|
581 |
+
dist
|
582 |
+
);
|
583 |
+
break;
|
584 |
+
case library::NumericTypeID::kFE4M3:
|
585 |
+
cutlass::reference::device::BlockFillRandom<cutlass::float_e4m3_t>(
|
586 |
+
reinterpret_cast<cutlass::float_e4m3_t *>(pointer_),
|
587 |
+
capacity_,
|
588 |
+
seed,
|
589 |
+
dist
|
590 |
+
);
|
591 |
+
break;
|
592 |
+
case library::NumericTypeID::kFE5M2:
|
593 |
+
cutlass::reference::device::BlockFillRandom<cutlass::float_e5m2_t>(
|
594 |
+
reinterpret_cast<cutlass::float_e5m2_t *>(pointer_),
|
595 |
+
capacity_,
|
596 |
+
seed,
|
597 |
+
dist
|
598 |
+
);
|
599 |
+
break;
|
600 |
+
case library::NumericTypeID::kF64:
|
601 |
+
cutlass::reference::device::BlockFillRandom<double>(
|
602 |
+
reinterpret_cast<double *>(pointer_),
|
603 |
+
capacity_,
|
604 |
+
seed,
|
605 |
+
dist
|
606 |
+
);
|
607 |
+
break;
|
608 |
+
case library::NumericTypeID::kCF64:
|
609 |
+
cutlass::reference::device::BlockFillRandom<complex<double>>(
|
610 |
+
reinterpret_cast<complex<double> *>(pointer_),
|
611 |
+
capacity_,
|
612 |
+
seed,
|
613 |
+
dist
|
614 |
+
);
|
615 |
+
break;
|
616 |
+
case library::NumericTypeID::kS2:
|
617 |
+
cutlass::reference::device::BlockFillRandom<int2b_t>(
|
618 |
+
reinterpret_cast<int2b_t *>(pointer_),
|
619 |
+
capacity_,
|
620 |
+
seed,
|
621 |
+
dist
|
622 |
+
);
|
623 |
+
break;
|
624 |
+
case library::NumericTypeID::kS4:
|
625 |
+
cutlass::reference::device::BlockFillRandom<int4b_t>(
|
626 |
+
reinterpret_cast<int4b_t *>(pointer_),
|
627 |
+
capacity_,
|
628 |
+
seed,
|
629 |
+
dist
|
630 |
+
);
|
631 |
+
break;
|
632 |
+
case library::NumericTypeID::kS8:
|
633 |
+
cutlass::reference::device::BlockFillRandom<int8_t>(
|
634 |
+
reinterpret_cast<int8_t *>(pointer_),
|
635 |
+
capacity_,
|
636 |
+
seed,
|
637 |
+
dist
|
638 |
+
);
|
639 |
+
break;
|
640 |
+
case library::NumericTypeID::kS16:
|
641 |
+
cutlass::reference::device::BlockFillRandom<int16_t>(
|
642 |
+
reinterpret_cast<int16_t *>(pointer_),
|
643 |
+
capacity_,
|
644 |
+
seed,
|
645 |
+
dist
|
646 |
+
);
|
647 |
+
break;
|
648 |
+
case library::NumericTypeID::kS32:
|
649 |
+
cutlass::reference::device::BlockFillRandom<int32_t>(
|
650 |
+
reinterpret_cast<int32_t *>(pointer_),
|
651 |
+
capacity_,
|
652 |
+
seed,
|
653 |
+
dist
|
654 |
+
);
|
655 |
+
break;
|
656 |
+
case library::NumericTypeID::kS64:
|
657 |
+
cutlass::reference::device::BlockFillRandom<int64_t>(
|
658 |
+
reinterpret_cast<int64_t *>(pointer_),
|
659 |
+
capacity_,
|
660 |
+
seed,
|
661 |
+
dist
|
662 |
+
);
|
663 |
+
break;
|
664 |
+
case library::NumericTypeID::kB1:
|
665 |
+
cutlass::reference::device::BlockFillRandom<uint1b_t>(
|
666 |
+
reinterpret_cast<uint1b_t *>(pointer_),
|
667 |
+
capacity_,
|
668 |
+
seed,
|
669 |
+
dist
|
670 |
+
);
|
671 |
+
break;
|
672 |
+
case library::NumericTypeID::kU2:
|
673 |
+
cutlass::reference::device::BlockFillRandom<uint2b_t>(
|
674 |
+
reinterpret_cast<uint2b_t *>(pointer_),
|
675 |
+
capacity_,
|
676 |
+
seed,
|
677 |
+
dist
|
678 |
+
);
|
679 |
+
break;
|
680 |
+
case library::NumericTypeID::kU4:
|
681 |
+
cutlass::reference::device::BlockFillRandom<uint4b_t>(
|
682 |
+
reinterpret_cast<uint4b_t *>(pointer_),
|
683 |
+
capacity_,
|
684 |
+
seed,
|
685 |
+
dist
|
686 |
+
);
|
687 |
+
break;
|
688 |
+
case library::NumericTypeID::kU8:
|
689 |
+
cutlass::reference::device::BlockFillRandom<uint8_t>(
|
690 |
+
reinterpret_cast<uint8_t *>(pointer_),
|
691 |
+
capacity_,
|
692 |
+
seed,
|
693 |
+
dist
|
694 |
+
);
|
695 |
+
break;
|
696 |
+
case library::NumericTypeID::kU16:
|
697 |
+
cutlass::reference::device::BlockFillRandom<uint16_t>(
|
698 |
+
reinterpret_cast<uint16_t *>(pointer_),
|
699 |
+
capacity_,
|
700 |
+
seed,
|
701 |
+
dist
|
702 |
+
);
|
703 |
+
break;
|
704 |
+
case library::NumericTypeID::kU32:
|
705 |
+
cutlass::reference::device::BlockFillRandom<uint32_t>(
|
706 |
+
reinterpret_cast<uint32_t *>(pointer_),
|
707 |
+
capacity_,
|
708 |
+
seed,
|
709 |
+
dist
|
710 |
+
);
|
711 |
+
break;
|
712 |
+
case library::NumericTypeID::kU64:
|
713 |
+
cutlass::reference::device::BlockFillRandom<uint64_t>(
|
714 |
+
reinterpret_cast<uint64_t *>(pointer_),
|
715 |
+
capacity_,
|
716 |
+
seed,
|
717 |
+
dist
|
718 |
+
);
|
719 |
+
break;
|
720 |
+
default: break;
|
721 |
+
}
|
722 |
+
}
|
723 |
+
|
724 |
+
void DeviceAllocation::initialize_random_host(int seed, Distribution dist) {
|
725 |
+
if (!bytes()) {
|
726 |
+
#ifndef NDEBUG
|
727 |
+
std::cout << "Skipping initialization of size 0 allocation\n";
|
728 |
+
#endif
|
729 |
+
return;
|
730 |
+
}
|
731 |
+
|
732 |
+
if (!data()) {
|
733 |
+
throw std::runtime_error("Attempting to initialize invalid allocation.");
|
734 |
+
}
|
735 |
+
|
736 |
+
std::vector<uint8_t> host_data(bytes());
|
737 |
+
|
738 |
+
switch (type_) {
|
739 |
+
case library::NumericTypeID::kFE4M3:
|
740 |
+
cutlass::reference::host::BlockFillRandom<cutlass::float_e4m3_t>(
|
741 |
+
reinterpret_cast<cutlass::float_e4m3_t *>(host_data.data()),
|
742 |
+
capacity_,
|
743 |
+
seed,
|
744 |
+
dist
|
745 |
+
);
|
746 |
+
break;
|
747 |
+
case library::NumericTypeID::kFE5M2:
|
748 |
+
cutlass::reference::host::BlockFillRandom<cutlass::float_e5m2_t>(
|
749 |
+
reinterpret_cast<cutlass::float_e5m2_t *>(host_data.data()),
|
750 |
+
capacity_,
|
751 |
+
seed,
|
752 |
+
dist
|
753 |
+
);
|
754 |
+
break;
|
755 |
+
case library::NumericTypeID::kF16:
|
756 |
+
cutlass::reference::host::BlockFillRandom<cutlass::half_t>(
|
757 |
+
reinterpret_cast<cutlass::half_t *>(host_data.data()),
|
758 |
+
capacity_,
|
759 |
+
seed,
|
760 |
+
dist
|
761 |
+
);
|
762 |
+
break;
|
763 |
+
case library::NumericTypeID::kBF16:
|
764 |
+
cutlass::reference::host::BlockFillRandom<cutlass::bfloat16_t>(
|
765 |
+
reinterpret_cast<cutlass::bfloat16_t *>(host_data.data()),
|
766 |
+
capacity_,
|
767 |
+
seed,
|
768 |
+
dist
|
769 |
+
);
|
770 |
+
break;
|
771 |
+
case library::NumericTypeID::kTF32:
|
772 |
+
cutlass::reference::host::BlockFillRandom<cutlass::tfloat32_t>(
|
773 |
+
reinterpret_cast<cutlass::tfloat32_t *>(host_data.data()),
|
774 |
+
capacity_,
|
775 |
+
seed,
|
776 |
+
dist
|
777 |
+
);
|
778 |
+
break;
|
779 |
+
case library::NumericTypeID::kF32:
|
780 |
+
cutlass::reference::host::BlockFillRandom<float>(
|
781 |
+
reinterpret_cast<float *>(host_data.data()),
|
782 |
+
capacity_,
|
783 |
+
seed,
|
784 |
+
dist
|
785 |
+
);
|
786 |
+
break;
|
787 |
+
case library::NumericTypeID::kCF16:
|
788 |
+
cutlass::reference::host::BlockFillRandom<cutlass::complex<cutlass::half_t>>(
|
789 |
+
reinterpret_cast<cutlass::complex<cutlass::half_t> *>(host_data.data()),
|
790 |
+
capacity_,
|
791 |
+
seed,
|
792 |
+
dist
|
793 |
+
);
|
794 |
+
break;
|
795 |
+
case library::NumericTypeID::kCBF16:
|
796 |
+
cutlass::reference::host::BlockFillRandom<cutlass::complex<cutlass::bfloat16_t>>(
|
797 |
+
reinterpret_cast<cutlass::complex<cutlass::bfloat16_t> *>(host_data.data()),
|
798 |
+
capacity_,
|
799 |
+
seed,
|
800 |
+
dist
|
801 |
+
);
|
802 |
+
break;
|
803 |
+
case library::NumericTypeID::kCTF32:
|
804 |
+
cutlass::reference::host::BlockFillRandom<cutlass::complex<cutlass::tfloat32_t>>(
|
805 |
+
reinterpret_cast<cutlass::complex<cutlass::tfloat32_t> *>(host_data.data()),
|
806 |
+
capacity_,
|
807 |
+
seed,
|
808 |
+
dist
|
809 |
+
);
|
810 |
+
break;
|
811 |
+
case library::NumericTypeID::kCF32:
|
812 |
+
cutlass::reference::host::BlockFillRandom<cutlass::complex<float>>(
|
813 |
+
reinterpret_cast<cutlass::complex<float> *>(host_data.data()),
|
814 |
+
capacity_,
|
815 |
+
seed,
|
816 |
+
dist
|
817 |
+
);
|
818 |
+
break;
|
819 |
+
case library::NumericTypeID::kF64:
|
820 |
+
cutlass::reference::host::BlockFillRandom<double>(
|
821 |
+
reinterpret_cast<double *>(host_data.data()),
|
822 |
+
capacity_,
|
823 |
+
seed,
|
824 |
+
dist
|
825 |
+
);
|
826 |
+
break;
|
827 |
+
case library::NumericTypeID::kCF64:
|
828 |
+
cutlass::reference::host::BlockFillRandom<cutlass::complex<double>>(
|
829 |
+
reinterpret_cast<cutlass::complex<double> *>(host_data.data()),
|
830 |
+
capacity_,
|
831 |
+
seed,
|
832 |
+
dist
|
833 |
+
);
|
834 |
+
break;
|
835 |
+
case library::NumericTypeID::kS2:
|
836 |
+
cutlass::reference::host::BlockFillRandom<int2b_t>(
|
837 |
+
reinterpret_cast<int2b_t *>(host_data.data()),
|
838 |
+
capacity_,
|
839 |
+
seed,
|
840 |
+
dist
|
841 |
+
);
|
842 |
+
break;
|
843 |
+
case library::NumericTypeID::kS4:
|
844 |
+
cutlass::reference::host::BlockFillRandom<int4b_t>(
|
845 |
+
reinterpret_cast<int4b_t *>(host_data.data()),
|
846 |
+
capacity_,
|
847 |
+
seed,
|
848 |
+
dist
|
849 |
+
);
|
850 |
+
break;
|
851 |
+
case library::NumericTypeID::kS8:
|
852 |
+
cutlass::reference::host::BlockFillRandom<int8_t>(
|
853 |
+
reinterpret_cast<int8_t *>(host_data.data()),
|
854 |
+
capacity_,
|
855 |
+
seed,
|
856 |
+
dist
|
857 |
+
);
|
858 |
+
break;
|
859 |
+
case library::NumericTypeID::kS16:
|
860 |
+
cutlass::reference::host::BlockFillRandom<int16_t>(
|
861 |
+
reinterpret_cast<int16_t *>(host_data.data()),
|
862 |
+
capacity_,
|
863 |
+
seed,
|
864 |
+
dist
|
865 |
+
);
|
866 |
+
break;
|
867 |
+
case library::NumericTypeID::kS32:
|
868 |
+
cutlass::reference::host::BlockFillRandom<int32_t>(
|
869 |
+
reinterpret_cast<int32_t *>(host_data.data()),
|
870 |
+
capacity_,
|
871 |
+
seed,
|
872 |
+
dist
|
873 |
+
);
|
874 |
+
break;
|
875 |
+
case library::NumericTypeID::kS64:
|
876 |
+
cutlass::reference::host::BlockFillRandom<int64_t>(
|
877 |
+
reinterpret_cast<int64_t *>(host_data.data()),
|
878 |
+
capacity_,
|
879 |
+
seed,
|
880 |
+
dist
|
881 |
+
);
|
882 |
+
break;
|
883 |
+
case library::NumericTypeID::kB1:
|
884 |
+
cutlass::reference::host::BlockFillRandom<uint1b_t>(
|
885 |
+
reinterpret_cast<uint1b_t *>(host_data.data()),
|
886 |
+
capacity_,
|
887 |
+
seed,
|
888 |
+
dist
|
889 |
+
);
|
890 |
+
break;
|
891 |
+
case library::NumericTypeID::kU2:
|
892 |
+
cutlass::reference::host::BlockFillRandom<uint2b_t>(
|
893 |
+
reinterpret_cast<uint2b_t *>(host_data.data()),
|
894 |
+
capacity_,
|
895 |
+
seed,
|
896 |
+
dist
|
897 |
+
);
|
898 |
+
break;
|
899 |
+
case library::NumericTypeID::kU4:
|
900 |
+
cutlass::reference::host::BlockFillRandom<uint4b_t>(
|
901 |
+
reinterpret_cast<uint4b_t *>(host_data.data()),
|
902 |
+
capacity_,
|
903 |
+
seed,
|
904 |
+
dist
|
905 |
+
);
|
906 |
+
break;
|
907 |
+
case library::NumericTypeID::kU8:
|
908 |
+
cutlass::reference::host::BlockFillRandom<uint8_t>(
|
909 |
+
reinterpret_cast<uint8_t *>(host_data.data()),
|
910 |
+
capacity_,
|
911 |
+
seed,
|
912 |
+
dist
|
913 |
+
);
|
914 |
+
break;
|
915 |
+
case library::NumericTypeID::kU16:
|
916 |
+
cutlass::reference::host::BlockFillRandom<uint16_t>(
|
917 |
+
reinterpret_cast<uint16_t *>(host_data.data()),
|
918 |
+
capacity_,
|
919 |
+
seed,
|
920 |
+
dist
|
921 |
+
);
|
922 |
+
break;
|
923 |
+
case library::NumericTypeID::kU32:
|
924 |
+
cutlass::reference::host::BlockFillRandom<uint32_t>(
|
925 |
+
reinterpret_cast<uint32_t *>(host_data.data()),
|
926 |
+
capacity_,
|
927 |
+
seed,
|
928 |
+
dist
|
929 |
+
);
|
930 |
+
break;
|
931 |
+
case library::NumericTypeID::kU64:
|
932 |
+
cutlass::reference::host::BlockFillRandom<uint64_t>(
|
933 |
+
reinterpret_cast<uint64_t *>(host_data.data()),
|
934 |
+
capacity_,
|
935 |
+
seed,
|
936 |
+
dist
|
937 |
+
);
|
938 |
+
break;
|
939 |
+
default: break;
|
940 |
+
}
|
941 |
+
|
942 |
+
copy_from_host(host_data.data());
|
943 |
+
}
|
944 |
+
|
945 |
+
void DeviceAllocation::initialize_sequential_device(Distribution dist) {
|
946 |
+
if (!bytes()) {
|
947 |
+
#ifndef NDEBUG
|
948 |
+
std::cout << "Skipping initialization of size 0 allocation\n";
|
949 |
+
#endif
|
950 |
+
return;
|
951 |
+
}
|
952 |
+
|
953 |
+
if (!data()) {
|
954 |
+
throw std::runtime_error("Attempting to initialize invalid allocation.");
|
955 |
+
}
|
956 |
+
|
957 |
+
switch (type_) {
|
958 |
+
case library::NumericTypeID::kFE4M3:
|
959 |
+
cutlass::reference::device::BlockFillSequential<cutlass::float_e4m3_t>(
|
960 |
+
reinterpret_cast<cutlass::float_e4m3_t *>(pointer_),
|
961 |
+
capacity_,
|
962 |
+
static_cast<cutlass::float_e4m3_t>(dist.sequential.delta),
|
963 |
+
static_cast<cutlass::float_e4m3_t>(dist.sequential.start)
|
964 |
+
);
|
965 |
+
break;
|
966 |
+
case library::NumericTypeID::kFE5M2:
|
967 |
+
cutlass::reference::device::BlockFillSequential<cutlass::float_e5m2_t>(
|
968 |
+
reinterpret_cast<cutlass::float_e5m2_t *>(pointer_),
|
969 |
+
capacity_,
|
970 |
+
static_cast<cutlass::float_e5m2_t>(dist.sequential.delta),
|
971 |
+
static_cast<cutlass::float_e5m2_t>(dist.sequential.start)
|
972 |
+
);
|
973 |
+
break;
|
974 |
+
case library::NumericTypeID::kF16:
|
975 |
+
cutlass::reference::device::BlockFillSequential<cutlass::half_t>(
|
976 |
+
reinterpret_cast<cutlass::half_t *>(pointer_),
|
977 |
+
capacity_,
|
978 |
+
static_cast<cutlass::half_t>(dist.sequential.delta),
|
979 |
+
static_cast<cutlass::half_t>(dist.sequential.start)
|
980 |
+
);
|
981 |
+
break;
|
982 |
+
case library::NumericTypeID::kBF16:
|
983 |
+
cutlass::reference::device::BlockFillSequential<cutlass::bfloat16_t>(
|
984 |
+
reinterpret_cast<cutlass::bfloat16_t *>(pointer_),
|
985 |
+
capacity_,
|
986 |
+
static_cast<cutlass::bfloat16_t>(dist.sequential.delta),
|
987 |
+
static_cast<cutlass::bfloat16_t>(dist.sequential.start)
|
988 |
+
);
|
989 |
+
break;
|
990 |
+
case library::NumericTypeID::kTF32:
|
991 |
+
cutlass::reference::device::BlockFillSequential<cutlass::tfloat32_t>(
|
992 |
+
reinterpret_cast<cutlass::tfloat32_t *>(pointer_),
|
993 |
+
capacity_,
|
994 |
+
static_cast<cutlass::tfloat32_t>(dist.sequential.delta),
|
995 |
+
static_cast<cutlass::tfloat32_t>(dist.sequential.start)
|
996 |
+
);
|
997 |
+
break;
|
998 |
+
case library::NumericTypeID::kF32:
|
999 |
+
cutlass::reference::device::BlockFillSequential<float>(
|
1000 |
+
reinterpret_cast<float *>(pointer_),
|
1001 |
+
capacity_,
|
1002 |
+
static_cast<float>(dist.sequential.delta),
|
1003 |
+
static_cast<float>(dist.sequential.start)
|
1004 |
+
);
|
1005 |
+
break;
|
1006 |
+
case library::NumericTypeID::kCF16:
|
1007 |
+
cutlass::reference::device::BlockFillSequential<cutlass::complex<cutlass::half_t>>(
|
1008 |
+
reinterpret_cast<cutlass::complex<cutlass::half_t> *>(pointer_),
|
1009 |
+
capacity_,
|
1010 |
+
cutlass::complex<cutlass::half_t>(
|
1011 |
+
static_cast<cutlass::half_t>(dist.sequential.delta)),
|
1012 |
+
cutlass::complex<cutlass::half_t>(
|
1013 |
+
static_cast<cutlass::half_t>(dist.sequential.start))
|
1014 |
+
);
|
1015 |
+
break;
|
1016 |
+
case library::NumericTypeID::kCBF16:
|
1017 |
+
cutlass::reference::device::BlockFillSequential<cutlass::complex<cutlass::bfloat16_t>>(
|
1018 |
+
reinterpret_cast<cutlass::complex<cutlass::bfloat16_t> *>(pointer_),
|
1019 |
+
capacity_,
|
1020 |
+
cutlass::complex<cutlass::bfloat16_t>(
|
1021 |
+
static_cast<cutlass::bfloat16_t>(dist.sequential.delta)),
|
1022 |
+
cutlass::complex<cutlass::bfloat16_t>(
|
1023 |
+
static_cast<cutlass::bfloat16_t>(dist.sequential.start))
|
1024 |
+
);
|
1025 |
+
break;
|
1026 |
+
case library::NumericTypeID::kCTF32:
|
1027 |
+
cutlass::reference::device::BlockFillSequential<cutlass::complex<cutlass::tfloat32_t>>(
|
1028 |
+
reinterpret_cast<cutlass::complex<cutlass::tfloat32_t> *>(pointer_),
|
1029 |
+
capacity_,
|
1030 |
+
cutlass::complex<cutlass::tfloat32_t>(
|
1031 |
+
static_cast<cutlass::tfloat32_t>(dist.sequential.delta)),
|
1032 |
+
cutlass::complex<cutlass::tfloat32_t>(
|
1033 |
+
static_cast<cutlass::tfloat32_t>(dist.sequential.start))
|
1034 |
+
);
|
1035 |
+
break;
|
1036 |
+
case library::NumericTypeID::kCF32:
|
1037 |
+
cutlass::reference::device::BlockFillSequential<cutlass::complex<float>>(
|
1038 |
+
reinterpret_cast<cutlass::complex<float> *>(pointer_),
|
1039 |
+
capacity_,
|
1040 |
+
cutlass::complex<float>(
|
1041 |
+
static_cast<float>(dist.sequential.delta)),
|
1042 |
+
cutlass::complex<float>(
|
1043 |
+
static_cast<float>(dist.sequential.start))
|
1044 |
+
);
|
1045 |
+
break;
|
1046 |
+
case library::NumericTypeID::kF64:
|
1047 |
+
cutlass::reference::device::BlockFillSequential<double>(
|
1048 |
+
reinterpret_cast<double *>(pointer_),
|
1049 |
+
capacity_,
|
1050 |
+
static_cast<double>(dist.sequential.delta),
|
1051 |
+
static_cast<double>(dist.sequential.start)
|
1052 |
+
);
|
1053 |
+
break;
|
1054 |
+
case library::NumericTypeID::kCF64:
|
1055 |
+
cutlass::reference::device::BlockFillSequential<cutlass::complex<double>>(
|
1056 |
+
reinterpret_cast<cutlass::complex<double> *>(pointer_),
|
1057 |
+
capacity_,
|
1058 |
+
cutlass::complex<double>(
|
1059 |
+
static_cast<double>(dist.sequential.delta)),
|
1060 |
+
cutlass::complex<double>(
|
1061 |
+
static_cast<double>(dist.sequential.start))
|
1062 |
+
);
|
1063 |
+
break;
|
1064 |
+
case library::NumericTypeID::kS2:
|
1065 |
+
cutlass::reference::device::BlockFillSequential<int2b_t>(
|
1066 |
+
reinterpret_cast<int2b_t *>(pointer_),
|
1067 |
+
capacity_,
|
1068 |
+
static_cast<int2b_t>(dist.sequential.delta),
|
1069 |
+
static_cast<int2b_t>(dist.sequential.start)
|
1070 |
+
);
|
1071 |
+
break;
|
1072 |
+
case library::NumericTypeID::kS4:
|
1073 |
+
cutlass::reference::device::BlockFillSequential<int4b_t>(
|
1074 |
+
reinterpret_cast<int4b_t *>(pointer_),
|
1075 |
+
capacity_,
|
1076 |
+
static_cast<int4b_t>(dist.sequential.delta),
|
1077 |
+
static_cast<int4b_t>(dist.sequential.start)
|
1078 |
+
);
|
1079 |
+
break;
|
1080 |
+
case library::NumericTypeID::kS8:
|
1081 |
+
cutlass::reference::device::BlockFillSequential<int8_t>(
|
1082 |
+
reinterpret_cast<int8_t *>(pointer_),
|
1083 |
+
capacity_,
|
1084 |
+
static_cast<int8_t>(dist.sequential.delta),
|
1085 |
+
static_cast<int8_t>(dist.sequential.start)
|
1086 |
+
);
|
1087 |
+
break;
|
1088 |
+
case library::NumericTypeID::kS16:
|
1089 |
+
cutlass::reference::device::BlockFillSequential<int16_t>(
|
1090 |
+
reinterpret_cast<int16_t *>(pointer_),
|
1091 |
+
capacity_,
|
1092 |
+
static_cast<int16_t>(dist.sequential.delta),
|
1093 |
+
static_cast<int16_t>(dist.sequential.start)
|
1094 |
+
);
|
1095 |
+
break;
|
1096 |
+
case library::NumericTypeID::kS32:
|
1097 |
+
cutlass::reference::device::BlockFillSequential<int32_t>(
|
1098 |
+
reinterpret_cast<int32_t *>(pointer_),
|
1099 |
+
capacity_,
|
1100 |
+
static_cast<int32_t>(dist.sequential.delta),
|
1101 |
+
static_cast<int32_t>(dist.sequential.start)
|
1102 |
+
);
|
1103 |
+
break;
|
1104 |
+
case library::NumericTypeID::kS64:
|
1105 |
+
cutlass::reference::device::BlockFillSequential<int64_t>(
|
1106 |
+
reinterpret_cast<int64_t *>(pointer_),
|
1107 |
+
capacity_,
|
1108 |
+
static_cast<int64_t>(dist.sequential.delta),
|
1109 |
+
static_cast<int64_t>(dist.sequential.start)
|
1110 |
+
);
|
1111 |
+
break;
|
1112 |
+
case library::NumericTypeID::kB1:
|
1113 |
+
cutlass::reference::device::BlockFillSequential<uint1b_t>(
|
1114 |
+
reinterpret_cast<uint1b_t *>(pointer_),
|
1115 |
+
capacity_,
|
1116 |
+
static_cast<uint1b_t>(dist.sequential.delta),
|
1117 |
+
static_cast<uint1b_t>(dist.sequential.start)
|
1118 |
+
);
|
1119 |
+
break;
|
1120 |
+
case library::NumericTypeID::kU2:
|
1121 |
+
cutlass::reference::device::BlockFillSequential<uint2b_t>(
|
1122 |
+
reinterpret_cast<uint2b_t *>(pointer_),
|
1123 |
+
capacity_,
|
1124 |
+
static_cast<uint2b_t>(dist.sequential.delta),
|
1125 |
+
static_cast<uint2b_t>(dist.sequential.start)
|
1126 |
+
);
|
1127 |
+
break;
|
1128 |
+
case library::NumericTypeID::kU4:
|
1129 |
+
cutlass::reference::device::BlockFillSequential<uint4b_t>(
|
1130 |
+
reinterpret_cast<uint4b_t *>(pointer_),
|
1131 |
+
capacity_,
|
1132 |
+
static_cast<uint4b_t>(dist.sequential.delta),
|
1133 |
+
static_cast<uint4b_t>(dist.sequential.start)
|
1134 |
+
);
|
1135 |
+
break;
|
1136 |
+
case library::NumericTypeID::kU8:
|
1137 |
+
cutlass::reference::device::BlockFillSequential<uint8_t>(
|
1138 |
+
reinterpret_cast<uint8_t *>(pointer_),
|
1139 |
+
capacity_,
|
1140 |
+
static_cast<uint8_t>(dist.sequential.delta),
|
1141 |
+
static_cast<uint8_t>(dist.sequential.start)
|
1142 |
+
);
|
1143 |
+
break;
|
1144 |
+
case library::NumericTypeID::kU16:
|
1145 |
+
cutlass::reference::device::BlockFillSequential<uint16_t>(
|
1146 |
+
reinterpret_cast<uint16_t *>(pointer_),
|
1147 |
+
capacity_,
|
1148 |
+
static_cast<uint16_t>(dist.sequential.delta),
|
1149 |
+
static_cast<uint16_t>(dist.sequential.start)
|
1150 |
+
);
|
1151 |
+
break;
|
1152 |
+
case library::NumericTypeID::kU32:
|
1153 |
+
cutlass::reference::device::BlockFillSequential<uint32_t>(
|
1154 |
+
reinterpret_cast<uint32_t *>(pointer_),
|
1155 |
+
capacity_,
|
1156 |
+
static_cast<uint32_t>(dist.sequential.delta),
|
1157 |
+
static_cast<uint32_t>(dist.sequential.start)
|
1158 |
+
);
|
1159 |
+
break;
|
1160 |
+
case library::NumericTypeID::kU64:
|
1161 |
+
cutlass::reference::device::BlockFillSequential<uint64_t>(
|
1162 |
+
reinterpret_cast<uint64_t *>(pointer_),
|
1163 |
+
capacity_,
|
1164 |
+
static_cast<uint64_t>(dist.sequential.delta),
|
1165 |
+
static_cast<uint64_t>(dist.sequential.start)
|
1166 |
+
);
|
1167 |
+
break;
|
1168 |
+
default: break;
|
1169 |
+
}
|
1170 |
+
|
1171 |
+
}
|
1172 |
+
|
1173 |
+
void DeviceAllocation::initialize_sequential_host(Distribution dist) {
|
1174 |
+
if (!bytes()) {
|
1175 |
+
#ifndef NDEBUG
|
1176 |
+
std::cout << "Skipping initialization of size 0 allocation\n";
|
1177 |
+
#endif
|
1178 |
+
return;
|
1179 |
+
}
|
1180 |
+
|
1181 |
+
if (!data()) {
|
1182 |
+
throw std::runtime_error("Attempting to initialize invalid allocation.");
|
1183 |
+
}
|
1184 |
+
|
1185 |
+
std::vector<uint8_t> host_data(bytes());
|
1186 |
+
|
1187 |
+
switch (type_) {
|
1188 |
+
case library::NumericTypeID::kFE4M3:
|
1189 |
+
cutlass::reference::host::BlockFillSequential<cutlass::float_e4m3_t>(
|
1190 |
+
reinterpret_cast<cutlass::float_e4m3_t *>(host_data.data()),
|
1191 |
+
capacity_,
|
1192 |
+
static_cast<cutlass::float_e4m3_t>(dist.sequential.delta),
|
1193 |
+
static_cast<cutlass::float_e4m3_t>(dist.sequential.start)
|
1194 |
+
);
|
1195 |
+
break;
|
1196 |
+
case library::NumericTypeID::kFE5M2:
|
1197 |
+
cutlass::reference::host::BlockFillSequential<cutlass::float_e5m2_t>(
|
1198 |
+
reinterpret_cast<cutlass::float_e5m2_t *>(host_data.data()),
|
1199 |
+
capacity_,
|
1200 |
+
static_cast<cutlass::float_e5m2_t>(dist.sequential.delta),
|
1201 |
+
static_cast<cutlass::float_e5m2_t>(dist.sequential.start)
|
1202 |
+
);
|
1203 |
+
break;
|
1204 |
+
case library::NumericTypeID::kF16:
|
1205 |
+
cutlass::reference::host::BlockFillSequential<cutlass::half_t>(
|
1206 |
+
reinterpret_cast<cutlass::half_t *>(host_data.data()),
|
1207 |
+
capacity_,
|
1208 |
+
static_cast<cutlass::half_t>(dist.sequential.delta),
|
1209 |
+
static_cast<cutlass::half_t>(dist.sequential.start)
|
1210 |
+
);
|
1211 |
+
break;
|
1212 |
+
case library::NumericTypeID::kBF16:
|
1213 |
+
cutlass::reference::host::BlockFillSequential<cutlass::bfloat16_t>(
|
1214 |
+
reinterpret_cast<cutlass::bfloat16_t *>(host_data.data()),
|
1215 |
+
capacity_,
|
1216 |
+
static_cast<cutlass::bfloat16_t>(dist.sequential.delta),
|
1217 |
+
static_cast<cutlass::bfloat16_t>(dist.sequential.start)
|
1218 |
+
);
|
1219 |
+
break;
|
1220 |
+
case library::NumericTypeID::kTF32:
|
1221 |
+
cutlass::reference::host::BlockFillSequential<cutlass::tfloat32_t>(
|
1222 |
+
reinterpret_cast<cutlass::tfloat32_t *>(host_data.data()),
|
1223 |
+
capacity_,
|
1224 |
+
static_cast<cutlass::tfloat32_t>(dist.sequential.delta),
|
1225 |
+
static_cast<cutlass::tfloat32_t>(dist.sequential.start)
|
1226 |
+
);
|
1227 |
+
break;
|
1228 |
+
case library::NumericTypeID::kF32:
|
1229 |
+
cutlass::reference::host::BlockFillSequential<float>(
|
1230 |
+
reinterpret_cast<float *>(host_data.data()),
|
1231 |
+
capacity_,
|
1232 |
+
static_cast<float>(dist.sequential.delta),
|
1233 |
+
static_cast<float>(dist.sequential.start)
|
1234 |
+
);
|
1235 |
+
break;
|
1236 |
+
case library::NumericTypeID::kCF16:
|
1237 |
+
cutlass::reference::host::BlockFillSequential<cutlass::complex<cutlass::half_t>>(
|
1238 |
+
reinterpret_cast<cutlass::complex<cutlass::half_t> *>(host_data.data()),
|
1239 |
+
capacity_,
|
1240 |
+
cutlass::complex<cutlass::half_t>(
|
1241 |
+
static_cast<cutlass::half_t>(dist.sequential.delta)),
|
1242 |
+
cutlass::complex<cutlass::half_t>(
|
1243 |
+
static_cast<cutlass::half_t>(dist.sequential.start))
|
1244 |
+
);
|
1245 |
+
break;
|
1246 |
+
case library::NumericTypeID::kCBF16:
|
1247 |
+
cutlass::reference::host::BlockFillSequential<cutlass::complex<cutlass::bfloat16_t>>(
|
1248 |
+
reinterpret_cast<cutlass::complex<cutlass::bfloat16_t> *>(host_data.data()),
|
1249 |
+
capacity_,
|
1250 |
+
cutlass::complex<cutlass::bfloat16_t>(
|
1251 |
+
static_cast<cutlass::bfloat16_t>(dist.sequential.delta)),
|
1252 |
+
cutlass::complex<cutlass::bfloat16_t>(
|
1253 |
+
static_cast<cutlass::bfloat16_t>(dist.sequential.start))
|
1254 |
+
);
|
1255 |
+
break;
|
1256 |
+
case library::NumericTypeID::kCTF32:
|
1257 |
+
cutlass::reference::host::BlockFillSequential<cutlass::complex<cutlass::tfloat32_t>>(
|
1258 |
+
reinterpret_cast<cutlass::complex<cutlass::tfloat32_t> *>(host_data.data()),
|
1259 |
+
capacity_,
|
1260 |
+
cutlass::complex<cutlass::tfloat32_t>(
|
1261 |
+
static_cast<cutlass::tfloat32_t>(dist.sequential.delta)),
|
1262 |
+
cutlass::complex<cutlass::tfloat32_t>(
|
1263 |
+
static_cast<cutlass::tfloat32_t>(dist.sequential.start))
|
1264 |
+
);
|
1265 |
+
break;
|
1266 |
+
case library::NumericTypeID::kCF32:
|
1267 |
+
cutlass::reference::host::BlockFillSequential<cutlass::complex<float>>(
|
1268 |
+
reinterpret_cast<cutlass::complex<float> *>(host_data.data()),
|
1269 |
+
capacity_,
|
1270 |
+
cutlass::complex<float>(
|
1271 |
+
static_cast<float>(dist.sequential.delta)),
|
1272 |
+
cutlass::complex<float>(
|
1273 |
+
static_cast<float>(dist.sequential.start))
|
1274 |
+
);
|
1275 |
+
break;
|
1276 |
+
case library::NumericTypeID::kF64:
|
1277 |
+
cutlass::reference::host::BlockFillSequential<double>(
|
1278 |
+
reinterpret_cast<double *>(host_data.data()),
|
1279 |
+
capacity_,
|
1280 |
+
static_cast<double>(dist.sequential.delta),
|
1281 |
+
static_cast<double>(dist.sequential.start)
|
1282 |
+
);
|
1283 |
+
break;
|
1284 |
+
case library::NumericTypeID::kCF64:
|
1285 |
+
cutlass::reference::host::BlockFillSequential<cutlass::complex<double>>(
|
1286 |
+
reinterpret_cast<cutlass::complex<double> *>(host_data.data()),
|
1287 |
+
capacity_,
|
1288 |
+
cutlass::complex<double>(
|
1289 |
+
static_cast<double>(dist.sequential.delta)),
|
1290 |
+
cutlass::complex<double>(
|
1291 |
+
static_cast<double>(dist.sequential.start))
|
1292 |
+
);
|
1293 |
+
break;
|
1294 |
+
case library::NumericTypeID::kS2:
|
1295 |
+
cutlass::reference::host::BlockFillSequential<int2b_t>(
|
1296 |
+
reinterpret_cast<int2b_t *>(host_data.data()),
|
1297 |
+
capacity_,
|
1298 |
+
static_cast<int2b_t>(dist.sequential.delta),
|
1299 |
+
static_cast<int2b_t>(dist.sequential.start)
|
1300 |
+
);
|
1301 |
+
break;
|
1302 |
+
case library::NumericTypeID::kS4:
|
1303 |
+
cutlass::reference::host::BlockFillSequential<int4b_t>(
|
1304 |
+
reinterpret_cast<int4b_t *>(host_data.data()),
|
1305 |
+
capacity_,
|
1306 |
+
static_cast<int4b_t>(dist.sequential.delta),
|
1307 |
+
static_cast<int4b_t>(dist.sequential.start)
|
1308 |
+
);
|
1309 |
+
break;
|
1310 |
+
case library::NumericTypeID::kS8:
|
1311 |
+
cutlass::reference::host::BlockFillSequential<int8_t>(
|
1312 |
+
reinterpret_cast<int8_t *>(host_data.data()),
|
1313 |
+
capacity_,
|
1314 |
+
static_cast<int8_t>(dist.sequential.delta),
|
1315 |
+
static_cast<int8_t>(dist.sequential.start)
|
1316 |
+
);
|
1317 |
+
break;
|
1318 |
+
case library::NumericTypeID::kS16:
|
1319 |
+
cutlass::reference::host::BlockFillSequential<int16_t>(
|
1320 |
+
reinterpret_cast<int16_t *>(host_data.data()),
|
1321 |
+
capacity_,
|
1322 |
+
static_cast<int16_t>(dist.sequential.delta),
|
1323 |
+
static_cast<int16_t>(dist.sequential.start)
|
1324 |
+
);
|
1325 |
+
break;
|
1326 |
+
case library::NumericTypeID::kS32:
|
1327 |
+
cutlass::reference::host::BlockFillSequential<int32_t>(
|
1328 |
+
reinterpret_cast<int32_t *>(host_data.data()),
|
1329 |
+
capacity_,
|
1330 |
+
static_cast<int32_t>(dist.sequential.delta),
|
1331 |
+
static_cast<int32_t>(dist.sequential.start)
|
1332 |
+
);
|
1333 |
+
break;
|
1334 |
+
case library::NumericTypeID::kS64:
|
1335 |
+
cutlass::reference::host::BlockFillSequential<int64_t>(
|
1336 |
+
reinterpret_cast<int64_t *>(host_data.data()),
|
1337 |
+
capacity_,
|
1338 |
+
static_cast<int64_t>(dist.sequential.delta),
|
1339 |
+
static_cast<int64_t>(dist.sequential.start)
|
1340 |
+
);
|
1341 |
+
break;
|
1342 |
+
case library::NumericTypeID::kB1:
|
1343 |
+
cutlass::reference::host::BlockFillSequential<uint1b_t>(
|
1344 |
+
reinterpret_cast<uint1b_t *>(host_data.data()),
|
1345 |
+
capacity_,
|
1346 |
+
static_cast<uint1b_t>(dist.sequential.delta),
|
1347 |
+
static_cast<uint1b_t>(dist.sequential.start)
|
1348 |
+
);
|
1349 |
+
break;
|
1350 |
+
case library::NumericTypeID::kU2:
|
1351 |
+
cutlass::reference::host::BlockFillSequential<uint2b_t>(
|
1352 |
+
reinterpret_cast<uint2b_t *>(host_data.data()),
|
1353 |
+
capacity_,
|
1354 |
+
static_cast<uint2b_t>(dist.sequential.delta),
|
1355 |
+
static_cast<uint2b_t>(dist.sequential.start)
|
1356 |
+
);
|
1357 |
+
break;
|
1358 |
+
case library::NumericTypeID::kU4:
|
1359 |
+
cutlass::reference::host::BlockFillSequential<uint4b_t>(
|
1360 |
+
reinterpret_cast<uint4b_t *>(host_data.data()),
|
1361 |
+
capacity_,
|
1362 |
+
static_cast<uint4b_t>(dist.sequential.delta),
|
1363 |
+
static_cast<uint4b_t>(dist.sequential.start)
|
1364 |
+
);
|
1365 |
+
break;
|
1366 |
+
case library::NumericTypeID::kU8:
|
1367 |
+
cutlass::reference::host::BlockFillSequential<uint8_t>(
|
1368 |
+
reinterpret_cast<uint8_t *>(host_data.data()),
|
1369 |
+
capacity_,
|
1370 |
+
static_cast<uint8_t>(dist.sequential.delta),
|
1371 |
+
static_cast<uint8_t>(dist.sequential.start)
|
1372 |
+
);
|
1373 |
+
break;
|
1374 |
+
case library::NumericTypeID::kU16:
|
1375 |
+
cutlass::reference::host::BlockFillSequential<uint16_t>(
|
1376 |
+
reinterpret_cast<uint16_t *>(host_data.data()),
|
1377 |
+
capacity_,
|
1378 |
+
static_cast<uint16_t>(dist.sequential.delta),
|
1379 |
+
static_cast<uint16_t>(dist.sequential.start)
|
1380 |
+
);
|
1381 |
+
break;
|
1382 |
+
case library::NumericTypeID::kU32:
|
1383 |
+
cutlass::reference::host::BlockFillSequential<uint32_t>(
|
1384 |
+
reinterpret_cast<uint32_t *>(host_data.data()),
|
1385 |
+
capacity_,
|
1386 |
+
static_cast<uint32_t>(dist.sequential.delta),
|
1387 |
+
static_cast<uint32_t>(dist.sequential.start)
|
1388 |
+
);
|
1389 |
+
break;
|
1390 |
+
case library::NumericTypeID::kU64:
|
1391 |
+
cutlass::reference::host::BlockFillSequential<uint64_t>(
|
1392 |
+
reinterpret_cast<uint64_t *>(host_data.data()),
|
1393 |
+
capacity_,
|
1394 |
+
static_cast<uint64_t>(dist.sequential.delta),
|
1395 |
+
static_cast<uint64_t>(dist.sequential.start)
|
1396 |
+
);
|
1397 |
+
break;
|
1398 |
+
default: break;
|
1399 |
+
}
|
1400 |
+
|
1401 |
+
copy_from_host(host_data.data());
|
1402 |
+
}
|
1403 |
+
|
1404 |
+
void DeviceAllocation::initialize_random_sparsemeta_device(int seed, int MetaSizeInBits) {
|
1405 |
+
if (!bytes()) {
|
1406 |
+
#ifndef NDEBUG
|
1407 |
+
std::cout << "Skipping initialization of size 0 allocation\n";
|
1408 |
+
#endif
|
1409 |
+
return;
|
1410 |
+
}
|
1411 |
+
|
1412 |
+
if (!data()) {
|
1413 |
+
throw std::runtime_error("Attempting to initialize invalid allocation.");
|
1414 |
+
}
|
1415 |
+
|
1416 |
+
// Instantiate calls to CURAND here. This file takes a long time to compile for
|
1417 |
+
// this reason.
|
1418 |
+
|
1419 |
+
switch (type_) {
|
1420 |
+
case library::NumericTypeID::kU16:
|
1421 |
+
cutlass::reference::device::BlockFillRandomSparseMeta<uint16_t>(
|
1422 |
+
reinterpret_cast<uint16_t *>(pointer_),
|
1423 |
+
capacity_,
|
1424 |
+
seed,
|
1425 |
+
MetaSizeInBits
|
1426 |
+
);
|
1427 |
+
break;
|
1428 |
+
case library::NumericTypeID::kU32:
|
1429 |
+
cutlass::reference::device::BlockFillRandomSparseMeta<uint32_t>(
|
1430 |
+
reinterpret_cast<uint32_t *>(pointer_),
|
1431 |
+
capacity_,
|
1432 |
+
seed,
|
1433 |
+
MetaSizeInBits
|
1434 |
+
);
|
1435 |
+
break;
|
1436 |
+
default:
|
1437 |
+
break;
|
1438 |
+
}
|
1439 |
+
}
|
1440 |
+
|
1441 |
+
void DeviceAllocation::initialize_random_sparsemeta_host(int seed, int MetaSizeInBits) {
|
1442 |
+
if (!bytes()) {
|
1443 |
+
#ifndef NDEBUG
|
1444 |
+
std::cout << "Skipping initialization of size 0 allocation\n";
|
1445 |
+
#endif
|
1446 |
+
return;
|
1447 |
+
}
|
1448 |
+
|
1449 |
+
if (!data()) {
|
1450 |
+
throw std::runtime_error("Attempting to initialize invalid allocation.");
|
1451 |
+
}
|
1452 |
+
|
1453 |
+
std::vector<uint8_t> host_data(bytes());
|
1454 |
+
|
1455 |
+
switch (type_) {
|
1456 |
+
case library::NumericTypeID::kS16:
|
1457 |
+
cutlass::reference::host::BlockFillRandomSparseMeta<uint16_t>(
|
1458 |
+
reinterpret_cast<uint16_t *>(host_data.data()),
|
1459 |
+
capacity_,
|
1460 |
+
seed,
|
1461 |
+
MetaSizeInBits
|
1462 |
+
);
|
1463 |
+
break;
|
1464 |
+
case library::NumericTypeID::kS32:
|
1465 |
+
cutlass::reference::host::BlockFillRandomSparseMeta<uint32_t>(
|
1466 |
+
reinterpret_cast<uint32_t *>(host_data.data()),
|
1467 |
+
capacity_,
|
1468 |
+
seed,
|
1469 |
+
MetaSizeInBits
|
1470 |
+
);
|
1471 |
+
break;
|
1472 |
+
default:
|
1473 |
+
break;
|
1474 |
+
}
|
1475 |
+
|
1476 |
+
copy_from_host(host_data.data());
|
1477 |
+
}
|
1478 |
+
|
1479 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
1480 |
+
|
1481 |
+
/// Returns true if two blocks have exactly the same value
|
1482 |
+
bool DeviceAllocation::block_compare_equal(
|
1483 |
+
library::NumericTypeID numeric_type,
|
1484 |
+
void const *ptr_A,
|
1485 |
+
void const *ptr_B,
|
1486 |
+
size_t capacity) {
|
1487 |
+
|
1488 |
+
switch (numeric_type) {
|
1489 |
+
case library::NumericTypeID::kFE4M3:
|
1490 |
+
return reference::device::BlockCompareEqual<float_e4m3_t>(
|
1491 |
+
reinterpret_cast<float_e4m3_t const *>(ptr_A),
|
1492 |
+
reinterpret_cast<float_e4m3_t const *>(ptr_B),
|
1493 |
+
capacity);
|
1494 |
+
|
1495 |
+
case library::NumericTypeID::kFE5M2:
|
1496 |
+
return reference::device::BlockCompareEqual<float_e5m2_t>(
|
1497 |
+
reinterpret_cast<float_e5m2_t const *>(ptr_A),
|
1498 |
+
reinterpret_cast<float_e5m2_t const *>(ptr_B),
|
1499 |
+
capacity);
|
1500 |
+
case library::NumericTypeID::kF16:
|
1501 |
+
return reference::device::BlockCompareEqual<half_t>(
|
1502 |
+
reinterpret_cast<half_t const *>(ptr_A),
|
1503 |
+
reinterpret_cast<half_t const *>(ptr_B),
|
1504 |
+
capacity);
|
1505 |
+
|
1506 |
+
case library::NumericTypeID::kBF16:
|
1507 |
+
return reference::device::BlockCompareEqual<bfloat16_t>(
|
1508 |
+
reinterpret_cast<bfloat16_t const *>(ptr_A),
|
1509 |
+
reinterpret_cast<bfloat16_t const *>(ptr_B),
|
1510 |
+
capacity);
|
1511 |
+
|
1512 |
+
case library::NumericTypeID::kTF32:
|
1513 |
+
return reference::device::BlockCompareEqual<tfloat32_t>(
|
1514 |
+
reinterpret_cast<tfloat32_t const *>(ptr_A),
|
1515 |
+
reinterpret_cast<tfloat32_t const *>(ptr_B),
|
1516 |
+
capacity);
|
1517 |
+
|
1518 |
+
case library::NumericTypeID::kF32:
|
1519 |
+
return reference::device::BlockCompareEqual<float>(
|
1520 |
+
reinterpret_cast<float const *>(ptr_A),
|
1521 |
+
reinterpret_cast<float const *>(ptr_B),
|
1522 |
+
capacity);
|
1523 |
+
|
1524 |
+
case library::NumericTypeID::kCF32:
|
1525 |
+
return reference::device::BlockCompareEqual<cutlass::complex<float> >(
|
1526 |
+
reinterpret_cast<complex<float> const *>(ptr_A),
|
1527 |
+
reinterpret_cast<complex<float> const *>(ptr_B),
|
1528 |
+
capacity);
|
1529 |
+
|
1530 |
+
case library::NumericTypeID::kCF16:
|
1531 |
+
return reference::device::BlockCompareEqual<complex<half_t>>(
|
1532 |
+
reinterpret_cast<complex<half_t> const *>(ptr_A),
|
1533 |
+
reinterpret_cast<complex<half_t> const *>(ptr_B),
|
1534 |
+
capacity);
|
1535 |
+
|
1536 |
+
case library::NumericTypeID::kCBF16:
|
1537 |
+
return reference::device::BlockCompareEqual<complex<bfloat16_t>>(
|
1538 |
+
reinterpret_cast<complex<bfloat16_t> const *>(ptr_A),
|
1539 |
+
reinterpret_cast<complex<bfloat16_t> const *>(ptr_B),
|
1540 |
+
capacity);
|
1541 |
+
|
1542 |
+
case library::NumericTypeID::kCTF32:
|
1543 |
+
return reference::device::BlockCompareEqual<complex<tfloat32_t>>(
|
1544 |
+
reinterpret_cast<complex<tfloat32_t> const *>(ptr_A),
|
1545 |
+
reinterpret_cast<complex<tfloat32_t> const *>(ptr_B),
|
1546 |
+
capacity);
|
1547 |
+
|
1548 |
+
case library::NumericTypeID::kF64:
|
1549 |
+
return reference::device::BlockCompareEqual<double>(
|
1550 |
+
reinterpret_cast<double const *>(ptr_A),
|
1551 |
+
reinterpret_cast<double const *>(ptr_B),
|
1552 |
+
capacity);
|
1553 |
+
|
1554 |
+
case library::NumericTypeID::kCF64:
|
1555 |
+
return reference::device::BlockCompareEqual<complex<double>>(
|
1556 |
+
reinterpret_cast<complex<double> const *>(ptr_A),
|
1557 |
+
reinterpret_cast<complex<double> const *>(ptr_B),
|
1558 |
+
capacity);
|
1559 |
+
|
1560 |
+
case library::NumericTypeID::kS2:
|
1561 |
+
return reference::device::BlockCompareEqual<int2b_t>(
|
1562 |
+
reinterpret_cast<int2b_t const *>(ptr_A),
|
1563 |
+
reinterpret_cast<int2b_t const *>(ptr_B),
|
1564 |
+
capacity);
|
1565 |
+
|
1566 |
+
case library::NumericTypeID::kS4:
|
1567 |
+
return reference::device::BlockCompareEqual<int4b_t>(
|
1568 |
+
reinterpret_cast<int4b_t const *>(ptr_A),
|
1569 |
+
reinterpret_cast<int4b_t const *>(ptr_B),
|
1570 |
+
capacity);
|
1571 |
+
|
1572 |
+
case library::NumericTypeID::kS8:
|
1573 |
+
return reference::device::BlockCompareEqual<int8_t>(
|
1574 |
+
reinterpret_cast<int8_t const *>(ptr_A),
|
1575 |
+
reinterpret_cast<int8_t const *>(ptr_B),
|
1576 |
+
capacity);
|
1577 |
+
|
1578 |
+
case library::NumericTypeID::kS16:
|
1579 |
+
return reference::device::BlockCompareEqual<int16_t>(
|
1580 |
+
reinterpret_cast<int16_t const *>(ptr_A),
|
1581 |
+
reinterpret_cast<int16_t const *>(ptr_B),
|
1582 |
+
capacity);
|
1583 |
+
|
1584 |
+
case library::NumericTypeID::kS32:
|
1585 |
+
return reference::device::BlockCompareEqual<int32_t>(
|
1586 |
+
reinterpret_cast<int32_t const *>(ptr_A),
|
1587 |
+
reinterpret_cast<int32_t const *>(ptr_B),
|
1588 |
+
capacity);
|
1589 |
+
|
1590 |
+
case library::NumericTypeID::kS64:
|
1591 |
+
return reference::device::BlockCompareEqual<int64_t>(
|
1592 |
+
reinterpret_cast<int64_t const *>(ptr_A),
|
1593 |
+
reinterpret_cast<int64_t const *>(ptr_B),
|
1594 |
+
capacity);
|
1595 |
+
|
1596 |
+
case library::NumericTypeID::kB1:
|
1597 |
+
return reference::device::BlockCompareEqual<uint1b_t>(
|
1598 |
+
reinterpret_cast<uint1b_t const *>(ptr_A),
|
1599 |
+
reinterpret_cast<uint1b_t const *>(ptr_B),
|
1600 |
+
capacity);
|
1601 |
+
|
1602 |
+
case library::NumericTypeID::kU2:
|
1603 |
+
return reference::device::BlockCompareEqual<uint2b_t>(
|
1604 |
+
reinterpret_cast<uint2b_t const *>(ptr_A),
|
1605 |
+
reinterpret_cast<uint2b_t const *>(ptr_B),
|
1606 |
+
capacity);
|
1607 |
+
|
1608 |
+
case library::NumericTypeID::kU4:
|
1609 |
+
return reference::device::BlockCompareEqual<uint4b_t>(
|
1610 |
+
reinterpret_cast<uint4b_t const *>(ptr_A),
|
1611 |
+
reinterpret_cast<uint4b_t const *>(ptr_B),
|
1612 |
+
capacity);
|
1613 |
+
|
1614 |
+
case library::NumericTypeID::kU8:
|
1615 |
+
return reference::device::BlockCompareEqual<uint8_t>(
|
1616 |
+
reinterpret_cast<uint8_t const *>(ptr_A),
|
1617 |
+
reinterpret_cast<uint8_t const *>(ptr_B),
|
1618 |
+
capacity);
|
1619 |
+
|
1620 |
+
case library::NumericTypeID::kU16:
|
1621 |
+
return reference::device::BlockCompareEqual<uint16_t>(
|
1622 |
+
reinterpret_cast<uint16_t const *>(ptr_A),
|
1623 |
+
reinterpret_cast<uint16_t const *>(ptr_B),
|
1624 |
+
capacity);
|
1625 |
+
|
1626 |
+
case library::NumericTypeID::kU32:
|
1627 |
+
return reference::device::BlockCompareEqual<uint32_t>(
|
1628 |
+
reinterpret_cast<uint32_t const *>(ptr_A),
|
1629 |
+
reinterpret_cast<uint32_t const *>(ptr_B),
|
1630 |
+
capacity);
|
1631 |
+
|
1632 |
+
case library::NumericTypeID::kU64:
|
1633 |
+
return reference::device::BlockCompareEqual<uint64_t>(
|
1634 |
+
reinterpret_cast<uint64_t const *>(ptr_A),
|
1635 |
+
reinterpret_cast<uint64_t const *>(ptr_B),
|
1636 |
+
capacity);
|
1637 |
+
|
1638 |
+
default:
|
1639 |
+
throw std::runtime_error(std::string("Unsupported numeric type: ") + to_string(numeric_type));
|
1640 |
+
}
|
1641 |
+
}
|
1642 |
+
|
1643 |
+
/// Returns true if two blocks have approximately the same value
|
1644 |
+
bool DeviceAllocation::block_compare_relatively_equal(
|
1645 |
+
library::NumericTypeID numeric_type,
|
1646 |
+
void const *ptr_A,
|
1647 |
+
void const *ptr_B,
|
1648 |
+
size_t capacity,
|
1649 |
+
double epsilon,
|
1650 |
+
double nonzero_floor) {
|
1651 |
+
|
1652 |
+
switch (numeric_type) {
|
1653 |
+
case library::NumericTypeID::kFE4M3:
|
1654 |
+
return reference::device::BlockCompareRelativelyEqual<float_e4m3_t>(
|
1655 |
+
reinterpret_cast<float_e4m3_t const *>(ptr_A),
|
1656 |
+
reinterpret_cast<float_e4m3_t const *>(ptr_B),
|
1657 |
+
capacity,
|
1658 |
+
static_cast<float_e4m3_t>(epsilon),
|
1659 |
+
static_cast<float_e4m3_t>(nonzero_floor));
|
1660 |
+
|
1661 |
+
case library::NumericTypeID::kFE5M2:
|
1662 |
+
return reference::device::BlockCompareRelativelyEqual<float_e5m2_t>(
|
1663 |
+
reinterpret_cast<float_e5m2_t const *>(ptr_A),
|
1664 |
+
reinterpret_cast<float_e5m2_t const *>(ptr_B),
|
1665 |
+
capacity,
|
1666 |
+
static_cast<float_e5m2_t>(epsilon),
|
1667 |
+
static_cast<float_e5m2_t>(nonzero_floor));
|
1668 |
+
case library::NumericTypeID::kF16:
|
1669 |
+
return reference::device::BlockCompareRelativelyEqual<half_t>(
|
1670 |
+
reinterpret_cast<half_t const *>(ptr_A),
|
1671 |
+
reinterpret_cast<half_t const *>(ptr_B),
|
1672 |
+
capacity,
|
1673 |
+
static_cast<half_t>(epsilon),
|
1674 |
+
static_cast<half_t>(nonzero_floor));
|
1675 |
+
|
1676 |
+
case library::NumericTypeID::kBF16:
|
1677 |
+
return reference::device::BlockCompareRelativelyEqual<bfloat16_t>(
|
1678 |
+
reinterpret_cast<bfloat16_t const *>(ptr_A),
|
1679 |
+
reinterpret_cast<bfloat16_t const *>(ptr_B),
|
1680 |
+
capacity,
|
1681 |
+
static_cast<bfloat16_t>(epsilon),
|
1682 |
+
static_cast<bfloat16_t>(nonzero_floor));
|
1683 |
+
|
1684 |
+
case library::NumericTypeID::kTF32:
|
1685 |
+
return reference::device::BlockCompareRelativelyEqual<tfloat32_t>(
|
1686 |
+
reinterpret_cast<tfloat32_t const *>(ptr_A),
|
1687 |
+
reinterpret_cast<tfloat32_t const *>(ptr_B),
|
1688 |
+
capacity,
|
1689 |
+
static_cast<tfloat32_t>(epsilon),
|
1690 |
+
static_cast<tfloat32_t>(nonzero_floor));
|
1691 |
+
|
1692 |
+
case library::NumericTypeID::kF32:
|
1693 |
+
return reference::device::BlockCompareRelativelyEqual<float>(
|
1694 |
+
reinterpret_cast<float const *>(ptr_A),
|
1695 |
+
reinterpret_cast<float const *>(ptr_B),
|
1696 |
+
capacity,
|
1697 |
+
static_cast<float>(epsilon),
|
1698 |
+
static_cast<float>(nonzero_floor));
|
1699 |
+
|
1700 |
+
case library::NumericTypeID::kF64:
|
1701 |
+
return reference::device::BlockCompareRelativelyEqual<double>(
|
1702 |
+
reinterpret_cast<double const *>(ptr_A),
|
1703 |
+
reinterpret_cast<double const *>(ptr_B),
|
1704 |
+
capacity,
|
1705 |
+
static_cast<double>(epsilon),
|
1706 |
+
static_cast<double>(nonzero_floor));
|
1707 |
+
|
1708 |
+
case library::NumericTypeID::kS2:
|
1709 |
+
return reference::device::BlockCompareRelativelyEqual<int2b_t>(
|
1710 |
+
reinterpret_cast<int2b_t const *>(ptr_A),
|
1711 |
+
reinterpret_cast<int2b_t const *>(ptr_B),
|
1712 |
+
capacity,
|
1713 |
+
static_cast<int2b_t>(epsilon),
|
1714 |
+
static_cast<int2b_t>(nonzero_floor));
|
1715 |
+
|
1716 |
+
case library::NumericTypeID::kS4:
|
1717 |
+
return reference::device::BlockCompareRelativelyEqual<int4b_t>(
|
1718 |
+
reinterpret_cast<int4b_t const *>(ptr_A),
|
1719 |
+
reinterpret_cast<int4b_t const *>(ptr_B),
|
1720 |
+
capacity,
|
1721 |
+
static_cast<int4b_t>(epsilon),
|
1722 |
+
static_cast<int4b_t>(nonzero_floor));
|
1723 |
+
|
1724 |
+
case library::NumericTypeID::kS8:
|
1725 |
+
return reference::device::BlockCompareRelativelyEqual<int8_t>(
|
1726 |
+
reinterpret_cast<int8_t const *>(ptr_A),
|
1727 |
+
reinterpret_cast<int8_t const *>(ptr_B),
|
1728 |
+
capacity,
|
1729 |
+
static_cast<int8_t>(epsilon),
|
1730 |
+
static_cast<int8_t>(nonzero_floor));
|
1731 |
+
|
1732 |
+
case library::NumericTypeID::kS16:
|
1733 |
+
return reference::device::BlockCompareRelativelyEqual<int16_t>(
|
1734 |
+
reinterpret_cast<int16_t const *>(ptr_A),
|
1735 |
+
reinterpret_cast<int16_t const *>(ptr_B),
|
1736 |
+
capacity,
|
1737 |
+
static_cast<int16_t>(epsilon),
|
1738 |
+
static_cast<int16_t>(nonzero_floor));
|
1739 |
+
|
1740 |
+
case library::NumericTypeID::kS32:
|
1741 |
+
return reference::device::BlockCompareRelativelyEqual<int32_t>(
|
1742 |
+
reinterpret_cast<int32_t const *>(ptr_A),
|
1743 |
+
reinterpret_cast<int32_t const *>(ptr_B),
|
1744 |
+
capacity,
|
1745 |
+
static_cast<int32_t>(epsilon),
|
1746 |
+
static_cast<int32_t>(nonzero_floor));
|
1747 |
+
|
1748 |
+
case library::NumericTypeID::kS64:
|
1749 |
+
return reference::device::BlockCompareRelativelyEqual<int64_t>(
|
1750 |
+
reinterpret_cast<int64_t const *>(ptr_A),
|
1751 |
+
reinterpret_cast<int64_t const *>(ptr_B),
|
1752 |
+
capacity,
|
1753 |
+
static_cast<int64_t>(epsilon),
|
1754 |
+
static_cast<int64_t>(nonzero_floor));
|
1755 |
+
|
1756 |
+
case library::NumericTypeID::kB1:
|
1757 |
+
return reference::device::BlockCompareRelativelyEqual<uint1b_t>(
|
1758 |
+
reinterpret_cast<uint1b_t const *>(ptr_A),
|
1759 |
+
reinterpret_cast<uint1b_t const *>(ptr_B),
|
1760 |
+
capacity,
|
1761 |
+
static_cast<uint1b_t>(epsilon),
|
1762 |
+
static_cast<uint1b_t>(nonzero_floor));
|
1763 |
+
|
1764 |
+
case library::NumericTypeID::kU2:
|
1765 |
+
return reference::device::BlockCompareRelativelyEqual<uint2b_t>(
|
1766 |
+
reinterpret_cast<uint2b_t const *>(ptr_A),
|
1767 |
+
reinterpret_cast<uint2b_t const *>(ptr_B),
|
1768 |
+
capacity,
|
1769 |
+
static_cast<uint2b_t>(epsilon),
|
1770 |
+
static_cast<uint2b_t>(nonzero_floor));
|
1771 |
+
|
1772 |
+
case library::NumericTypeID::kU4:
|
1773 |
+
return reference::device::BlockCompareRelativelyEqual<uint4b_t>(
|
1774 |
+
reinterpret_cast<uint4b_t const *>(ptr_A),
|
1775 |
+
reinterpret_cast<uint4b_t const *>(ptr_B),
|
1776 |
+
capacity,
|
1777 |
+
static_cast<uint4b_t>(epsilon),
|
1778 |
+
static_cast<uint4b_t>(nonzero_floor));
|
1779 |
+
|
1780 |
+
case library::NumericTypeID::kU8:
|
1781 |
+
return reference::device::BlockCompareRelativelyEqual<uint8_t>(
|
1782 |
+
reinterpret_cast<uint8_t const *>(ptr_A),
|
1783 |
+
reinterpret_cast<uint8_t const *>(ptr_B),
|
1784 |
+
capacity,
|
1785 |
+
static_cast<uint8_t>(epsilon),
|
1786 |
+
static_cast<uint8_t>(nonzero_floor));
|
1787 |
+
|
1788 |
+
case library::NumericTypeID::kU16:
|
1789 |
+
return reference::device::BlockCompareRelativelyEqual<uint16_t>(
|
1790 |
+
reinterpret_cast<uint16_t const *>(ptr_A),
|
1791 |
+
reinterpret_cast<uint16_t const *>(ptr_B),
|
1792 |
+
capacity,
|
1793 |
+
static_cast<uint16_t>(epsilon),
|
1794 |
+
static_cast<uint16_t>(nonzero_floor));
|
1795 |
+
|
1796 |
+
case library::NumericTypeID::kU32:
|
1797 |
+
return reference::device::BlockCompareRelativelyEqual<uint32_t>(
|
1798 |
+
reinterpret_cast<uint32_t const *>(ptr_A),
|
1799 |
+
reinterpret_cast<uint32_t const *>(ptr_B),
|
1800 |
+
capacity,
|
1801 |
+
static_cast<uint32_t>(epsilon),
|
1802 |
+
static_cast<uint32_t>(nonzero_floor));
|
1803 |
+
|
1804 |
+
case library::NumericTypeID::kU64:
|
1805 |
+
return reference::device::BlockCompareRelativelyEqual<uint64_t>(
|
1806 |
+
reinterpret_cast<uint64_t const *>(ptr_A),
|
1807 |
+
reinterpret_cast<uint64_t const *>(ptr_B),
|
1808 |
+
capacity,
|
1809 |
+
static_cast<uint64_t>(epsilon),
|
1810 |
+
static_cast<uint64_t>(nonzero_floor));
|
1811 |
+
|
1812 |
+
// No relatively equal comparison for complex numbers.
|
1813 |
+
//
|
1814 |
+
// As a simplification, we can require bitwise equality. This avoids false positives.
|
1815 |
+
// (i.e. "pass" really means passing. "Fail" may not actually mean failure given appropriate epsilon.)
|
1816 |
+
//
|
1817 |
+
case library::NumericTypeID::kCF16:
|
1818 |
+
return reference::device::BlockCompareEqual<cutlass::complex<half_t> >(
|
1819 |
+
reinterpret_cast<complex<half_t> const *>(ptr_A),
|
1820 |
+
reinterpret_cast<complex<half_t> const *>(ptr_B),
|
1821 |
+
capacity);
|
1822 |
+
|
1823 |
+
case library::NumericTypeID::kCF32:
|
1824 |
+
return reference::device::BlockCompareEqual<cutlass::complex<float> >(
|
1825 |
+
reinterpret_cast<complex<float> const *>(ptr_A),
|
1826 |
+
reinterpret_cast<complex<float> const *>(ptr_B),
|
1827 |
+
capacity);
|
1828 |
+
|
1829 |
+
case library::NumericTypeID::kCF64:
|
1830 |
+
return reference::device::BlockCompareEqual<cutlass::complex<double> >(
|
1831 |
+
reinterpret_cast<complex<double> const *>(ptr_A),
|
1832 |
+
reinterpret_cast<complex<double> const *>(ptr_B),
|
1833 |
+
capacity);
|
1834 |
+
|
1835 |
+
default:
|
1836 |
+
{
|
1837 |
+
throw std::runtime_error(std::string("Unsupported numeric type: ") + to_string(numeric_type));
|
1838 |
+
}
|
1839 |
+
}
|
1840 |
+
}
|
1841 |
+
|
1842 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
1843 |
+
|
1844 |
+
/// Permits copying dynamic vectors into static-length vectors
|
1845 |
+
template <typename TensorCoord, int Rank>
|
1846 |
+
struct vector_to_coord {
|
1847 |
+
|
1848 |
+
vector_to_coord(TensorCoord &coord, std::vector<int> const &vec) {
|
1849 |
+
|
1850 |
+
coord[Rank - 1] = vec.at(Rank - 1);
|
1851 |
+
|
1852 |
+
if (Rank > 1) {
|
1853 |
+
vector_to_coord<TensorCoord, Rank - 1>(coord, vec);
|
1854 |
+
}
|
1855 |
+
}
|
1856 |
+
|
1857 |
+
vector_to_coord(TensorCoord &coord, std::vector<int64_t> const &vec) {
|
1858 |
+
|
1859 |
+
coord[Rank - 1] = (int)vec.at(Rank - 1);
|
1860 |
+
|
1861 |
+
if (Rank > 1) {
|
1862 |
+
vector_to_coord<TensorCoord, Rank - 1>(coord, vec);
|
1863 |
+
}
|
1864 |
+
}
|
1865 |
+
};
|
1866 |
+
|
1867 |
+
/// Permits copying dynamic vectors into static-length vectors
|
1868 |
+
template <typename TensorCoord>
|
1869 |
+
struct vector_to_coord<TensorCoord, 1> {
|
1870 |
+
|
1871 |
+
vector_to_coord(TensorCoord &coord, std::vector<int> const &vec) {
|
1872 |
+
|
1873 |
+
coord[0] = vec.at(0);
|
1874 |
+
}
|
1875 |
+
|
1876 |
+
vector_to_coord(TensorCoord &coord, std::vector<int64_t> const &vec) {
|
1877 |
+
|
1878 |
+
coord[0] = (int)vec.at(0);
|
1879 |
+
}
|
1880 |
+
};
|
1881 |
+
|
1882 |
+
/// Permits copying dynamic vectors into static-length vectors
|
1883 |
+
template <typename TensorCoord>
|
1884 |
+
struct vector_to_coord<TensorCoord, 0> {
|
1885 |
+
|
1886 |
+
vector_to_coord(TensorCoord &coord, std::vector<int> const &vec) {
|
1887 |
+
|
1888 |
+
}
|
1889 |
+
};
|
1890 |
+
|
1891 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
1892 |
+
|
1893 |
+
template <typename Element, typename Layout>
|
1894 |
+
static void write_tensor_csv_static_tensor_view(
|
1895 |
+
std::ostream &out,
|
1896 |
+
DeviceAllocation &allocation) {
|
1897 |
+
|
1898 |
+
Coord<Layout::kRank> extent;
|
1899 |
+
Coord<Layout::kStrideRank, typename Layout::Stride::Index> stride;
|
1900 |
+
|
1901 |
+
if (allocation.extent().size() != Layout::kRank) {
|
1902 |
+
throw std::runtime_error("Allocation extent has invalid rank");
|
1903 |
+
}
|
1904 |
+
|
1905 |
+
if (allocation.stride().size() != Layout::kStrideRank) {
|
1906 |
+
throw std::runtime_error("Allocation stride has invalid rank");
|
1907 |
+
}
|
1908 |
+
|
1909 |
+
vector_to_coord<Coord<Layout::kRank>, Layout::kRank>(extent, allocation.extent());
|
1910 |
+
vector_to_coord<Coord<Layout::kStrideRank, typename Layout::Stride::Index>,
|
1911 |
+
Layout::kStrideRank>(stride, allocation.stride());
|
1912 |
+
|
1913 |
+
Layout layout(stride);
|
1914 |
+
HostTensor<Element, Layout> host_tensor(extent, layout, false);
|
1915 |
+
|
1916 |
+
if (host_tensor.capacity() != allocation.batch_stride()) {
|
1917 |
+
throw std::runtime_error("Unexpected capacity to equal.");
|
1918 |
+
}
|
1919 |
+
|
1920 |
+
host_tensor.copy_in_device_to_host(
|
1921 |
+
static_cast<Element const *>(allocation.data()),
|
1922 |
+
allocation.batch_stride());
|
1923 |
+
|
1924 |
+
TensorViewWrite(out, host_tensor.host_view());
|
1925 |
+
|
1926 |
+
out << "\n\n";
|
1927 |
+
}
|
1928 |
+
|
1929 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
1930 |
+
|
1931 |
+
template <typename T>
|
1932 |
+
static void write_tensor_csv_static_type(
|
1933 |
+
std::ostream &out,
|
1934 |
+
DeviceAllocation &allocation) {
|
1935 |
+
|
1936 |
+
switch (allocation.layout()) {
|
1937 |
+
case library::LayoutTypeID::kRowMajor:
|
1938 |
+
write_tensor_csv_static_tensor_view<T, layout::RowMajor>(out, allocation);
|
1939 |
+
break;
|
1940 |
+
case library::LayoutTypeID::kColumnMajor:
|
1941 |
+
write_tensor_csv_static_tensor_view<T, layout::ColumnMajor>(out, allocation);
|
1942 |
+
break;
|
1943 |
+
case library::LayoutTypeID::kRowMajorInterleavedK2:
|
1944 |
+
write_tensor_csv_static_tensor_view<T, layout::RowMajorInterleaved<2>>(out, allocation);
|
1945 |
+
break;
|
1946 |
+
case library::LayoutTypeID::kColumnMajorInterleavedK2:
|
1947 |
+
write_tensor_csv_static_tensor_view<T, layout::ColumnMajorInterleaved<2>>(out, allocation);
|
1948 |
+
break;
|
1949 |
+
case library::LayoutTypeID::kRowMajorInterleavedK4:
|
1950 |
+
write_tensor_csv_static_tensor_view<T, layout::RowMajorInterleaved<4>>(out, allocation);
|
1951 |
+
break;
|
1952 |
+
case library::LayoutTypeID::kColumnMajorInterleavedK4:
|
1953 |
+
write_tensor_csv_static_tensor_view<T, layout::ColumnMajorInterleaved<4>>(out, allocation);
|
1954 |
+
break;
|
1955 |
+
case library::LayoutTypeID::kRowMajorInterleavedK16:
|
1956 |
+
write_tensor_csv_static_tensor_view<T, layout::RowMajorInterleaved<16>>(out, allocation);
|
1957 |
+
break;
|
1958 |
+
case library::LayoutTypeID::kColumnMajorInterleavedK16:
|
1959 |
+
write_tensor_csv_static_tensor_view<T, layout::ColumnMajorInterleaved<16>>(out, allocation);
|
1960 |
+
break;
|
1961 |
+
case library::LayoutTypeID::kRowMajorInterleavedK32:
|
1962 |
+
write_tensor_csv_static_tensor_view<T, layout::RowMajorInterleaved<32>>(out, allocation);
|
1963 |
+
break;
|
1964 |
+
case library::LayoutTypeID::kColumnMajorInterleavedK32:
|
1965 |
+
write_tensor_csv_static_tensor_view<T, layout::ColumnMajorInterleaved<32>>(out, allocation);
|
1966 |
+
break;
|
1967 |
+
case library::LayoutTypeID::kRowMajorInterleavedK64:
|
1968 |
+
write_tensor_csv_static_tensor_view<T, layout::RowMajorInterleaved<64>>(out, allocation);
|
1969 |
+
break;
|
1970 |
+
case library::LayoutTypeID::kColumnMajorInterleavedK64:
|
1971 |
+
write_tensor_csv_static_tensor_view<T, layout::ColumnMajorInterleaved<64>>(out, allocation);
|
1972 |
+
break;
|
1973 |
+
case library::LayoutTypeID::kTensorNHWC:
|
1974 |
+
write_tensor_csv_static_tensor_view<T, layout::TensorNHWC>(out, allocation);
|
1975 |
+
break;
|
1976 |
+
case library::LayoutTypeID::kTensorNDHWC:
|
1977 |
+
write_tensor_csv_static_tensor_view<T, layout::TensorNDHWC>(out, allocation);
|
1978 |
+
break;
|
1979 |
+
case library::LayoutTypeID::kTensorNC32HW32:
|
1980 |
+
write_tensor_csv_static_tensor_view<T, layout::TensorNCxHWx<32>>(out, allocation);
|
1981 |
+
break;
|
1982 |
+
case library::LayoutTypeID::kTensorNC64HW64:
|
1983 |
+
write_tensor_csv_static_tensor_view<T, layout::TensorNCxHWx<64>>(out, allocation);
|
1984 |
+
break;
|
1985 |
+
case library::LayoutTypeID::kTensorC32RSK32:
|
1986 |
+
write_tensor_csv_static_tensor_view<T, layout::TensorCxRSKx<32>>(out, allocation);
|
1987 |
+
break;
|
1988 |
+
case library::LayoutTypeID::kTensorC64RSK64:
|
1989 |
+
write_tensor_csv_static_tensor_view<T, layout::TensorCxRSKx<64>>(out, allocation);
|
1990 |
+
break;
|
1991 |
+
default:
|
1992 |
+
throw std::runtime_error("Unhandled layout");
|
1993 |
+
}
|
1994 |
+
}
|
1995 |
+
|
1996 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
1997 |
+
|
1998 |
+
/// Writes a tensor to csv
|
1999 |
+
void DeviceAllocation::write_tensor_csv(
|
2000 |
+
std::ostream &out) {
|
2001 |
+
|
2002 |
+
switch (this->type()) {
|
2003 |
+
case library::NumericTypeID::kFE4M3:
|
2004 |
+
write_tensor_csv_static_type<float_e4m3_t>(out, *this);
|
2005 |
+
break;
|
2006 |
+
|
2007 |
+
case library::NumericTypeID::kFE5M2:
|
2008 |
+
write_tensor_csv_static_type<float_e5m2_t>(out, *this);
|
2009 |
+
break;
|
2010 |
+
case library::NumericTypeID::kF16:
|
2011 |
+
write_tensor_csv_static_type<half_t>(out, *this);
|
2012 |
+
break;
|
2013 |
+
|
2014 |
+
case library::NumericTypeID::kBF16:
|
2015 |
+
write_tensor_csv_static_type<bfloat16_t>(out, *this);
|
2016 |
+
break;
|
2017 |
+
|
2018 |
+
case library::NumericTypeID::kTF32:
|
2019 |
+
write_tensor_csv_static_type<tfloat32_t>(out, *this);
|
2020 |
+
break;
|
2021 |
+
|
2022 |
+
case library::NumericTypeID::kF32:
|
2023 |
+
write_tensor_csv_static_type<float>(out, *this);
|
2024 |
+
break;
|
2025 |
+
|
2026 |
+
case library::NumericTypeID::kF64:
|
2027 |
+
write_tensor_csv_static_type<double>(out, *this);
|
2028 |
+
break;
|
2029 |
+
|
2030 |
+
case library::NumericTypeID::kS2:
|
2031 |
+
write_tensor_csv_static_type<int2b_t>(out, *this);
|
2032 |
+
break;
|
2033 |
+
|
2034 |
+
case library::NumericTypeID::kS4:
|
2035 |
+
write_tensor_csv_static_type<int4b_t>(out, *this);
|
2036 |
+
break;
|
2037 |
+
|
2038 |
+
case library::NumericTypeID::kS8:
|
2039 |
+
write_tensor_csv_static_type<int8_t>(out, *this);
|
2040 |
+
break;
|
2041 |
+
|
2042 |
+
case library::NumericTypeID::kS16:
|
2043 |
+
write_tensor_csv_static_type<int16_t>(out, *this);
|
2044 |
+
break;
|
2045 |
+
|
2046 |
+
case library::NumericTypeID::kS32:
|
2047 |
+
write_tensor_csv_static_type<int32_t>(out, *this);
|
2048 |
+
break;
|
2049 |
+
|
2050 |
+
case library::NumericTypeID::kS64:
|
2051 |
+
write_tensor_csv_static_type<int64_t>(out, *this);
|
2052 |
+
break;
|
2053 |
+
|
2054 |
+
case library::NumericTypeID::kB1:
|
2055 |
+
write_tensor_csv_static_type<uint1b_t>(out, *this);
|
2056 |
+
break;
|
2057 |
+
|
2058 |
+
case library::NumericTypeID::kU2:
|
2059 |
+
write_tensor_csv_static_type<uint2b_t>(out, *this);
|
2060 |
+
break;
|
2061 |
+
|
2062 |
+
case library::NumericTypeID::kU4:
|
2063 |
+
write_tensor_csv_static_type<uint4b_t>(out, *this);
|
2064 |
+
break;
|
2065 |
+
|
2066 |
+
case library::NumericTypeID::kU8:
|
2067 |
+
write_tensor_csv_static_type<uint8_t>(out, *this);
|
2068 |
+
break;
|
2069 |
+
|
2070 |
+
case library::NumericTypeID::kU16:
|
2071 |
+
write_tensor_csv_static_type<uint16_t>(out, *this);
|
2072 |
+
break;
|
2073 |
+
|
2074 |
+
case library::NumericTypeID::kU32:
|
2075 |
+
write_tensor_csv_static_type<uint32_t>(out, *this);
|
2076 |
+
break;
|
2077 |
+
|
2078 |
+
case library::NumericTypeID::kU64:
|
2079 |
+
write_tensor_csv_static_type<uint64_t>(out, *this);
|
2080 |
+
break;
|
2081 |
+
|
2082 |
+
case library::NumericTypeID::kCF16:
|
2083 |
+
write_tensor_csv_static_type<cutlass::complex<half_t> >(out, *this);
|
2084 |
+
break;
|
2085 |
+
|
2086 |
+
case library::NumericTypeID::kCF32:
|
2087 |
+
write_tensor_csv_static_type<cutlass::complex<float> >(out, *this);
|
2088 |
+
break;
|
2089 |
+
|
2090 |
+
case library::NumericTypeID::kCF64:
|
2091 |
+
write_tensor_csv_static_type<cutlass::complex<double> >(out, *this);
|
2092 |
+
break;
|
2093 |
+
|
2094 |
+
case library::NumericTypeID::kVoid:
|
2095 |
+
// Not dump anything as it is a empty tensor.
|
2096 |
+
break;
|
2097 |
+
|
2098 |
+
default:
|
2099 |
+
throw std::runtime_error(std::string("Unsupported numeric type: ") + to_string(this->type()) ) ;
|
2100 |
+
}
|
2101 |
+
}
|
2102 |
+
|
2103 |
+
template <typename Element, typename Layout>
|
2104 |
+
static void tensor_fill_tensor_view(DeviceAllocation &allocation, Element val = Element()) {
|
2105 |
+
Coord<Layout::kRank> extent;
|
2106 |
+
Coord<Layout::kStrideRank, typename Layout::LongIndex> stride;
|
2107 |
+
|
2108 |
+
if (allocation.extent().size() != Layout::kRank) {
|
2109 |
+
throw std::runtime_error("Allocation extent has invalid rank");
|
2110 |
+
}
|
2111 |
+
|
2112 |
+
if (allocation.stride().size() != Layout::kStrideRank) {
|
2113 |
+
throw std::runtime_error("Allocation stride has invalid rank");
|
2114 |
+
}
|
2115 |
+
|
2116 |
+
vector_to_coord<Coord<Layout::kRank>, Layout::kRank>(extent, allocation.extent());
|
2117 |
+
vector_to_coord<Coord<Layout::kStrideRank, typename Layout::LongIndex>,
|
2118 |
+
Layout::kStrideRank>(stride, allocation.stride());
|
2119 |
+
|
2120 |
+
TensorView<Element, Layout> view(
|
2121 |
+
static_cast<Element *>(allocation.data()),
|
2122 |
+
Layout(stride),
|
2123 |
+
extent
|
2124 |
+
);
|
2125 |
+
|
2126 |
+
|
2127 |
+
cutlass::reference::device::TensorFill<Element, Layout>(
|
2128 |
+
view,
|
2129 |
+
val
|
2130 |
+
);
|
2131 |
+
}
|
2132 |
+
|
2133 |
+
template <typename Element>
|
2134 |
+
static void tensor_fill(DeviceAllocation &allocation, Element val = Element()) {
|
2135 |
+
switch (allocation.layout()) {
|
2136 |
+
case library::LayoutTypeID::kRowMajor:
|
2137 |
+
tensor_fill_tensor_view<Element, layout::RowMajor>(allocation, val);
|
2138 |
+
break;
|
2139 |
+
case library::LayoutTypeID::kColumnMajor:
|
2140 |
+
tensor_fill_tensor_view<Element, layout::ColumnMajor>(allocation, val);
|
2141 |
+
break;
|
2142 |
+
case library::LayoutTypeID::kTensorNHWC:
|
2143 |
+
tensor_fill_tensor_view<Element, layout::TensorNHWC>(allocation, val);
|
2144 |
+
break;
|
2145 |
+
case library::LayoutTypeID::kTensorNDHWC:
|
2146 |
+
tensor_fill_tensor_view<Element, layout::TensorNDHWC>(allocation, val);
|
2147 |
+
break;
|
2148 |
+
case library::LayoutTypeID::kTensorNC32HW32:
|
2149 |
+
tensor_fill_tensor_view<Element, layout::TensorNCxHWx<32>>(allocation, val);
|
2150 |
+
break;
|
2151 |
+
case library::LayoutTypeID::kTensorNC64HW64:
|
2152 |
+
tensor_fill_tensor_view<Element, layout::TensorNCxHWx<64>>(allocation, val);
|
2153 |
+
break;
|
2154 |
+
case library::LayoutTypeID::kTensorC32RSK32:
|
2155 |
+
tensor_fill_tensor_view<Element, layout::TensorCxRSKx<32>>(allocation, val);
|
2156 |
+
break;
|
2157 |
+
case library::LayoutTypeID::kTensorC64RSK64:
|
2158 |
+
tensor_fill_tensor_view<Element, layout::TensorCxRSKx<64>>(allocation, val);
|
2159 |
+
break;
|
2160 |
+
default:
|
2161 |
+
throw std::runtime_error("Unsupported layout");
|
2162 |
+
break;
|
2163 |
+
}
|
2164 |
+
}
|
2165 |
+
|
2166 |
+
/// Fills a tensor uniformly with a value (most frequently used to clear the tensor)
|
2167 |
+
void DeviceAllocation::fill_device(double val = 0.0) {
|
2168 |
+
|
2169 |
+
switch (this->type()) {
|
2170 |
+
case library::NumericTypeID::kFE4M3:
|
2171 |
+
tensor_fill<float_e4m3_t>(*this, static_cast<float_e4m3_t>(val));
|
2172 |
+
break;
|
2173 |
+
|
2174 |
+
case library::NumericTypeID::kFE5M2:
|
2175 |
+
tensor_fill<float_e5m2_t>(*this, static_cast<float_e5m2_t>(val));
|
2176 |
+
break;
|
2177 |
+
case library::NumericTypeID::kF16:
|
2178 |
+
tensor_fill<half_t>(*this, static_cast<half_t>(val));
|
2179 |
+
break;
|
2180 |
+
|
2181 |
+
case library::NumericTypeID::kBF16:
|
2182 |
+
tensor_fill<bfloat16_t>(*this, static_cast<bfloat16_t>(val));
|
2183 |
+
break;
|
2184 |
+
|
2185 |
+
case library::NumericTypeID::kTF32:
|
2186 |
+
tensor_fill<tfloat32_t>(*this, static_cast<tfloat32_t>(val));
|
2187 |
+
break;
|
2188 |
+
|
2189 |
+
case library::NumericTypeID::kF32:
|
2190 |
+
tensor_fill<float>(*this, static_cast<float>(val));
|
2191 |
+
break;
|
2192 |
+
|
2193 |
+
case library::NumericTypeID::kF64:
|
2194 |
+
tensor_fill<double>(*this, static_cast<double>(val));
|
2195 |
+
break;
|
2196 |
+
|
2197 |
+
case library::NumericTypeID::kS2:
|
2198 |
+
tensor_fill<int2b_t>(*this, static_cast<int2b_t>(val));
|
2199 |
+
break;
|
2200 |
+
|
2201 |
+
case library::NumericTypeID::kS4:
|
2202 |
+
tensor_fill<int4b_t>(*this, static_cast<int4b_t>(val));
|
2203 |
+
break;
|
2204 |
+
|
2205 |
+
case library::NumericTypeID::kS8:
|
2206 |
+
tensor_fill<int8_t>(*this, static_cast<int8_t>(val));
|
2207 |
+
break;
|
2208 |
+
|
2209 |
+
case library::NumericTypeID::kS16:
|
2210 |
+
tensor_fill<int16_t>(*this, static_cast<int16_t>(val));
|
2211 |
+
break;
|
2212 |
+
|
2213 |
+
case library::NumericTypeID::kS32:
|
2214 |
+
tensor_fill<int32_t>(*this, static_cast<int32_t>(val));
|
2215 |
+
break;
|
2216 |
+
|
2217 |
+
case library::NumericTypeID::kS64:
|
2218 |
+
tensor_fill<int64_t>(*this, static_cast<int64_t>(val));
|
2219 |
+
break;
|
2220 |
+
|
2221 |
+
case library::NumericTypeID::kB1:
|
2222 |
+
tensor_fill<uint1b_t>(*this, static_cast<uint1b_t>(val));
|
2223 |
+
break;
|
2224 |
+
|
2225 |
+
case library::NumericTypeID::kU2:
|
2226 |
+
tensor_fill<uint2b_t>(*this, static_cast<uint2b_t>(val));
|
2227 |
+
break;
|
2228 |
+
|
2229 |
+
case library::NumericTypeID::kU4:
|
2230 |
+
tensor_fill<uint4b_t>(*this, static_cast<uint4b_t>(val));
|
2231 |
+
break;
|
2232 |
+
|
2233 |
+
case library::NumericTypeID::kU8:
|
2234 |
+
tensor_fill<uint8_t>(*this, static_cast<uint8_t>(val));
|
2235 |
+
break;
|
2236 |
+
|
2237 |
+
case library::NumericTypeID::kU16:
|
2238 |
+
tensor_fill<uint16_t>(*this, static_cast<uint16_t>(val));
|
2239 |
+
break;
|
2240 |
+
|
2241 |
+
case library::NumericTypeID::kU32:
|
2242 |
+
tensor_fill<uint32_t>(*this, static_cast<uint32_t>(val));
|
2243 |
+
break;
|
2244 |
+
|
2245 |
+
case library::NumericTypeID::kU64:
|
2246 |
+
tensor_fill<uint64_t>(*this, static_cast<uint64_t>(val));
|
2247 |
+
break;
|
2248 |
+
|
2249 |
+
case library::NumericTypeID::kCF16:
|
2250 |
+
tensor_fill<cutlass::complex<half_t> >(*this, from_real<half_t>(val));
|
2251 |
+
break;
|
2252 |
+
|
2253 |
+
case library::NumericTypeID::kCF32:
|
2254 |
+
tensor_fill<cutlass::complex<float> >(*this, from_real<float>(val));
|
2255 |
+
break;
|
2256 |
+
|
2257 |
+
case library::NumericTypeID::kCF64:
|
2258 |
+
tensor_fill<cutlass::complex<double> >(*this, from_real<double>(val));
|
2259 |
+
break;
|
2260 |
+
|
2261 |
+
default:
|
2262 |
+
throw std::runtime_error(std::string("Unsupported numeric type: ") + to_string(this->type()));
|
2263 |
+
}
|
2264 |
+
}
|
2265 |
+
|
2266 |
+
/// Fills a tensor uniformly with a value (most frequently used to clear the tensor)
|
2267 |
+
void DeviceAllocation::fill_host(double val = 0.0) {
|
2268 |
+
|
2269 |
+
std::vector<uint8_t> host_data(bytes());
|
2270 |
+
|
2271 |
+
switch (this->type()) {
|
2272 |
+
case library::NumericTypeID::kFE4M3:
|
2273 |
+
cutlass::reference::host::BlockFill<float_e4m3_t>(
|
2274 |
+
reinterpret_cast<float_e4m3_t *>(host_data.data()),
|
2275 |
+
capacity_,
|
2276 |
+
static_cast<float_e4m3_t>(val)
|
2277 |
+
);
|
2278 |
+
break;
|
2279 |
+
|
2280 |
+
case library::NumericTypeID::kFE5M2:
|
2281 |
+
cutlass::reference::host::BlockFill<float_e5m2_t>(
|
2282 |
+
reinterpret_cast<float_e5m2_t *>(host_data.data()),
|
2283 |
+
capacity_,
|
2284 |
+
static_cast<float_e5m2_t>(val)
|
2285 |
+
);
|
2286 |
+
break;
|
2287 |
+
|
2288 |
+
case library::NumericTypeID::kF16:
|
2289 |
+
cutlass::reference::host::BlockFill<half_t>(
|
2290 |
+
reinterpret_cast<half_t *>(host_data.data()),
|
2291 |
+
capacity_,
|
2292 |
+
static_cast<half_t>(val)
|
2293 |
+
);
|
2294 |
+
break;
|
2295 |
+
|
2296 |
+
case library::NumericTypeID::kBF16:
|
2297 |
+
cutlass::reference::host::BlockFill<bfloat16_t>(
|
2298 |
+
reinterpret_cast<bfloat16_t *>(host_data.data()),
|
2299 |
+
capacity_,
|
2300 |
+
static_cast<bfloat16_t>(val)
|
2301 |
+
);
|
2302 |
+
break;
|
2303 |
+
|
2304 |
+
case library::NumericTypeID::kTF32:
|
2305 |
+
cutlass::reference::host::BlockFill<tfloat32_t>(
|
2306 |
+
reinterpret_cast<tfloat32_t *>(host_data.data()),
|
2307 |
+
capacity_,
|
2308 |
+
static_cast<tfloat32_t>(val)
|
2309 |
+
);
|
2310 |
+
break;
|
2311 |
+
|
2312 |
+
case library::NumericTypeID::kF32:
|
2313 |
+
cutlass::reference::host::BlockFill<float>(
|
2314 |
+
reinterpret_cast<float *>(host_data.data()),
|
2315 |
+
capacity_,
|
2316 |
+
static_cast<float>(val)
|
2317 |
+
);
|
2318 |
+
break;
|
2319 |
+
|
2320 |
+
case library::NumericTypeID::kF64:
|
2321 |
+
cutlass::reference::host::BlockFill<double>(
|
2322 |
+
reinterpret_cast<double *>(host_data.data()),
|
2323 |
+
capacity_,
|
2324 |
+
static_cast<double>(val)
|
2325 |
+
);
|
2326 |
+
break;
|
2327 |
+
|
2328 |
+
case library::NumericTypeID::kS2:
|
2329 |
+
cutlass::reference::host::BlockFill<int2b_t>(
|
2330 |
+
reinterpret_cast<int2b_t *>(host_data.data()),
|
2331 |
+
capacity_,
|
2332 |
+
static_cast<int2b_t>(val)
|
2333 |
+
);
|
2334 |
+
break;
|
2335 |
+
|
2336 |
+
case library::NumericTypeID::kS4:
|
2337 |
+
cutlass::reference::host::BlockFill<int4b_t>(
|
2338 |
+
reinterpret_cast<int4b_t *>(host_data.data()),
|
2339 |
+
capacity_,
|
2340 |
+
static_cast<int4b_t>(val)
|
2341 |
+
);
|
2342 |
+
break;
|
2343 |
+
|
2344 |
+
case library::NumericTypeID::kS8:
|
2345 |
+
cutlass::reference::host::BlockFill<int8_t>(
|
2346 |
+
reinterpret_cast<int8_t *>(host_data.data()),
|
2347 |
+
capacity_,
|
2348 |
+
static_cast<int8_t>(val)
|
2349 |
+
);
|
2350 |
+
break;
|
2351 |
+
|
2352 |
+
case library::NumericTypeID::kS16:
|
2353 |
+
cutlass::reference::host::BlockFill<int16_t>(
|
2354 |
+
reinterpret_cast<int16_t *>(host_data.data()),
|
2355 |
+
capacity_,
|
2356 |
+
static_cast<int16_t>(val)
|
2357 |
+
);
|
2358 |
+
break;
|
2359 |
+
|
2360 |
+
case library::NumericTypeID::kS32:
|
2361 |
+
cutlass::reference::host::BlockFill<int32_t>(
|
2362 |
+
reinterpret_cast<int32_t *>(host_data.data()),
|
2363 |
+
capacity_,
|
2364 |
+
static_cast<int32_t>(val)
|
2365 |
+
);
|
2366 |
+
break;
|
2367 |
+
|
2368 |
+
case library::NumericTypeID::kS64:
|
2369 |
+
cutlass::reference::host::BlockFill<int64_t>(
|
2370 |
+
reinterpret_cast<int64_t *>(host_data.data()),
|
2371 |
+
capacity_,
|
2372 |
+
static_cast<int64_t>(val)
|
2373 |
+
);
|
2374 |
+
break;
|
2375 |
+
|
2376 |
+
case library::NumericTypeID::kB1:
|
2377 |
+
cutlass::reference::host::BlockFill<uint1b_t>(
|
2378 |
+
reinterpret_cast<uint1b_t *>(host_data.data()),
|
2379 |
+
capacity_,
|
2380 |
+
static_cast<uint1b_t>(val)
|
2381 |
+
);
|
2382 |
+
break;
|
2383 |
+
|
2384 |
+
case library::NumericTypeID::kU2:
|
2385 |
+
cutlass::reference::host::BlockFill<uint2b_t>(
|
2386 |
+
reinterpret_cast<uint2b_t *>(host_data.data()),
|
2387 |
+
capacity_,
|
2388 |
+
static_cast<uint2b_t>(val)
|
2389 |
+
);
|
2390 |
+
break;
|
2391 |
+
|
2392 |
+
case library::NumericTypeID::kU4:
|
2393 |
+
cutlass::reference::host::BlockFill<uint4b_t>(
|
2394 |
+
reinterpret_cast<uint4b_t *>(host_data.data()),
|
2395 |
+
capacity_,
|
2396 |
+
static_cast<uint4b_t>(val)
|
2397 |
+
);
|
2398 |
+
break;
|
2399 |
+
|
2400 |
+
case library::NumericTypeID::kU8:
|
2401 |
+
cutlass::reference::host::BlockFill<uint8_t>(
|
2402 |
+
reinterpret_cast<uint8_t *>(host_data.data()),
|
2403 |
+
capacity_,
|
2404 |
+
static_cast<uint8_t>(val)
|
2405 |
+
);
|
2406 |
+
break;
|
2407 |
+
|
2408 |
+
case library::NumericTypeID::kU16:
|
2409 |
+
cutlass::reference::host::BlockFill<uint16_t>(
|
2410 |
+
reinterpret_cast<uint16_t *>(host_data.data()),
|
2411 |
+
capacity_,
|
2412 |
+
static_cast<uint16_t>(val)
|
2413 |
+
);
|
2414 |
+
break;
|
2415 |
+
|
2416 |
+
case library::NumericTypeID::kU32:
|
2417 |
+
cutlass::reference::host::BlockFill<uint32_t>(
|
2418 |
+
reinterpret_cast<uint32_t *>(host_data.data()),
|
2419 |
+
capacity_,
|
2420 |
+
static_cast<uint32_t>(val)
|
2421 |
+
);
|
2422 |
+
break;
|
2423 |
+
|
2424 |
+
case library::NumericTypeID::kU64:
|
2425 |
+
cutlass::reference::host::BlockFill<uint64_t>(
|
2426 |
+
reinterpret_cast<uint64_t *>(host_data.data()),
|
2427 |
+
capacity_,
|
2428 |
+
static_cast<uint64_t>(val)
|
2429 |
+
);
|
2430 |
+
break;
|
2431 |
+
|
2432 |
+
default:
|
2433 |
+
throw std::runtime_error(std::string("Unsupported numeric type: ") + to_string(this->type()));
|
2434 |
+
}
|
2435 |
+
|
2436 |
+
copy_from_host(host_data.data());
|
2437 |
+
}
|
2438 |
+
|
2439 |
+
cudaError_t DeviceAllocation::malloc(void** ptr, size_t size) {
|
2440 |
+
cudaError_t result;
|
2441 |
+
int set_device_back_to = -1;
|
2442 |
+
|
2443 |
+
/// When needed this sets the device to the allocation's device remembering
|
2444 |
+
/// the current device so that it can be set back after the cudaMalloc is
|
2445 |
+
/// performed.
|
2446 |
+
if (device_ >= 0) {
|
2447 |
+
int current_device;
|
2448 |
+
result = cudaGetDevice(¤t_device);
|
2449 |
+
if (result != cudaSuccess) {
|
2450 |
+
return result;
|
2451 |
+
}
|
2452 |
+
|
2453 |
+
if (current_device != device_) {
|
2454 |
+
set_device_back_to = current_device;
|
2455 |
+
result = cudaSetDevice(device_);
|
2456 |
+
if (result != cudaSuccess) {
|
2457 |
+
return result;
|
2458 |
+
}
|
2459 |
+
}
|
2460 |
+
}
|
2461 |
+
|
2462 |
+
// This performs the cudaMalloc
|
2463 |
+
result = cudaMalloc(ptr, size);
|
2464 |
+
if (result != cudaSuccess) {
|
2465 |
+
return result;
|
2466 |
+
}
|
2467 |
+
|
2468 |
+
/// When needed this sets the device back to what it was when the function was
|
2469 |
+
/// called.
|
2470 |
+
if (set_device_back_to != -1) {
|
2471 |
+
result = cudaSetDevice(set_device_back_to);
|
2472 |
+
if (result != cudaSuccess) {
|
2473 |
+
return result;
|
2474 |
+
}
|
2475 |
+
}
|
2476 |
+
|
2477 |
+
return cudaSuccess;
|
2478 |
+
}
|
2479 |
+
|
2480 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
2481 |
+
|
2482 |
+
} // namespace profiler
|
2483 |
+
} // namespace cutlass
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/device_context.cu
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief
|
33 |
+
*/
|
34 |
+
|
35 |
+
#include "cutlass/profiler/device_context.h"
|
36 |
+
|
37 |
+
namespace cutlass {
|
38 |
+
namespace profiler {
|
39 |
+
|
40 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
41 |
+
|
42 |
+
/// Allocates memory of a given type, capacity (elements), and name
|
43 |
+
DeviceAllocation *DeviceContext::allocate_block(
|
44 |
+
Options const &options,
|
45 |
+
std::string const &name,
|
46 |
+
library::NumericTypeID type,
|
47 |
+
size_t capacity,
|
48 |
+
size_t device_index) {
|
49 |
+
|
50 |
+
int device = options.device.device_id(device_index);
|
51 |
+
device_memory_.emplace_back(type, capacity, device);
|
52 |
+
DeviceAllocation *allocation = &device_memory_.back();
|
53 |
+
|
54 |
+
allocations_[name] = allocation;
|
55 |
+
return allocation;
|
56 |
+
}
|
57 |
+
|
58 |
+
/// Allocates memory of a given type, capacity (elements), and name
|
59 |
+
DeviceAllocation *DeviceContext::allocate_tensor(
|
60 |
+
Options const &options,
|
61 |
+
std::string const &name,
|
62 |
+
library::NumericTypeID type,
|
63 |
+
library::LayoutTypeID layout_id,
|
64 |
+
std::vector<int> const &extent,
|
65 |
+
std::vector<int64_t> const &stride,
|
66 |
+
int batch_count,
|
67 |
+
size_t device_index) {
|
68 |
+
|
69 |
+
int device = options.device.device_id(device_index);
|
70 |
+
device_memory_.emplace_back(type, layout_id, extent, stride, batch_count,
|
71 |
+
device);
|
72 |
+
DeviceAllocation *allocation = &device_memory_.back();
|
73 |
+
|
74 |
+
allocations_[name] = allocation;
|
75 |
+
return allocation;
|
76 |
+
}
|
77 |
+
|
78 |
+
/// Allocates memory of a given type, capacity (elements), and name
|
79 |
+
DeviceAllocation *DeviceContext::allocate_and_initialize_tensor(
|
80 |
+
Options const &options,
|
81 |
+
std::string const &name,
|
82 |
+
library::NumericTypeID type,
|
83 |
+
library::LayoutTypeID layout_id,
|
84 |
+
std::vector<int> const &extent,
|
85 |
+
std::vector<int64_t> const &stride,
|
86 |
+
int batch_count,
|
87 |
+
int seed_shift,
|
88 |
+
size_t device_index) {
|
89 |
+
|
90 |
+
DeviceAllocation *allocation =
|
91 |
+
allocate_tensor(options, name, type, layout_id, extent, stride,
|
92 |
+
batch_count, device_index);
|
93 |
+
|
94 |
+
if (options.initialization.enabled) {
|
95 |
+
Distribution data_distribution = options.initialization.data_distribution;
|
96 |
+
|
97 |
+
// check if data distribution is allowed to change
|
98 |
+
if(!options.initialization.fix_data_distribution) {
|
99 |
+
// change data distribution based on bit width
|
100 |
+
switch(type) {
|
101 |
+
case library::NumericTypeID::kFE4M3:
|
102 |
+
data_distribution.set_uniform(-1, 1, 0);
|
103 |
+
break;
|
104 |
+
case library::NumericTypeID::kFE5M2:
|
105 |
+
data_distribution.set_uniform(-1, 1, 0);
|
106 |
+
break;
|
107 |
+
case library::NumericTypeID::kF16:
|
108 |
+
data_distribution.set_uniform(-3, 3, 0);
|
109 |
+
break;
|
110 |
+
case library::NumericTypeID::kB1:
|
111 |
+
data_distribution.set_uniform(0, 1, 0);
|
112 |
+
break;
|
113 |
+
case library::NumericTypeID::kS2:
|
114 |
+
data_distribution.set_uniform(-1, 1, 0);
|
115 |
+
break;
|
116 |
+
case library::NumericTypeID::kS4:
|
117 |
+
data_distribution.set_uniform(-2, 2, 0);
|
118 |
+
break;
|
119 |
+
case library::NumericTypeID::kU2:
|
120 |
+
data_distribution.set_uniform(0, 2, 0);
|
121 |
+
break;
|
122 |
+
case library::NumericTypeID::kU4:
|
123 |
+
data_distribution.set_uniform(0, 2, 0);
|
124 |
+
break;
|
125 |
+
case library::NumericTypeID::kS8:
|
126 |
+
data_distribution.set_uniform(-3, 3, 0);
|
127 |
+
break;
|
128 |
+
case library::NumericTypeID::kU8:
|
129 |
+
data_distribution.set_uniform(0, 4, 0);
|
130 |
+
break;
|
131 |
+
default: break;
|
132 |
+
}
|
133 |
+
}
|
134 |
+
|
135 |
+
// Override pnz for the A/B/C tensors if overridden for Gaussian distributions
|
136 |
+
if (data_distribution.kind == Distribution::Gaussian) {
|
137 |
+
double mean = data_distribution.gaussian.mean;
|
138 |
+
double stddev = data_distribution.gaussian.stddev;
|
139 |
+
int scale = data_distribution.int_scale;
|
140 |
+
|
141 |
+
if (name == "A" && data_distribution.gaussian.pnzA != 1.0) {
|
142 |
+
data_distribution.set_gaussian(mean, stddev, scale, data_distribution.gaussian.pnzA);
|
143 |
+
}
|
144 |
+
else if (name == "B" && data_distribution.gaussian.pnzB != 1.0) {
|
145 |
+
data_distribution.set_gaussian(mean, stddev, scale, data_distribution.gaussian.pnzB);
|
146 |
+
}
|
147 |
+
else if (name == "C" && data_distribution.gaussian.pnzC != 1.0) {
|
148 |
+
data_distribution.set_gaussian(mean, stddev, scale, data_distribution.gaussian.pnzC);
|
149 |
+
}
|
150 |
+
}
|
151 |
+
|
152 |
+
if (options.initialization.provider == library::Provider::kReferenceDevice) {
|
153 |
+
if (data_distribution.kind == Distribution::Sequential) {
|
154 |
+
allocation->initialize_sequential_device(
|
155 |
+
data_distribution);
|
156 |
+
}
|
157 |
+
else {
|
158 |
+
allocation->initialize_random_device(
|
159 |
+
options.initialization.seed + seed_shift,
|
160 |
+
data_distribution);
|
161 |
+
}
|
162 |
+
}
|
163 |
+
else if (options.initialization.provider == library::Provider::kReferenceHost) {
|
164 |
+
if (data_distribution.kind == Distribution::Sequential) {
|
165 |
+
allocation->initialize_sequential_host(
|
166 |
+
data_distribution);
|
167 |
+
}
|
168 |
+
else {
|
169 |
+
allocation->initialize_random_host(
|
170 |
+
options.initialization.seed + seed_shift,
|
171 |
+
data_distribution);
|
172 |
+
}
|
173 |
+
}
|
174 |
+
}
|
175 |
+
|
176 |
+
return allocation;
|
177 |
+
}
|
178 |
+
|
179 |
+
/// Allocates memory for sparse meta data
|
180 |
+
DeviceAllocation *DeviceContext::allocate_and_initialize_sparsemeta_tensor(
|
181 |
+
Options const &options,
|
182 |
+
std::string const &name,
|
183 |
+
library::NumericTypeID type,
|
184 |
+
library::LayoutTypeID layout_id,
|
185 |
+
library::NumericTypeID type_a,
|
186 |
+
std::vector<int> const &extent,
|
187 |
+
std::vector<int64_t> const &stride,
|
188 |
+
int batch_count,
|
189 |
+
int seed_shift,
|
190 |
+
size_t device_index) {
|
191 |
+
|
192 |
+
DeviceAllocation *allocation =
|
193 |
+
allocate_tensor(options, name, type, layout_id, extent, stride,
|
194 |
+
batch_count, device_index);
|
195 |
+
|
196 |
+
if (options.initialization.enabled) {
|
197 |
+
// TF32 has 4bit meta data. The rest has 2bit.
|
198 |
+
int MetaSizeInBits = (cutlass::library::sizeof_bits(type_a) == 32) ? 4 : 2;
|
199 |
+
|
200 |
+
if (options.initialization.provider == library::Provider::kReferenceDevice) {
|
201 |
+
allocation->initialize_random_sparsemeta_device(
|
202 |
+
options.initialization.seed + seed_shift,
|
203 |
+
MetaSizeInBits);
|
204 |
+
}
|
205 |
+
else if (options.initialization.provider == library::Provider::kReferenceHost) {
|
206 |
+
allocation->initialize_random_sparsemeta_host(
|
207 |
+
options.initialization.seed + seed_shift,
|
208 |
+
MetaSizeInBits);
|
209 |
+
}
|
210 |
+
}
|
211 |
+
|
212 |
+
return allocation;
|
213 |
+
}
|
214 |
+
/// Clears named allocations (but does not necessarily free memory)
|
215 |
+
void DeviceContext::clear() {
|
216 |
+
allocations_.clear();
|
217 |
+
}
|
218 |
+
|
219 |
+
/// Frees all device memory allocations
|
220 |
+
void DeviceContext::free() {
|
221 |
+
allocations_.clear();
|
222 |
+
device_memory_.clear();
|
223 |
+
}
|
224 |
+
|
225 |
+
/// Gets the allocation by name
|
226 |
+
DeviceAllocation &DeviceContext::at(std::string const &name) {
|
227 |
+
return *allocations_.at(name);
|
228 |
+
}
|
229 |
+
|
230 |
+
size_t DeviceContext::size() const {
|
231 |
+
return allocations_.size();
|
232 |
+
}
|
233 |
+
|
234 |
+
DeviceContext::AllocationMap::iterator DeviceContext::begin() {
|
235 |
+
return allocations_.begin();
|
236 |
+
}
|
237 |
+
|
238 |
+
DeviceContext::AllocationMap::iterator DeviceContext::end() {
|
239 |
+
return allocations_.end();
|
240 |
+
}
|
241 |
+
|
242 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
243 |
+
|
244 |
+
} // namespace profiler
|
245 |
+
} // namespace cutlass
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/enumerated_types.cpp
ADDED
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief Provides several functions for filling tensors with data.
|
33 |
+
*/
|
34 |
+
|
35 |
+
#include "cutlass/profiler/enumerated_types.h"
|
36 |
+
|
37 |
+
namespace cutlass {
|
38 |
+
namespace profiler {
|
39 |
+
|
40 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
41 |
+
|
42 |
+
static struct {
|
43 |
+
char const *text;
|
44 |
+
char const *pretty;
|
45 |
+
ExecutionMode enumerant;
|
46 |
+
}
|
47 |
+
ExecutionMode_enumerants[] = {
|
48 |
+
{"profile", "Profile", ExecutionMode::kProfile},
|
49 |
+
{"dry_run", "Dry run", ExecutionMode::kDryRun},
|
50 |
+
{"dry", "dry run", ExecutionMode::kDryRun},
|
51 |
+
{"trace", "Trace", ExecutionMode::kTrace},
|
52 |
+
{"enumerate", "Enumerate", ExecutionMode::kEnumerate}
|
53 |
+
};
|
54 |
+
|
55 |
+
/// Converts a ExecutionMode enumerant to a string
|
56 |
+
char const *to_string(ExecutionMode mode, bool pretty) {
|
57 |
+
|
58 |
+
for (auto const & possible : ExecutionMode_enumerants) {
|
59 |
+
if (mode == possible.enumerant) {
|
60 |
+
if (pretty) {
|
61 |
+
return possible.pretty;
|
62 |
+
}
|
63 |
+
else {
|
64 |
+
return possible.text;
|
65 |
+
}
|
66 |
+
}
|
67 |
+
}
|
68 |
+
|
69 |
+
return pretty ? "Invalid" : "invalid";
|
70 |
+
}
|
71 |
+
|
72 |
+
/// Parses a ExecutionMode enumerant from a string
|
73 |
+
template <>
|
74 |
+
ExecutionMode from_string<ExecutionMode>(std::string const &str) {
|
75 |
+
|
76 |
+
for (auto const & possible : ExecutionMode_enumerants) {
|
77 |
+
if ((str.compare(possible.text) == 0) ||
|
78 |
+
(str.compare(possible.pretty) == 0)) {
|
79 |
+
return possible.enumerant;
|
80 |
+
}
|
81 |
+
}
|
82 |
+
|
83 |
+
return ExecutionMode::kInvalid;
|
84 |
+
}
|
85 |
+
|
86 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
87 |
+
|
88 |
+
static struct {
|
89 |
+
char const *text;
|
90 |
+
char const *pretty;
|
91 |
+
AlgorithmMode enumerant;
|
92 |
+
}
|
93 |
+
AlgorithmMode_enumerants[] = {
|
94 |
+
{"matching", "Matching", AlgorithmMode::kMatching},
|
95 |
+
{"best", "Best", AlgorithmMode::kBest},
|
96 |
+
{"default", "Default", AlgorithmMode::kDefault}
|
97 |
+
};
|
98 |
+
|
99 |
+
/// Converts a ExecutionMode enumerant to a string
|
100 |
+
char const *to_string(AlgorithmMode mode, bool pretty) {
|
101 |
+
|
102 |
+
for (auto const & possible : AlgorithmMode_enumerants) {
|
103 |
+
if (mode == possible.enumerant) {
|
104 |
+
if (pretty) {
|
105 |
+
return possible.pretty;
|
106 |
+
}
|
107 |
+
else {
|
108 |
+
return possible.text;
|
109 |
+
}
|
110 |
+
}
|
111 |
+
}
|
112 |
+
|
113 |
+
return pretty ? "Invalid" : "invalid";
|
114 |
+
}
|
115 |
+
|
116 |
+
/// Parses a ExecutionMode enumerant from a string
|
117 |
+
template <>
|
118 |
+
AlgorithmMode from_string<AlgorithmMode>(std::string const &str) {
|
119 |
+
|
120 |
+
for (auto const & possible : AlgorithmMode_enumerants) {
|
121 |
+
if ((str.compare(possible.text) == 0) ||
|
122 |
+
(str.compare(possible.pretty) == 0)) {
|
123 |
+
return possible.enumerant;
|
124 |
+
}
|
125 |
+
}
|
126 |
+
|
127 |
+
return AlgorithmMode::kInvalid;
|
128 |
+
}
|
129 |
+
|
130 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
131 |
+
|
132 |
+
static struct {
|
133 |
+
char const *text;
|
134 |
+
char const *pretty;
|
135 |
+
Disposition enumerant;
|
136 |
+
}
|
137 |
+
Disposition_enumerants[] = {
|
138 |
+
{"passed", "Passed", Disposition::kPassed},
|
139 |
+
{"failed", "Failed", Disposition::kFailed},
|
140 |
+
{"not_run", "Not run", Disposition::kNotRun},
|
141 |
+
{"not_verified", "Not verified", Disposition::kNotVerified},
|
142 |
+
{"invalid_problem", "Invalid problem", Disposition::kInvalidProblem},
|
143 |
+
{"not_supported", "Not supported", Disposition::kNotSupported},
|
144 |
+
{"incorrect", "Incorrect", Disposition::kIncorrect}
|
145 |
+
};
|
146 |
+
|
147 |
+
/// Converts a Disposition enumerant to a string
|
148 |
+
char const *to_string(Disposition disposition, bool pretty) {
|
149 |
+
|
150 |
+
for (auto const & possible : Disposition_enumerants) {
|
151 |
+
if (disposition == possible.enumerant) {
|
152 |
+
if (pretty) {
|
153 |
+
return possible.pretty;
|
154 |
+
}
|
155 |
+
else {
|
156 |
+
return possible.text;
|
157 |
+
}
|
158 |
+
}
|
159 |
+
}
|
160 |
+
|
161 |
+
return pretty ? "Invalid" : "invalid";
|
162 |
+
}
|
163 |
+
|
164 |
+
/// Parses a Disposition enumerant from a string
|
165 |
+
template <>
|
166 |
+
Disposition from_string<Disposition>(std::string const &str) {
|
167 |
+
|
168 |
+
for (auto const & possible : Disposition_enumerants) {
|
169 |
+
if ((str.compare(possible.text) == 0) ||
|
170 |
+
(str.compare(possible.pretty) == 0)) {
|
171 |
+
return possible.enumerant;
|
172 |
+
}
|
173 |
+
}
|
174 |
+
|
175 |
+
return Disposition::kInvalid;
|
176 |
+
}
|
177 |
+
|
178 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
179 |
+
|
180 |
+
static struct {
|
181 |
+
char const *text;
|
182 |
+
char const *pretty;
|
183 |
+
SaveWorkspace enumerant;
|
184 |
+
}
|
185 |
+
SaveWorkspace_enumerants[] = {
|
186 |
+
{"never", "Never", SaveWorkspace::kNever},
|
187 |
+
{"incorrect", "Incorrect", SaveWorkspace::kIncorrect},
|
188 |
+
{"always", "Always", SaveWorkspace::kAlways}
|
189 |
+
};
|
190 |
+
|
191 |
+
/// Converts a SaveWorkspace enumerant to a string
|
192 |
+
char const *to_string(SaveWorkspace save_option, bool pretty) {
|
193 |
+
|
194 |
+
for (auto const & possible : SaveWorkspace_enumerants) {
|
195 |
+
if (save_option == possible.enumerant) {
|
196 |
+
if (pretty) {
|
197 |
+
return possible.pretty;
|
198 |
+
}
|
199 |
+
else {
|
200 |
+
return possible.text;
|
201 |
+
}
|
202 |
+
}
|
203 |
+
}
|
204 |
+
|
205 |
+
return pretty ? "Invalid" : "invalid";
|
206 |
+
}
|
207 |
+
|
208 |
+
/// Parses a SaveWorkspace enumerant from a string
|
209 |
+
template <>
|
210 |
+
SaveWorkspace from_string<SaveWorkspace>(std::string const &str) {
|
211 |
+
|
212 |
+
for (auto const & possible : SaveWorkspace_enumerants) {
|
213 |
+
if ((str.compare(possible.text) == 0) ||
|
214 |
+
(str.compare(possible.pretty) == 0)) {
|
215 |
+
return possible.enumerant;
|
216 |
+
}
|
217 |
+
}
|
218 |
+
|
219 |
+
return SaveWorkspace::kInvalid;
|
220 |
+
}
|
221 |
+
|
222 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
223 |
+
|
224 |
+
static struct {
|
225 |
+
char const *text;
|
226 |
+
char const *pretty;
|
227 |
+
ArgumentTypeID enumerant;
|
228 |
+
}
|
229 |
+
ArgumentTypeID_enumerants[] = {
|
230 |
+
{"scalar", "Scalar", ArgumentTypeID::kScalar},
|
231 |
+
{"int", "Integer", ArgumentTypeID::kInteger},
|
232 |
+
{"tensor", "Tensor", ArgumentTypeID::kTensor},
|
233 |
+
{"batched_tensor", "BatchedTensor", ArgumentTypeID::kBatchedTensor},
|
234 |
+
{"struct", "Struct", ArgumentTypeID::kStructure},
|
235 |
+
{"enum", "Enumerated type", ArgumentTypeID::kEnumerated}
|
236 |
+
};
|
237 |
+
|
238 |
+
/// Converts a ArgumentTypeID enumerant to a string
|
239 |
+
char const *to_string(ArgumentTypeID type, bool pretty) {
|
240 |
+
|
241 |
+
for (auto const & possible : ArgumentTypeID_enumerants) {
|
242 |
+
if (type == possible.enumerant) {
|
243 |
+
if (pretty) {
|
244 |
+
return possible.pretty;
|
245 |
+
}
|
246 |
+
else {
|
247 |
+
return possible.text;
|
248 |
+
}
|
249 |
+
}
|
250 |
+
}
|
251 |
+
|
252 |
+
return pretty ? "Invalid" : "invalid";
|
253 |
+
}
|
254 |
+
|
255 |
+
/// Parses a ArgumentTypeID enumerant from a string
|
256 |
+
template <>
|
257 |
+
ArgumentTypeID from_string<ArgumentTypeID>(std::string const &str) {
|
258 |
+
|
259 |
+
for (auto const & possible : ArgumentTypeID_enumerants) {
|
260 |
+
if ((str.compare(possible.text) == 0) ||
|
261 |
+
(str.compare(possible.pretty) == 0)) {
|
262 |
+
return possible.enumerant;
|
263 |
+
}
|
264 |
+
}
|
265 |
+
|
266 |
+
return ArgumentTypeID::kInvalid;
|
267 |
+
}
|
268 |
+
|
269 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
270 |
+
|
271 |
+
} // namespace profiler
|
272 |
+
} // namespace cutlass
|
273 |
+
|
274 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
275 |
+
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/gemm_operation_profiler.cu
ADDED
@@ -0,0 +1,1298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief Execution environment
|
33 |
+
*/
|
34 |
+
|
35 |
+
#include <iostream>
|
36 |
+
#include <stdexcept>
|
37 |
+
#include <iomanip>
|
38 |
+
#include <ios>
|
39 |
+
#include <vector>
|
40 |
+
|
41 |
+
#include "cutlass/core_io.h"
|
42 |
+
#include <cuda_runtime_api.h>
|
43 |
+
|
44 |
+
#include "cutlass/profiler/cublas_helpers.h"
|
45 |
+
#include "cutlass/profiler/gemm_operation_profiler.h"
|
46 |
+
#include "cutlass/profiler/gpu_timer.h"
|
47 |
+
#include "cutlass/library/singleton.h"
|
48 |
+
#include "cutlass/library/library.h"
|
49 |
+
#include "cutlass/library/handle.h"
|
50 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
51 |
+
|
52 |
+
namespace cutlass {
|
53 |
+
namespace profiler {
|
54 |
+
|
55 |
+
|
56 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
57 |
+
|
58 |
+
/// Ctor
|
59 |
+
GemmOperationProfiler::GemmOperationProfiler(Options const &options):
|
60 |
+
OperationProfiler(
|
61 |
+
options,
|
62 |
+
library::OperationKind::kGemm,
|
63 |
+
{
|
64 |
+
{ArgumentTypeID::kEnumerated, {"gemm_kind"}, "Variant of GEMM (universal, gemm, planar_complex, planar_complex_array)"},
|
65 |
+
{ArgumentTypeID::kInteger, {"m", "problem-size::m"}, "M dimension of the GEMM problem space"},
|
66 |
+
{ArgumentTypeID::kInteger, {"n", "problem-size::n"}, "N dimension of the GEMM problem space"},
|
67 |
+
{ArgumentTypeID::kInteger, {"k", "problem-size::k"}, "K dimension of the GEMM problem space"},
|
68 |
+
{ArgumentTypeID::kTensor, {"A"}, "Tensor storing the A operand"},
|
69 |
+
{ArgumentTypeID::kTensor, {"B"}, "Tensor storing the B operand"},
|
70 |
+
{ArgumentTypeID::kTensor, {"C"}, "Tensor storing the C operand"},
|
71 |
+
{ArgumentTypeID::kTensor, {"D"}, "Tensor storing the D output"},
|
72 |
+
{ArgumentTypeID::kScalar, {"alpha", "epilogue::alpha"}, "Epilogue scalar alpha"},
|
73 |
+
{ArgumentTypeID::kScalar, {"beta", "epilogue::beta"}, "Epilogue scalar beta"},
|
74 |
+
{ArgumentTypeID::kEnumerated, {"split_k_mode", "split-k-mode"}, "Variant of split K mode(serial, parallel)"},
|
75 |
+
{ArgumentTypeID::kInteger, {"split_k_slices", "split-k-slices"}, "Number of partitions of K dimension"},
|
76 |
+
{ArgumentTypeID::kInteger, {"batch_count", "batch-count"}, "Number of GEMMs computed in one batch"},
|
77 |
+
{ArgumentTypeID::kEnumerated, {"raster_order", "raster-order"}, "Raster order (heuristic, along_n, along_m)"},
|
78 |
+
{ArgumentTypeID::kInteger, {"swizzle_size", "swizzle-size"}, "Size to swizzle"},
|
79 |
+
},
|
80 |
+
{ library::Provider::kCUBLAS}
|
81 |
+
) {
|
82 |
+
|
83 |
+
description_ = " General matrix-matrix product. D = alpha * A*B + beta * C";
|
84 |
+
}
|
85 |
+
|
86 |
+
/// Destructor
|
87 |
+
GemmOperationProfiler::~GemmOperationProfiler() {
|
88 |
+
|
89 |
+
}
|
90 |
+
|
91 |
+
/// Prints usage statement for the math function
|
92 |
+
void GemmOperationProfiler::print_usage(std::ostream &out) const {
|
93 |
+
out << "GEMM" << "\n\n";
|
94 |
+
|
95 |
+
OperationProfiler::print_usage(out);
|
96 |
+
}
|
97 |
+
|
98 |
+
/// Prints examples
|
99 |
+
void GemmOperationProfiler::print_examples(std::ostream &out) const {
|
100 |
+
|
101 |
+
out << "\nExamples:\n\n"
|
102 |
+
<< "Profile a particular problem size:\n"
|
103 |
+
<< " $ cutlass_profiler --operation=Gemm --m=1024 --n=1024 --k=128\n\n"
|
104 |
+
|
105 |
+
<< "Schmoo over problem size and beta:\n"
|
106 |
+
<< " $ cutlass_profiler --operation=Gemm --m=1024:4096:256 --n=1024:4096:256 --k=128:8192:128 --beta=0,1,2.5\n\n"
|
107 |
+
|
108 |
+
<< "Schmoo over accumulator types:\n"
|
109 |
+
<< " $ cutlass_profiler --operation=Gemm --accumulator-type=f16,f32\n\n"
|
110 |
+
|
111 |
+
<< "Run when A is f16 with column-major and B is any datatype with row-major (For column major, use column, col, or n. For row major use, row or t):\n"
|
112 |
+
<< " $ cutlass_profiler --operation=Gemm --A=f16:column --B=*:row\n\n"
|
113 |
+
|
114 |
+
<< "Profile a particular problem size with split K and parallel reduction:\n"
|
115 |
+
<< " $ cutlass_profiler --operation=Gemm --split_k_mode=parallel --split_k_slices=2 --m=1024 --n=1024 --k=128\n\n"
|
116 |
+
|
117 |
+
<< "Using various input value distribution:\n"
|
118 |
+
<< " $ cutlass_profiler --operation=Gemm --dist=uniform,min:0,max:3\n"
|
119 |
+
<< " $ cutlass_profiler --operation=Gemm --dist=gaussian,mean:0,stddev:3\n"
|
120 |
+
<< " $ cutlass_profiler --operation=Gemm --dist=sequential,start:0,delta:1\n\n"
|
121 |
+
|
122 |
+
<< "Run a kernel with cta tile size of 256x128x32 and save workspace if results are incorrect (note that --cta-tile::k=32 is default cta-tile size):\n"
|
123 |
+
<< " $ cutlass_profiler --operation=Gemm --cta_m=256 --cta_n=128 --cta_k=32 --save-workspace=incorrect\n\n"
|
124 |
+
|
125 |
+
<< "Test your changes to gemm kernels with a quick functional test and save results in functional-test.csv:\n"
|
126 |
+
<< " $ cutlass_profiler --operation=Gemm \\ \n"
|
127 |
+
<< " --m=8,56,120,136,256,264,512,520,1024,1032,4096,8192,16384 \\ \n"
|
128 |
+
<< " --n=8,56,120,136,256,264,512,520,1024,1032,4096,8192,16384 \\ \n"
|
129 |
+
<< " --k=8,16,32,64,128,256,288,384,504,512,520 \\ \n"
|
130 |
+
<< " --beta=0,1,2 --profiling-iterations=1 \\ \n"
|
131 |
+
<< " --providers=cutlass --output=functional-test.csv\n\n";
|
132 |
+
}
|
133 |
+
|
134 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
135 |
+
|
136 |
+
#if 0
|
137 |
+
// used this for debugging
|
138 |
+
static std::string byte_string(std::vector<uint8_t> const &bytes) {
|
139 |
+
std::stringstream ss;
|
140 |
+
|
141 |
+
ss << "0x";
|
142 |
+
|
143 |
+
for (size_t idx = bytes.size(); idx > 0; --idx) {
|
144 |
+
ss << std::hex << std::setw(2) << std::setfill('0') << uint32_t(bytes.at(idx - 1));
|
145 |
+
}
|
146 |
+
|
147 |
+
return ss.str();
|
148 |
+
}
|
149 |
+
#endif
|
150 |
+
|
151 |
+
Status GemmOperationProfiler::GemmProblem::parse(
|
152 |
+
library::GemmDescription const &operation_desc,
|
153 |
+
ProblemSpace const &problem_space,
|
154 |
+
ProblemSpace::Problem const &problem) {
|
155 |
+
|
156 |
+
this->mode = library::GemmUniversalMode::kGemm;
|
157 |
+
|
158 |
+
if (!arg_as_int(this->m, "m", problem_space, problem)) {
|
159 |
+
// default value
|
160 |
+
this->m = 1024;
|
161 |
+
}
|
162 |
+
|
163 |
+
if (!arg_as_int(this->n, "n", problem_space, problem)) {
|
164 |
+
// default value
|
165 |
+
this->n = 1024;
|
166 |
+
}
|
167 |
+
|
168 |
+
if (!arg_as_int(this->k, "k", problem_space, problem)) {
|
169 |
+
// default value
|
170 |
+
this->k = 1024;
|
171 |
+
}
|
172 |
+
|
173 |
+
if (!arg_as_SplitKModeID(this->split_k_mode, "split_k_mode", problem_space, problem)) {
|
174 |
+
// default value
|
175 |
+
this->split_k_mode = library::SplitKMode::kSerial;
|
176 |
+
}
|
177 |
+
|
178 |
+
this->mode = library::GemmUniversalMode::kGemm;
|
179 |
+
if (this->split_k_mode == library::SplitKMode::kParallel) {
|
180 |
+
this->mode = library::GemmUniversalMode::kGemmSplitKParallel;
|
181 |
+
}
|
182 |
+
|
183 |
+
if (!arg_as_int(this->split_k_slices, "split_k_slices", problem_space, problem)) {
|
184 |
+
// default value
|
185 |
+
this->split_k_slices = 1;
|
186 |
+
}
|
187 |
+
|
188 |
+
if (!arg_as_int(this->batch_count, "batch_count", problem_space, problem)) {
|
189 |
+
// default value
|
190 |
+
this->batch_count = 1;
|
191 |
+
} else if (this->batch_count > 1) {
|
192 |
+
this->mode = library::GemmUniversalMode::kBatched;
|
193 |
+
}
|
194 |
+
|
195 |
+
if (!arg_as_int(this->swizzle_size, "swizzle_size", problem_space, problem)) {
|
196 |
+
// default value
|
197 |
+
this->swizzle_size = 1;
|
198 |
+
if (this->swizzle_size <= 0) {
|
199 |
+
return Status::kErrorInvalidProblem;
|
200 |
+
}
|
201 |
+
}
|
202 |
+
|
203 |
+
if (!arg_as_RasterOrder(this->raster_order, "raster_order", problem_space, problem)) {
|
204 |
+
// default value
|
205 |
+
this->raster_order = library::RasterOrder::kHeuristic;
|
206 |
+
}
|
207 |
+
|
208 |
+
if (this->split_k_slices > 1 && this->batch_count > 1) {
|
209 |
+
// At least one of these must be one
|
210 |
+
return Status::kErrorInvalidProblem;
|
211 |
+
}
|
212 |
+
|
213 |
+
if (!tensor_description_satisfies(operation_desc.A, "A", problem_space, problem)) {
|
214 |
+
return Status::kErrorInvalidProblem;
|
215 |
+
}
|
216 |
+
|
217 |
+
if (!tensor_description_satisfies(operation_desc.B, "B", problem_space, problem)) {
|
218 |
+
return Status::kErrorInvalidProblem;
|
219 |
+
}
|
220 |
+
|
221 |
+
if (!tensor_description_satisfies(operation_desc.C, "C", problem_space, problem)) {
|
222 |
+
return Status::kErrorInvalidProblem;
|
223 |
+
}
|
224 |
+
|
225 |
+
if (!tensor_description_satisfies(operation_desc.D, "D", problem_space, problem)) {
|
226 |
+
return Status::kErrorInvalidProblem;
|
227 |
+
}
|
228 |
+
|
229 |
+
if (!arg_as_scalar(
|
230 |
+
this->alpha,
|
231 |
+
operation_desc.element_epilogue,
|
232 |
+
"alpha",
|
233 |
+
problem_space,
|
234 |
+
problem)) {
|
235 |
+
|
236 |
+
if (!cast_from_double(this->alpha, operation_desc.element_epilogue, 1)) {
|
237 |
+
return Status::kErrorInternal;
|
238 |
+
}
|
239 |
+
}
|
240 |
+
|
241 |
+
if (!arg_as_scalar(
|
242 |
+
this->beta,
|
243 |
+
operation_desc.element_epilogue,
|
244 |
+
"beta",
|
245 |
+
problem_space,
|
246 |
+
problem)) {
|
247 |
+
|
248 |
+
if (!cast_from_double(this->beta, operation_desc.element_epilogue, 0)) {
|
249 |
+
return Status::kErrorInternal;
|
250 |
+
}
|
251 |
+
}
|
252 |
+
|
253 |
+
this->lda = DeviceAllocation::get_packed_layout(
|
254 |
+
operation_desc.A.layout, {int(this->m), int(this->k)}).front();
|
255 |
+
|
256 |
+
this->ldb = DeviceAllocation::get_packed_layout(
|
257 |
+
operation_desc.B.layout, {int(this->k), int(this->n)}).front();
|
258 |
+
|
259 |
+
this->ldc = DeviceAllocation::get_packed_layout(
|
260 |
+
operation_desc.C.layout, {int(this->m), int(this->n)}).front();
|
261 |
+
|
262 |
+
return Status::kSuccess;
|
263 |
+
}
|
264 |
+
|
265 |
+
/// Total number of bytes loaded
|
266 |
+
int64_t GemmOperationProfiler::GemmProblem::bytes(library::GemmDescription const &operation_desc) const {
|
267 |
+
// Input bytes read and Output bytes written for the gemm problem
|
268 |
+
int64_t bytes =
|
269 |
+
int64_t(library::sizeof_bits(operation_desc.A.element) * m / 8) * k +
|
270 |
+
int64_t(library::sizeof_bits(operation_desc.B.element) * n / 8) * k +
|
271 |
+
int64_t(library::sizeof_bits(operation_desc.C.element) * m / 8) * n;
|
272 |
+
|
273 |
+
// Set is_beta_zero true if beta is zero
|
274 |
+
bool is_beta_zero = std::all_of(beta.begin(), beta.end(), [](uint8_t i) { return i==0; });
|
275 |
+
|
276 |
+
// Output bytes read for the gemm problem for non-zero beta values
|
277 |
+
if (!is_beta_zero) {
|
278 |
+
bytes += int64_t(library::sizeof_bits(operation_desc.C.element) * m / 8) * n;
|
279 |
+
}
|
280 |
+
|
281 |
+
bytes *= batch_count;
|
282 |
+
|
283 |
+
return bytes;
|
284 |
+
}
|
285 |
+
|
286 |
+
/// Total number of flops computed
|
287 |
+
int64_t GemmOperationProfiler::GemmProblem::flops(library::GemmDescription const &operation_desc) const {
|
288 |
+
int64_t flops_ = (int64_t(m) * n * k + m * n) * 2 * batch_count;
|
289 |
+
|
290 |
+
// complex-valued support
|
291 |
+
switch (operation_desc.tile_description.math_instruction.math_operation) {
|
292 |
+
case library::MathOperationID::kMultiplyAddComplex:
|
293 |
+
flops_ *= 4;
|
294 |
+
break;
|
295 |
+
|
296 |
+
case library::MathOperationID::kMultiplyAddComplexFastF32:
|
297 |
+
flops_ *= 4;
|
298 |
+
break;
|
299 |
+
|
300 |
+
case library::MathOperationID::kMultiplyAddGaussianComplex:
|
301 |
+
flops_ *= 3;
|
302 |
+
break;
|
303 |
+
|
304 |
+
default: break;
|
305 |
+
}
|
306 |
+
|
307 |
+
return flops_;
|
308 |
+
}
|
309 |
+
|
310 |
+
|
311 |
+
/// Initializes a performance result
|
312 |
+
void GemmOperationProfiler::GemmProblem::initialize_result(
|
313 |
+
PerformanceResult &result,
|
314 |
+
library::GemmDescription const &operation_desc,
|
315 |
+
ProblemSpace const &problem_space) {
|
316 |
+
|
317 |
+
result.arguments.resize(problem_space.rank());
|
318 |
+
|
319 |
+
set_argument(result, "gemm_kind", problem_space, library::to_string(operation_desc.gemm_kind));
|
320 |
+
|
321 |
+
set_argument(result, "A", problem_space,
|
322 |
+
std::string(library::to_string(operation_desc.A.element)) + ":" + library::to_string(operation_desc.A.layout));
|
323 |
+
|
324 |
+
set_argument(result, "B", problem_space,
|
325 |
+
std::string(library::to_string(operation_desc.B.element)) + ":" + library::to_string(operation_desc.B.layout));
|
326 |
+
|
327 |
+
set_argument(result, "C", problem_space,
|
328 |
+
std::string(library::to_string(operation_desc.C.element)) + ":" + library::to_string(operation_desc.C.layout));
|
329 |
+
|
330 |
+
set_argument(result, "D", problem_space,
|
331 |
+
std::string(library::to_string(operation_desc.D.element)) + ":" + library::to_string(operation_desc.D.layout));
|
332 |
+
|
333 |
+
set_argument(result, "m", problem_space, m);
|
334 |
+
set_argument(result, "n", problem_space, n);
|
335 |
+
set_argument(result, "k", problem_space, k);
|
336 |
+
|
337 |
+
set_argument(result, "split_k_mode", problem_space, library::to_string(split_k_mode));
|
338 |
+
set_argument(result, "split_k_slices", problem_space, split_k_slices);
|
339 |
+
set_argument(result, "batch_count", problem_space, batch_count);
|
340 |
+
set_argument(result, "raster_order", problem_space, library::to_string(raster_order));
|
341 |
+
set_argument(result, "swizzle_size", problem_space, swizzle_size);
|
342 |
+
|
343 |
+
set_argument(result, "alpha", problem_space,
|
344 |
+
library::lexical_cast(alpha, operation_desc.element_epilogue));
|
345 |
+
|
346 |
+
set_argument(result, "beta", problem_space,
|
347 |
+
library::lexical_cast(beta, operation_desc.element_epilogue));
|
348 |
+
}
|
349 |
+
|
350 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
351 |
+
|
352 |
+
/// Extracts the problem dimensions
|
353 |
+
Status GemmOperationProfiler::initialize_configuration(
|
354 |
+
Options const &options,
|
355 |
+
PerformanceReport &report,
|
356 |
+
DeviceContext &device_context,
|
357 |
+
library::Operation const *operation,
|
358 |
+
ProblemSpace const &problem_space,
|
359 |
+
ProblemSpace::Problem const &problem) {
|
360 |
+
|
361 |
+
library::GemmDescription const &operation_desc =
|
362 |
+
static_cast<library::GemmDescription const &>(operation->description());
|
363 |
+
|
364 |
+
if (operation_desc.gemm_kind != library::GemmKind::kUniversal) {
|
365 |
+
return Status::kErrorInvalidProblem;
|
366 |
+
}
|
367 |
+
|
368 |
+
Status status = problem_.parse(operation_desc, problem_space, problem);
|
369 |
+
|
370 |
+
if (status != Status::kSuccess) {
|
371 |
+
return status;
|
372 |
+
}
|
373 |
+
|
374 |
+
gemm_workspace_.configuration.mode = problem_.mode;
|
375 |
+
gemm_workspace_.configuration.problem_size.m() = int(problem_.m);
|
376 |
+
gemm_workspace_.configuration.problem_size.n() = int(problem_.n);
|
377 |
+
gemm_workspace_.configuration.problem_size.k() = int(problem_.k);
|
378 |
+
gemm_workspace_.configuration.lda = problem_.lda;
|
379 |
+
gemm_workspace_.configuration.ldb = problem_.ldb;
|
380 |
+
gemm_workspace_.configuration.ldc = problem_.ldc;
|
381 |
+
gemm_workspace_.configuration.ldd = problem_.ldc;
|
382 |
+
|
383 |
+
if (problem_.mode == library::GemmUniversalMode::kBatched) {
|
384 |
+
gemm_workspace_.configuration.batch_count = problem_.batch_count;
|
385 |
+
}
|
386 |
+
else {
|
387 |
+
gemm_workspace_.configuration.batch_count = problem_.split_k_slices;
|
388 |
+
}
|
389 |
+
|
390 |
+
gemm_workspace_.arguments.A = nullptr;
|
391 |
+
gemm_workspace_.arguments.B = nullptr;
|
392 |
+
gemm_workspace_.arguments.C = nullptr;
|
393 |
+
gemm_workspace_.arguments.D = nullptr;
|
394 |
+
gemm_workspace_.arguments.alpha = problem_.alpha.data();
|
395 |
+
gemm_workspace_.arguments.beta = problem_.beta.data();
|
396 |
+
gemm_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
397 |
+
gemm_workspace_.arguments.swizzle_size = problem_.swizzle_size;
|
398 |
+
gemm_workspace_.arguments.raster_order = problem_.raster_order;
|
399 |
+
// initialize reduction operation for parallel splitKMode
|
400 |
+
if (problem_.split_k_mode == library::SplitKMode::kParallel) {
|
401 |
+
if (!initialize_reduction_configuration_(operation, problem)) {
|
402 |
+
return Status::kErrorInternal;
|
403 |
+
}
|
404 |
+
}
|
405 |
+
|
406 |
+
initialize_result_(this->model_result_, options, operation_desc, problem_space);
|
407 |
+
|
408 |
+
return operation->can_implement(&gemm_workspace_.configuration, &gemm_workspace_.arguments);
|
409 |
+
}
|
410 |
+
|
411 |
+
/// Initializes the performance result
|
412 |
+
void GemmOperationProfiler::initialize_result_(
|
413 |
+
PerformanceResult &result,
|
414 |
+
Options const &options,
|
415 |
+
library::GemmDescription const &operation_desc,
|
416 |
+
ProblemSpace const &problem_space) {
|
417 |
+
|
418 |
+
result.provider = library::Provider::kCUTLASS;
|
419 |
+
result.disposition = Disposition::kNotRun;
|
420 |
+
result.status = Status::kSuccess;
|
421 |
+
result.operation_name = operation_desc.name;
|
422 |
+
|
423 |
+
problem_.initialize_result(result, operation_desc, problem_space);
|
424 |
+
|
425 |
+
OperationProfiler::initialize_result_(result, operation_desc, problem_space);
|
426 |
+
|
427 |
+
result.bytes = problem_.bytes(operation_desc);
|
428 |
+
result.flops = problem_.flops(operation_desc);
|
429 |
+
result.runtime = 0;
|
430 |
+
|
431 |
+
}
|
432 |
+
|
433 |
+
/// Initialize reduction problem dimensions and library::Operation
|
434 |
+
bool GemmOperationProfiler::initialize_reduction_configuration_(
|
435 |
+
library::Operation const *operation,
|
436 |
+
ProblemSpace::Problem const &problem) {
|
437 |
+
|
438 |
+
library::GemmDescription const &gemm_desc =
|
439 |
+
static_cast<library::GemmDescription const&>(operation->description());
|
440 |
+
|
441 |
+
if (!cast_from_double(problem_.alpha_one, gemm_desc.element_epilogue, 1)) {
|
442 |
+
return false;
|
443 |
+
}
|
444 |
+
|
445 |
+
if (!cast_from_double(problem_.beta_zero, gemm_desc.element_epilogue, 0)) {
|
446 |
+
return false;
|
447 |
+
}
|
448 |
+
|
449 |
+
/// initialize library::ReductionConfiguration
|
450 |
+
gemm_workspace_.reduction_configuration.problem_size = gemm::GemmCoord(int(problem_.n), int(problem_.m), int(problem_.k)).mn();
|
451 |
+
gemm_workspace_.reduction_configuration.partitions = int(problem_.split_k_slices);
|
452 |
+
gemm_workspace_.reduction_configuration.partition_stride = gemm::GemmCoord(int(problem_.n), int(problem_.m), int(problem_.k)).mn().product();
|
453 |
+
gemm_workspace_.reduction_configuration.ldw = problem_.ldc;
|
454 |
+
gemm_workspace_.reduction_configuration.lds = problem_.ldc;
|
455 |
+
gemm_workspace_.reduction_configuration.ldd = problem_.ldc;
|
456 |
+
|
457 |
+
// find reduction operation
|
458 |
+
library::ReductionFunctionalKey reduction_key(
|
459 |
+
library::Provider::kCUTLASS,
|
460 |
+
gemm_desc.tile_description.math_instruction.element_accumulator, // element workspace
|
461 |
+
gemm_desc.tile_description.math_instruction.element_accumulator, // element accumulator
|
462 |
+
gemm_desc.D.element, // element output
|
463 |
+
gemm_desc.element_epilogue // element compute
|
464 |
+
);
|
465 |
+
|
466 |
+
auto reduction_it = library::Singleton::get().operation_table.reduction_operations.find(reduction_key);
|
467 |
+
|
468 |
+
if (reduction_it == library::Singleton::get().operation_table.reduction_operations.end()) {
|
469 |
+
return false;
|
470 |
+
}
|
471 |
+
|
472 |
+
// initialize reduction operation required for parallel split-k operator
|
473 |
+
reduction_op_ = reduction_it->second;
|
474 |
+
|
475 |
+
// reduction operation found and initialized
|
476 |
+
return true;
|
477 |
+
}
|
478 |
+
|
479 |
+
/// Initializes workspace
|
480 |
+
Status GemmOperationProfiler::initialize_workspace(
|
481 |
+
Options const &options,
|
482 |
+
PerformanceReport &report,
|
483 |
+
DeviceContext &device_context,
|
484 |
+
library::Operation const *operation,
|
485 |
+
ProblemSpace const &problem_space,
|
486 |
+
ProblemSpace::Problem const &problem) {
|
487 |
+
|
488 |
+
if (options.device.devices.size() != 1) {
|
489 |
+
throw std::runtime_error("This operation profiler only supports a single "
|
490 |
+
"device.");
|
491 |
+
}
|
492 |
+
|
493 |
+
cudaError_t result;
|
494 |
+
result = cudaSetDevice(options.device.device_id(0));
|
495 |
+
if (result != cudaSuccess) {
|
496 |
+
throw std::runtime_error("cudaSetDevice() failed.");
|
497 |
+
}
|
498 |
+
|
499 |
+
library::Operation const* underlying_operation = operation;
|
500 |
+
|
501 |
+
if (problem_.split_k_mode == library::SplitKMode::kParallel) {
|
502 |
+
if (!(underlying_operation = library::find_gemm_operation_for_parallel_reduction(operation))) {
|
503 |
+
return Status::kErrorNotSupported;
|
504 |
+
}
|
505 |
+
}
|
506 |
+
|
507 |
+
library::GemmDescription const &operation_desc =
|
508 |
+
static_cast<library::GemmDescription const &>(operation->description());
|
509 |
+
|
510 |
+
bool is_sparse = operation_desc.tile_description.math_instruction.opcode_class == cutlass::library::OpcodeClassID::kSparseTensorOp;
|
511 |
+
|
512 |
+
// Compute the number of copies of the problem to avoid L2 camping.
|
513 |
+
if (!options.profiling.workspace_count) {
|
514 |
+
int64_t bytes = problem_.bytes(operation_desc);
|
515 |
+
if (bytes < 3 * int64_t(options.device.properties[0].l2CacheSize)) {
|
516 |
+
gemm_workspace_.problem_count =
|
517 |
+
1 + int((3 * int64_t(options.device.properties[0].l2CacheSize)) / bytes);
|
518 |
+
}
|
519 |
+
else {
|
520 |
+
gemm_workspace_.problem_count = 1;
|
521 |
+
}
|
522 |
+
}
|
523 |
+
else {
|
524 |
+
gemm_workspace_.problem_count = options.profiling.workspace_count;
|
525 |
+
}
|
526 |
+
|
527 |
+
bool allocate_device_tensors = options.execution_mode != ExecutionMode::kDryRun;
|
528 |
+
if (allocate_device_tensors) {
|
529 |
+
int seed_shift = 0;
|
530 |
+
gemm_workspace_.A = device_context.allocate_and_initialize_tensor(
|
531 |
+
options,
|
532 |
+
"A",
|
533 |
+
operation_desc.A.element,
|
534 |
+
operation_desc.A.layout,
|
535 |
+
{int(problem_.m), int(problem_.k)},
|
536 |
+
{int(problem_.lda)},
|
537 |
+
problem_.batch_count * gemm_workspace_.problem_count,
|
538 |
+
seed_shift++,
|
539 |
+
0 // device_index
|
540 |
+
);
|
541 |
+
|
542 |
+
gemm_workspace_.B = device_context.allocate_and_initialize_tensor(
|
543 |
+
options,
|
544 |
+
"B",
|
545 |
+
operation_desc.B.element,
|
546 |
+
operation_desc.B.layout,
|
547 |
+
{int(problem_.k), int(problem_.n)},
|
548 |
+
{int(problem_.ldb)},
|
549 |
+
problem_.batch_count * gemm_workspace_.problem_count,
|
550 |
+
seed_shift++,
|
551 |
+
0 // device_index
|
552 |
+
);
|
553 |
+
|
554 |
+
gemm_workspace_.C = device_context.allocate_and_initialize_tensor(
|
555 |
+
options,
|
556 |
+
"C",
|
557 |
+
operation_desc.C.element,
|
558 |
+
operation_desc.C.layout,
|
559 |
+
{int(problem_.m), int(problem_.n)},
|
560 |
+
{int(problem_.ldc)},
|
561 |
+
problem_.batch_count * gemm_workspace_.problem_count,
|
562 |
+
seed_shift++,
|
563 |
+
0 // device_index
|
564 |
+
);
|
565 |
+
|
566 |
+
gemm_workspace_.Computed = device_context.allocate_tensor(
|
567 |
+
options,
|
568 |
+
"D",
|
569 |
+
operation_desc.D.element,
|
570 |
+
operation_desc.D.layout,
|
571 |
+
{int(problem_.m), int(problem_.n)},
|
572 |
+
{int(problem_.ldc)},
|
573 |
+
problem_.batch_count * gemm_workspace_.problem_count,
|
574 |
+
0 // device_index
|
575 |
+
);
|
576 |
+
|
577 |
+
gemm_workspace_.Reference = device_context.allocate_tensor(
|
578 |
+
options,
|
579 |
+
"Reference",
|
580 |
+
operation_desc.D.element,
|
581 |
+
operation_desc.D.layout,
|
582 |
+
{int(problem_.m), int(problem_.n)},
|
583 |
+
{int(problem_.ldc)},
|
584 |
+
problem_.batch_count * gemm_workspace_.problem_count,
|
585 |
+
0 // device_index
|
586 |
+
);
|
587 |
+
}
|
588 |
+
|
589 |
+
if (options.execution_mode != ExecutionMode::kDryRun) {
|
590 |
+
// NOTE: the leading non-batch strides are duplicated here for 3.0 API kernels
|
591 |
+
gemm_workspace_.arguments.problem_size = {int(problem_.m), int(problem_.n), int(problem_.k)};
|
592 |
+
gemm_workspace_.arguments.batch_count = problem_.batch_count;
|
593 |
+
gemm_workspace_.arguments.lda = problem_.lda;
|
594 |
+
gemm_workspace_.arguments.ldb = problem_.ldb;
|
595 |
+
gemm_workspace_.arguments.ldc = problem_.ldc;
|
596 |
+
gemm_workspace_.arguments.ldd = problem_.ldc;
|
597 |
+
gemm_workspace_.arguments.batch_stride_A = gemm_workspace_.A->batch_stride();
|
598 |
+
gemm_workspace_.arguments.batch_stride_B = gemm_workspace_.B->batch_stride();
|
599 |
+
gemm_workspace_.arguments.batch_stride_C = gemm_workspace_.C->batch_stride();
|
600 |
+
gemm_workspace_.arguments.batch_stride_D = gemm_workspace_.Computed->batch_stride();
|
601 |
+
|
602 |
+
/* Query device SM count to pass onto the kernel as an argument, where needed */
|
603 |
+
gemm_workspace_.arguments.sm_count = options.device.properties[0].multiProcessorCount;
|
604 |
+
}
|
605 |
+
|
606 |
+
//
|
607 |
+
// Initialize the CUTLASS operation
|
608 |
+
//
|
609 |
+
Status status = Status::kSuccess;
|
610 |
+
|
611 |
+
if (options.profiling.provider_enabled(library::Provider::kCUTLASS)) {
|
612 |
+
|
613 |
+
if (options.execution_mode != ExecutionMode::kDryRun) {
|
614 |
+
uint64_t workspace_size = underlying_operation->get_host_workspace_size(&gemm_workspace_.configuration);
|
615 |
+
gemm_workspace_.host_workspace.resize(workspace_size, 0);
|
616 |
+
|
617 |
+
workspace_size = underlying_operation->get_device_workspace_size(&gemm_workspace_.configuration,
|
618 |
+
&gemm_workspace_.arguments);
|
619 |
+
if (is_sparse) {
|
620 |
+
// sparse gemm get_device_workspace_size() only return device workspace size per iteration
|
621 |
+
// Needs to multiply it w/ number of iteration
|
622 |
+
workspace_size *= gemm_workspace_.problem_count;
|
623 |
+
}
|
624 |
+
gemm_workspace_.device_workspace.reset(library::NumericTypeID::kU8, workspace_size);
|
625 |
+
|
626 |
+
// Convert to structure sparse contents here.
|
627 |
+
if (is_sparse) {
|
628 |
+
uint8_t* profiler_workspaces[1];
|
629 |
+
profiler_workspaces[0] = reinterpret_cast<uint8_t*>(gemm_workspace_.A->data());
|
630 |
+
// Sparse operations have a different initialize interface.
|
631 |
+
// initialize_with_profiler_workspace converts mxk tensorA to compressed mxk/sp tensorA and the tensorE
|
632 |
+
auto modifiable_underlying_op = const_cast<library::Operation*>(underlying_operation);
|
633 |
+
status = modifiable_underlying_op->initialize_with_profiler_workspace(
|
634 |
+
&gemm_workspace_.configuration,
|
635 |
+
gemm_workspace_.host_workspace.data(),
|
636 |
+
gemm_workspace_.device_workspace.data(),
|
637 |
+
profiler_workspaces,
|
638 |
+
gemm_workspace_.problem_count);
|
639 |
+
}
|
640 |
+
else {
|
641 |
+
status = underlying_operation->initialize(
|
642 |
+
&gemm_workspace_.configuration,
|
643 |
+
gemm_workspace_.host_workspace.data(),
|
644 |
+
gemm_workspace_.device_workspace.data());
|
645 |
+
}
|
646 |
+
|
647 |
+
if (status != Status::kSuccess) {
|
648 |
+
return status;
|
649 |
+
}
|
650 |
+
|
651 |
+
if (problem_.split_k_mode == library::SplitKMode::kParallel) {
|
652 |
+
workspace_size = reduction_op_->get_host_workspace_size(&gemm_workspace_.reduction_configuration);
|
653 |
+
gemm_workspace_.reduction_host_workspace.resize(workspace_size, 0);
|
654 |
+
|
655 |
+
status = reduction_op_->initialize(
|
656 |
+
&gemm_workspace_.reduction_configuration,
|
657 |
+
gemm_workspace_.reduction_host_workspace.data(),
|
658 |
+
nullptr);
|
659 |
+
|
660 |
+
if (status != Status::kSuccess) {
|
661 |
+
return status;
|
662 |
+
}
|
663 |
+
}
|
664 |
+
}
|
665 |
+
|
666 |
+
//
|
667 |
+
// If CUTLASS is enabled, generate a result for it
|
668 |
+
//
|
669 |
+
results_.push_back(model_result_);
|
670 |
+
results_.back().provider = library::Provider::kCUTLASS;
|
671 |
+
results_.back().op_kind = library::OperationKind::kGemm;
|
672 |
+
results_.back().disposition = Disposition::kNotRun;
|
673 |
+
|
674 |
+
for (auto provider : verification_providers_) {
|
675 |
+
results_.back().verification_map[provider] = Disposition::kNotRun;
|
676 |
+
}
|
677 |
+
}
|
678 |
+
return status;
|
679 |
+
}
|
680 |
+
|
681 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
682 |
+
|
683 |
+
/// Verifies CUTLASS against references
|
684 |
+
bool GemmOperationProfiler::verify_cutlass(
|
685 |
+
Options const &options,
|
686 |
+
PerformanceReport &report,
|
687 |
+
DeviceContext &device_context,
|
688 |
+
library::Operation const *operation,
|
689 |
+
ProblemSpace const &problem_space,
|
690 |
+
ProblemSpace::Problem const &problem) {
|
691 |
+
|
692 |
+
if (!options.profiling.provider_enabled(library::Provider::kCUTLASS)) {
|
693 |
+
return true;
|
694 |
+
}
|
695 |
+
|
696 |
+
if (options.execution_mode == ExecutionMode::kDryRun) {
|
697 |
+
return true;
|
698 |
+
}
|
699 |
+
|
700 |
+
// Initialize structure containing GEMM arguments
|
701 |
+
gemm_workspace_.arguments.A = gemm_workspace_.A->data();
|
702 |
+
gemm_workspace_.arguments.B = gemm_workspace_.B->data();
|
703 |
+
gemm_workspace_.arguments.C = gemm_workspace_.C->data();
|
704 |
+
gemm_workspace_.arguments.D = gemm_workspace_.Computed->data();
|
705 |
+
gemm_workspace_.arguments.alpha = problem_.alpha.data();
|
706 |
+
gemm_workspace_.arguments.beta = problem_.beta.data();
|
707 |
+
gemm_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
708 |
+
gemm_workspace_.arguments.batch_stride_A = gemm_workspace_.A->batch_stride();
|
709 |
+
gemm_workspace_.arguments.batch_stride_B = gemm_workspace_.B->batch_stride();
|
710 |
+
gemm_workspace_.arguments.batch_stride_C = gemm_workspace_.C->batch_stride();
|
711 |
+
gemm_workspace_.arguments.batch_stride_D = gemm_workspace_.Computed->batch_stride();
|
712 |
+
|
713 |
+
if (problem_.split_k_mode == library::SplitKMode::kParallel) {
|
714 |
+
gemm_workspace_.arguments.D = gemm_workspace_.device_workspace.data();
|
715 |
+
gemm_workspace_.arguments.alpha = problem_.alpha_one.data();
|
716 |
+
gemm_workspace_.arguments.beta = problem_.beta_zero.data();
|
717 |
+
|
718 |
+
gemm_workspace_.reduction_arguments.workspace = gemm_workspace_.device_workspace.data();
|
719 |
+
gemm_workspace_.reduction_arguments.source = gemm_workspace_.C->data();
|
720 |
+
gemm_workspace_.reduction_arguments.destination = gemm_workspace_.Computed->data();
|
721 |
+
gemm_workspace_.reduction_arguments.alpha = problem_.alpha.data();
|
722 |
+
gemm_workspace_.reduction_arguments.beta = problem_.beta.data();
|
723 |
+
gemm_workspace_.reduction_arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
724 |
+
}
|
725 |
+
|
726 |
+
//
|
727 |
+
// Run the CUTLASS operation
|
728 |
+
//
|
729 |
+
|
730 |
+
// initialize gemm underlying operation to handle parallel reduction
|
731 |
+
library::Operation const * underlying_operation = operation;
|
732 |
+
|
733 |
+
if (problem_.split_k_mode == library::SplitKMode::kParallel) {
|
734 |
+
if (!(underlying_operation = library::find_gemm_operation_for_parallel_reduction(operation))) {
|
735 |
+
results_.back().disposition = Disposition::kFailed;
|
736 |
+
return false;
|
737 |
+
}
|
738 |
+
}
|
739 |
+
|
740 |
+
results_.back().status = underlying_operation->run(
|
741 |
+
&gemm_workspace_.arguments,
|
742 |
+
gemm_workspace_.host_workspace.data(),
|
743 |
+
gemm_workspace_.device_workspace.data());
|
744 |
+
|
745 |
+
if (results_.back().status != Status::kSuccess) {
|
746 |
+
results_.back().disposition = Disposition::kFailed;
|
747 |
+
return false;
|
748 |
+
}
|
749 |
+
|
750 |
+
// Run parallel reduction kernel for parallel split_k_mode
|
751 |
+
if (problem_.split_k_mode == library::SplitKMode::kParallel) {
|
752 |
+
results_.back().status = reduction_op_->run(
|
753 |
+
&gemm_workspace_.reduction_arguments,
|
754 |
+
gemm_workspace_.reduction_host_workspace.data(),
|
755 |
+
nullptr);
|
756 |
+
|
757 |
+
if (results_.back().status != Status::kSuccess) {
|
758 |
+
results_.back().disposition = Disposition::kFailed;
|
759 |
+
return false;
|
760 |
+
}
|
761 |
+
}
|
762 |
+
|
763 |
+
cudaError_t result = cudaDeviceSynchronize();
|
764 |
+
if (result != cudaSuccess) {
|
765 |
+
results_.back().disposition = Disposition::kFailed;
|
766 |
+
return false;
|
767 |
+
}
|
768 |
+
|
769 |
+
// CUTLASS op ran the but not yet verified against any verification provider
|
770 |
+
results_.back().disposition = Disposition::kNotVerified;
|
771 |
+
|
772 |
+
//
|
773 |
+
// Run verification providers
|
774 |
+
//
|
775 |
+
|
776 |
+
if (options.verification.enabled) {
|
777 |
+
|
778 |
+
#if CUTLASS_ENABLE_CUBLAS
|
779 |
+
if (options.verification.provider_enabled(library::Provider::kCUBLAS)) {
|
780 |
+
|
781 |
+
// Guard against unsupported cases
|
782 |
+
auto const & gemm_desc = static_cast<library::GemmDescription const &>(operation->description());
|
783 |
+
|
784 |
+
if (cublas_satisfies(gemm_desc) == Status::kSuccess) {
|
785 |
+
|
786 |
+
// call cublas verification if supported
|
787 |
+
verify_with_cublas_(
|
788 |
+
options,
|
789 |
+
report,
|
790 |
+
device_context,
|
791 |
+
operation,
|
792 |
+
problem_space,
|
793 |
+
problem);
|
794 |
+
}
|
795 |
+
|
796 |
+
else {
|
797 |
+
// set verification map for cublas to not supported
|
798 |
+
results_.back().verification_map[library::Provider::kCUBLAS] = Disposition::kNotSupported;
|
799 |
+
}
|
800 |
+
}
|
801 |
+
#endif // #if CUTLASS_ENABLE_CUBLAS
|
802 |
+
|
803 |
+
library::GemmDescription const &gemm_desc =
|
804 |
+
static_cast<library::GemmDescription const &>(operation->description());
|
805 |
+
|
806 |
+
|
807 |
+
cutlass::library::NumericTypeID element_A = gemm_desc.A.element;
|
808 |
+
cutlass::library::NumericTypeID element_B = gemm_desc.B.element;
|
809 |
+
bool verification_status = verify_with_reference_(options, report, device_context, operation, problem_space, problem, element_A, element_B);
|
810 |
+
|
811 |
+
// Update disposition to worst case verification outcome among all
|
812 |
+
// verification providers which are supported
|
813 |
+
bool is_any_verification_run_passed = false;
|
814 |
+
for (auto &m : results_.back().verification_map) {
|
815 |
+
if (m.second == Disposition::kFailed || m.second == Disposition::kIncorrect) {
|
816 |
+
results_.back().disposition = m.second;
|
817 |
+
return true;
|
818 |
+
}
|
819 |
+
if (!is_any_verification_run_passed && m.second == Disposition::kPassed) {
|
820 |
+
is_any_verification_run_passed = true;
|
821 |
+
}
|
822 |
+
}
|
823 |
+
|
824 |
+
if (is_any_verification_run_passed) {
|
825 |
+
results_.back().disposition = Disposition::kPassed;
|
826 |
+
}
|
827 |
+
}
|
828 |
+
|
829 |
+
// if verification.required is set, then return success iff at least one ref-check was run
|
830 |
+
if (options.verification.required) {
|
831 |
+
bool did_any_verification_run = false;
|
832 |
+
for (auto provider : options.verification.providers) {
|
833 |
+
did_any_verification_run |= (Disposition::kNotRun != results_.back().verification_map[provider]);
|
834 |
+
}
|
835 |
+
|
836 |
+
if (not did_any_verification_run) {
|
837 |
+
results_.back().status = Status::kErrorNotSupported;
|
838 |
+
return false;
|
839 |
+
}
|
840 |
+
}
|
841 |
+
|
842 |
+
// Return true means continue profiling
|
843 |
+
return true;
|
844 |
+
}
|
845 |
+
|
846 |
+
///////////////////////////////////////////////////////////////////////////////////////////////////
|
847 |
+
|
848 |
+
/// Verifies CUTLASS against references
|
849 |
+
bool GemmOperationProfiler::verify_with_cublas_(
|
850 |
+
Options const &options,
|
851 |
+
PerformanceReport &report,
|
852 |
+
DeviceContext &device_context,
|
853 |
+
library::Operation const *operation,
|
854 |
+
ProblemSpace const &problem_space,
|
855 |
+
ProblemSpace::Problem const &problem) {
|
856 |
+
|
857 |
+
#if CUTLASS_ENABLE_CUBLAS
|
858 |
+
|
859 |
+
library::GemmDescription const &gemm_desc =
|
860 |
+
static_cast<library::GemmDescription const &>(operation->description());
|
861 |
+
|
862 |
+
//
|
863 |
+
// Construct cuBLAS operators
|
864 |
+
//
|
865 |
+
|
866 |
+
CublasLtCreate handle;
|
867 |
+
cublasStatus_t status = handle.get_cublaslt_create_status();
|
868 |
+
|
869 |
+
if (status != CUBLAS_STATUS_SUCCESS) {
|
870 |
+
results_.back().verification_map[library::Provider::kCUBLAS] = get_cutlass_disposition(status);
|
871 |
+
return true;
|
872 |
+
}
|
873 |
+
|
874 |
+
|
875 |
+
//
|
876 |
+
// Initialize state
|
877 |
+
//
|
878 |
+
|
879 |
+
try {
|
880 |
+
|
881 |
+
//
|
882 |
+
// Construct dispatcher to cublasGemmEx()
|
883 |
+
//
|
884 |
+
|
885 |
+
// Initialize structure containing GEMM arguments
|
886 |
+
gemm_workspace_.arguments.A = gemm_workspace_.A->data();
|
887 |
+
gemm_workspace_.arguments.batch_stride_A = gemm_workspace_.A->batch_stride();
|
888 |
+
gemm_workspace_.arguments.B = gemm_workspace_.B->data();
|
889 |
+
gemm_workspace_.arguments.batch_stride_B = gemm_workspace_.B->batch_stride();
|
890 |
+
gemm_workspace_.arguments.C = gemm_workspace_.Reference->data();
|
891 |
+
gemm_workspace_.arguments.batch_stride_C = gemm_workspace_.Reference->batch_stride();
|
892 |
+
gemm_workspace_.arguments.D = gemm_workspace_.Reference->data();
|
893 |
+
gemm_workspace_.arguments.batch_stride_D = gemm_workspace_.Reference->batch_stride();
|
894 |
+
gemm_workspace_.arguments.alpha = problem_.alpha.data();
|
895 |
+
gemm_workspace_.arguments.beta = problem_.beta.data();
|
896 |
+
gemm_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
897 |
+
|
898 |
+
detail::cublasLtGemmExDispatcher gemm_op(
|
899 |
+
gemm_desc,
|
900 |
+
gemm_workspace_.configuration,
|
901 |
+
gemm_workspace_.arguments
|
902 |
+
);
|
903 |
+
|
904 |
+
gemm_op.initialize_cublaslt();
|
905 |
+
|
906 |
+
if(!gemm_op.get_cublaslt_algo(handle, AlgorithmMode::kDefault)){
|
907 |
+
return true;
|
908 |
+
}
|
909 |
+
|
910 |
+
if (gemm_op.status != Status::kSuccess) {
|
911 |
+
results_.back().verification_map[library::Provider::kCUBLAS] = Disposition::kNotRun;
|
912 |
+
return true;
|
913 |
+
}
|
914 |
+
|
915 |
+
status = gemm_op(handle);
|
916 |
+
|
917 |
+
// Handle errors
|
918 |
+
if (status != CUBLAS_STATUS_SUCCESS) {
|
919 |
+
std::cerr << "cublasLt Verification run failed with status : " << cublasLtGetStatusName(status) << "\n";
|
920 |
+
results_.back().verification_map[library::Provider::kCUBLAS] = get_cutlass_disposition(status);
|
921 |
+
return true;
|
922 |
+
}
|
923 |
+
|
924 |
+
results_.back().status = Status::kSuccess;
|
925 |
+
|
926 |
+
//
|
927 |
+
// Verify results
|
928 |
+
//
|
929 |
+
|
930 |
+
results_.back().verification_map[library::Provider::kCUBLAS] = compare_tensors(
|
931 |
+
options,
|
932 |
+
*gemm_workspace_.Computed,
|
933 |
+
*gemm_workspace_.Reference,
|
934 |
+
gemm_workspace_.Computed->batch_stride()
|
935 |
+
);
|
936 |
+
|
937 |
+
// Save workspace if incorrect
|
938 |
+
if (options.verification.save_workspace == SaveWorkspace::kIncorrect &&
|
939 |
+
results_.back().verification_map[library::Provider::kCUBLAS] == Disposition::kIncorrect) {
|
940 |
+
|
941 |
+
save_workspace(
|
942 |
+
device_context,
|
943 |
+
options,
|
944 |
+
gemm_desc,
|
945 |
+
library::Provider::kCUTLASS,
|
946 |
+
library::Provider::kCUBLAS);
|
947 |
+
}
|
948 |
+
}
|
949 |
+
catch (...) {
|
950 |
+
results_.back().verification_map[library::Provider::kCUBLAS] = Disposition::kFailed;
|
951 |
+
}
|
952 |
+
|
953 |
+
#endif
|
954 |
+
|
955 |
+
// Return true means continue profiling
|
956 |
+
return true;
|
957 |
+
}
|
958 |
+
|
959 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
960 |
+
|
961 |
+
/// Verifies CUTLASS against host and device references
|
962 |
+
bool GemmOperationProfiler::verify_with_reference_(
|
963 |
+
Options const &options,
|
964 |
+
PerformanceReport &report,
|
965 |
+
DeviceContext &device_context,
|
966 |
+
library::Operation const *operation,
|
967 |
+
ProblemSpace const &problem_space,
|
968 |
+
ProblemSpace::Problem const &problem,
|
969 |
+
cutlass::library::NumericTypeID element_A,
|
970 |
+
cutlass::library::NumericTypeID element_B)
|
971 |
+
{
|
972 |
+
library::GemmDescription const &gemm_desc =
|
973 |
+
static_cast<library::GemmDescription const &>(operation->description());
|
974 |
+
|
975 |
+
//
|
976 |
+
// Initialize state
|
977 |
+
//
|
978 |
+
|
979 |
+
for (auto provider : options.verification.providers) {
|
980 |
+
|
981 |
+
// Skip providers that are not enabled
|
982 |
+
if (!options.verification.provider_enabled(provider)) {
|
983 |
+
continue;
|
984 |
+
}
|
985 |
+
|
986 |
+
void *ptr_A = gemm_workspace_.A->data();
|
987 |
+
void *ptr_B = gemm_workspace_.B->data();
|
988 |
+
void *ptr_C = gemm_workspace_.C->data();
|
989 |
+
void *ptr_D = gemm_workspace_.Reference->data();
|
990 |
+
|
991 |
+
// To support the host-side reference, conditionally allocate and
|
992 |
+
// copy tensors to host memory.
|
993 |
+
std::vector<uint8_t> host_data_A;
|
994 |
+
std::vector<uint8_t> host_data_B;
|
995 |
+
std::vector<uint8_t> host_data_C;
|
996 |
+
std::vector<uint8_t> host_data_D;
|
997 |
+
|
998 |
+
if (provider == library::Provider::kReferenceHost) {
|
999 |
+
|
1000 |
+
host_data_A.resize(gemm_workspace_.A->bytes());
|
1001 |
+
ptr_A = host_data_A.data();
|
1002 |
+
gemm_workspace_.A->copy_to_host(ptr_A);
|
1003 |
+
|
1004 |
+
host_data_B.resize(gemm_workspace_.B->bytes());
|
1005 |
+
ptr_B = host_data_B.data();
|
1006 |
+
gemm_workspace_.B->copy_to_host(ptr_B);
|
1007 |
+
|
1008 |
+
host_data_C.resize(gemm_workspace_.C->bytes());
|
1009 |
+
ptr_C = host_data_C.data();
|
1010 |
+
gemm_workspace_.C->copy_to_host(ptr_C);
|
1011 |
+
|
1012 |
+
host_data_D.resize(gemm_workspace_.Reference->bytes());
|
1013 |
+
ptr_D = host_data_D.data();
|
1014 |
+
}
|
1015 |
+
|
1016 |
+
//
|
1017 |
+
// Launch
|
1018 |
+
//
|
1019 |
+
|
1020 |
+
library::Handle handle;
|
1021 |
+
|
1022 |
+
handle.set_provider(provider);
|
1023 |
+
|
1024 |
+
Status status = handle.gemm_universal(
|
1025 |
+
problem_.mode,
|
1026 |
+
gemm_workspace_.configuration.problem_size.m(),
|
1027 |
+
gemm_workspace_.configuration.problem_size.n(),
|
1028 |
+
gemm_workspace_.configuration.problem_size.k(),
|
1029 |
+
gemm_desc.tile_description.math_instruction.element_accumulator,
|
1030 |
+
gemm_desc.element_epilogue,
|
1031 |
+
|
1032 |
+
problem_.alpha.data(),
|
1033 |
+
|
1034 |
+
element_A,
|
1035 |
+
gemm_desc.A.layout,
|
1036 |
+
gemm_desc.transform_A,
|
1037 |
+
ptr_A,
|
1038 |
+
int(gemm_workspace_.configuration.lda),
|
1039 |
+
|
1040 |
+
element_B,
|
1041 |
+
gemm_desc.B.layout,
|
1042 |
+
gemm_desc.transform_B,
|
1043 |
+
ptr_B,
|
1044 |
+
int(gemm_workspace_.configuration.ldb),
|
1045 |
+
|
1046 |
+
problem_.beta.data(),
|
1047 |
+
|
1048 |
+
gemm_desc.C.element,
|
1049 |
+
gemm_desc.C.layout,
|
1050 |
+
ptr_C,
|
1051 |
+
int(gemm_workspace_.configuration.ldc),
|
1052 |
+
|
1053 |
+
gemm_desc.D.element,
|
1054 |
+
gemm_desc.D.layout,
|
1055 |
+
ptr_D,
|
1056 |
+
int(gemm_workspace_.configuration.ldd),
|
1057 |
+
|
1058 |
+
gemm_workspace_.configuration.batch_count,
|
1059 |
+
gemm_workspace_.A->batch_stride(),
|
1060 |
+
gemm_workspace_.B->batch_stride(),
|
1061 |
+
gemm_workspace_.C->batch_stride(),
|
1062 |
+
gemm_workspace_.Reference->batch_stride());
|
1063 |
+
|
1064 |
+
if (status != Status::kSuccess) {
|
1065 |
+
results_.back().verification_map[provider] = Disposition::kNotRun;
|
1066 |
+
continue;
|
1067 |
+
}
|
1068 |
+
results_.back().status = status;
|
1069 |
+
|
1070 |
+
if (provider == library::Provider::kReferenceHost) {
|
1071 |
+
gemm_workspace_.Reference->copy_from_host(ptr_D);
|
1072 |
+
}
|
1073 |
+
|
1074 |
+
//
|
1075 |
+
// Verify results
|
1076 |
+
//
|
1077 |
+
|
1078 |
+
results_.back().verification_map[provider] = compare_tensors(
|
1079 |
+
options,
|
1080 |
+
*gemm_workspace_.Computed,
|
1081 |
+
*gemm_workspace_.Reference,
|
1082 |
+
gemm_workspace_.Computed->batch_stride()
|
1083 |
+
);
|
1084 |
+
|
1085 |
+
// Save workspace if incorrect
|
1086 |
+
if (options.verification.save_workspace == SaveWorkspace::kIncorrect &&
|
1087 |
+
results_.back().verification_map[provider] == Disposition::kIncorrect) {
|
1088 |
+
|
1089 |
+
save_workspace(
|
1090 |
+
device_context,
|
1091 |
+
options,
|
1092 |
+
gemm_desc,
|
1093 |
+
library::Provider::kCUTLASS,
|
1094 |
+
provider);
|
1095 |
+
}
|
1096 |
+
}
|
1097 |
+
|
1098 |
+
return true;
|
1099 |
+
}
|
1100 |
+
|
1101 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
1102 |
+
|
1103 |
+
/// Measures performance results
|
1104 |
+
bool GemmOperationProfiler::profile(
|
1105 |
+
Options const &options,
|
1106 |
+
PerformanceReport &report,
|
1107 |
+
DeviceContext &device_context,
|
1108 |
+
library::Operation const *operation,
|
1109 |
+
ProblemSpace const &problem_space,
|
1110 |
+
ProblemSpace::Problem const &problem) {
|
1111 |
+
|
1112 |
+
if (options.profiling.provider_enabled(library::Provider::kCUTLASS)) {
|
1113 |
+
|
1114 |
+
// Initialize structure containing GEMM arguments
|
1115 |
+
gemm_workspace_.arguments.A = gemm_workspace_.A->data();
|
1116 |
+
gemm_workspace_.arguments.B = gemm_workspace_.B->data();
|
1117 |
+
gemm_workspace_.arguments.C = gemm_workspace_.C->data();
|
1118 |
+
gemm_workspace_.arguments.D = gemm_workspace_.Computed->data();
|
1119 |
+
gemm_workspace_.arguments.alpha = problem_.alpha.data();
|
1120 |
+
gemm_workspace_.arguments.beta = problem_.beta.data();
|
1121 |
+
gemm_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
1122 |
+
gemm_workspace_.arguments.batch_stride_A = gemm_workspace_.A->batch_stride();
|
1123 |
+
gemm_workspace_.arguments.batch_stride_B = gemm_workspace_.B->batch_stride();
|
1124 |
+
gemm_workspace_.arguments.batch_stride_C = gemm_workspace_.C->batch_stride();
|
1125 |
+
gemm_workspace_.arguments.batch_stride_D = gemm_workspace_.Computed->batch_stride();
|
1126 |
+
|
1127 |
+
if (problem_.split_k_mode == library::SplitKMode::kParallel) {
|
1128 |
+
gemm_workspace_.arguments.D = gemm_workspace_.device_workspace.data();
|
1129 |
+
gemm_workspace_.arguments.alpha = problem_.alpha_one.data();
|
1130 |
+
gemm_workspace_.arguments.beta = problem_.beta_zero.data();
|
1131 |
+
|
1132 |
+
gemm_workspace_.reduction_arguments.workspace = gemm_workspace_.device_workspace.data();
|
1133 |
+
gemm_workspace_.reduction_arguments.source = gemm_workspace_.C->data();
|
1134 |
+
gemm_workspace_.reduction_arguments.destination = gemm_workspace_.Computed->data();
|
1135 |
+
gemm_workspace_.reduction_arguments.alpha = problem_.alpha.data();
|
1136 |
+
gemm_workspace_.reduction_arguments.beta = problem_.beta.data();
|
1137 |
+
gemm_workspace_.reduction_arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
1138 |
+
}
|
1139 |
+
|
1140 |
+
results_.back().status = profile_cutlass_(
|
1141 |
+
results_.back().runtime,
|
1142 |
+
options,
|
1143 |
+
operation,
|
1144 |
+
&gemm_workspace_.arguments,
|
1145 |
+
gemm_workspace_.host_workspace.data(),
|
1146 |
+
gemm_workspace_.device_workspace.data()
|
1147 |
+
);
|
1148 |
+
}
|
1149 |
+
return true;
|
1150 |
+
}
|
1151 |
+
|
1152 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
1153 |
+
|
1154 |
+
/// Method to profile a CUTLASS Operation
|
1155 |
+
Status GemmOperationProfiler::profile_cutlass_(
|
1156 |
+
double &runtime,
|
1157 |
+
Options const &options,
|
1158 |
+
library::Operation const *operation,
|
1159 |
+
void *arguments,
|
1160 |
+
void *host_workspace,
|
1161 |
+
void *device_workspace) {
|
1162 |
+
|
1163 |
+
GpuTimer timer;
|
1164 |
+
// initialize gemm underlying operation to handle parallel reduction
|
1165 |
+
library::Operation const * underlying_operation = operation;
|
1166 |
+
|
1167 |
+
if (problem_.split_k_mode == library::SplitKMode::kParallel) {
|
1168 |
+
if (!(underlying_operation = library::find_gemm_operation_for_parallel_reduction(operation))) {
|
1169 |
+
return Status::kErrorNotSupported;
|
1170 |
+
}
|
1171 |
+
}
|
1172 |
+
|
1173 |
+
//
|
1174 |
+
// Optional sleep to limit power consumption and thermals
|
1175 |
+
//
|
1176 |
+
|
1177 |
+
sleep(options.profiling.sleep_duration);
|
1178 |
+
|
1179 |
+
//
|
1180 |
+
// Warmup loop
|
1181 |
+
//
|
1182 |
+
|
1183 |
+
Status status;
|
1184 |
+
|
1185 |
+
for (int iteration = 0; iteration < options.profiling.warmup_iterations; ++iteration) {
|
1186 |
+
|
1187 |
+
int problem_idx = (iteration % gemm_workspace_.problem_count) * problem_.batch_count;
|
1188 |
+
|
1189 |
+
gemm_workspace_.arguments.A = gemm_workspace_.A->batch_data(problem_idx);
|
1190 |
+
gemm_workspace_.arguments.B = gemm_workspace_.B->batch_data(problem_idx);
|
1191 |
+
gemm_workspace_.arguments.C = gemm_workspace_.C->batch_data(problem_idx);
|
1192 |
+
gemm_workspace_.arguments.D = gemm_workspace_.Computed->batch_data(problem_idx);
|
1193 |
+
|
1194 |
+
if (problem_.split_k_mode == library::SplitKMode::kParallel) {
|
1195 |
+
gemm_workspace_.arguments.D = gemm_workspace_.device_workspace.data();
|
1196 |
+
|
1197 |
+
gemm_workspace_.reduction_arguments.workspace = gemm_workspace_.device_workspace.data();
|
1198 |
+
gemm_workspace_.reduction_arguments.source = gemm_workspace_.C->batch_data(problem_idx);
|
1199 |
+
gemm_workspace_.reduction_arguments.destination = gemm_workspace_.Computed->batch_data(problem_idx);
|
1200 |
+
}
|
1201 |
+
|
1202 |
+
// Execute the CUTLASS operation
|
1203 |
+
status = underlying_operation->run(
|
1204 |
+
&gemm_workspace_.arguments,
|
1205 |
+
host_workspace,
|
1206 |
+
device_workspace);
|
1207 |
+
|
1208 |
+
if (status != Status::kSuccess) {
|
1209 |
+
return status;
|
1210 |
+
}
|
1211 |
+
|
1212 |
+
// Run parallel reduction kernel for parallel split_k_mode
|
1213 |
+
if (problem_.split_k_mode == library::SplitKMode::kParallel) {
|
1214 |
+
status = reduction_op_->run(
|
1215 |
+
&gemm_workspace_.reduction_arguments,
|
1216 |
+
gemm_workspace_.reduction_host_workspace.data(),
|
1217 |
+
nullptr);
|
1218 |
+
|
1219 |
+
if (status != Status::kSuccess) {
|
1220 |
+
return status;
|
1221 |
+
}
|
1222 |
+
}
|
1223 |
+
}
|
1224 |
+
|
1225 |
+
//
|
1226 |
+
// Initialize GPU timer
|
1227 |
+
//
|
1228 |
+
|
1229 |
+
timer.start();
|
1230 |
+
|
1231 |
+
//
|
1232 |
+
// Profiling loop
|
1233 |
+
//
|
1234 |
+
|
1235 |
+
int Iterations = options.profiling.iterations;
|
1236 |
+
|
1237 |
+
int iteration = 0;
|
1238 |
+
for (; iteration < Iterations; ++iteration) {
|
1239 |
+
|
1240 |
+
// Iterate over copies of the problem in memory
|
1241 |
+
int workspace_idx = options.profiling.warmup_iterations + iteration;
|
1242 |
+
int problem_idx = (workspace_idx % gemm_workspace_.problem_count) * problem_.batch_count;
|
1243 |
+
|
1244 |
+
gemm_workspace_.arguments.A = gemm_workspace_.A->batch_data(problem_idx);
|
1245 |
+
gemm_workspace_.arguments.B = gemm_workspace_.B->batch_data(problem_idx);
|
1246 |
+
gemm_workspace_.arguments.C = gemm_workspace_.C->batch_data(problem_idx);
|
1247 |
+
gemm_workspace_.arguments.D = gemm_workspace_.Computed->batch_data(problem_idx);
|
1248 |
+
|
1249 |
+
if (problem_.split_k_mode == library::SplitKMode::kParallel) {
|
1250 |
+
gemm_workspace_.arguments.D = gemm_workspace_.device_workspace.data();
|
1251 |
+
|
1252 |
+
gemm_workspace_.reduction_arguments.workspace = gemm_workspace_.device_workspace.data();
|
1253 |
+
gemm_workspace_.reduction_arguments.source = gemm_workspace_.C->batch_data(problem_idx);
|
1254 |
+
gemm_workspace_.reduction_arguments.destination = gemm_workspace_.Computed->batch_data(problem_idx);
|
1255 |
+
}
|
1256 |
+
|
1257 |
+
status = underlying_operation->run(
|
1258 |
+
arguments,
|
1259 |
+
host_workspace,
|
1260 |
+
device_workspace);
|
1261 |
+
|
1262 |
+
if (status != Status::kSuccess) {
|
1263 |
+
return status;
|
1264 |
+
}
|
1265 |
+
|
1266 |
+
// Run parallel reduction kernel for parallel split_k_mode
|
1267 |
+
if (problem_.split_k_mode == library::SplitKMode::kParallel) {
|
1268 |
+
status = reduction_op_->run(
|
1269 |
+
&gemm_workspace_.reduction_arguments,
|
1270 |
+
gemm_workspace_.reduction_host_workspace.data(),
|
1271 |
+
nullptr);
|
1272 |
+
|
1273 |
+
if (status != Status::kSuccess) {
|
1274 |
+
return status;
|
1275 |
+
}
|
1276 |
+
}
|
1277 |
+
}
|
1278 |
+
|
1279 |
+
//
|
1280 |
+
// Wait for completion
|
1281 |
+
//
|
1282 |
+
|
1283 |
+
timer.stop_and_wait();
|
1284 |
+
//
|
1285 |
+
// Update performance result
|
1286 |
+
//
|
1287 |
+
|
1288 |
+
runtime = timer.duration(iteration);
|
1289 |
+
|
1290 |
+
return status;
|
1291 |
+
}
|
1292 |
+
|
1293 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
1294 |
+
|
1295 |
+
} // namespace profiler
|
1296 |
+
} // namespace cutlass
|
1297 |
+
|
1298 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/gpu_timer.cpp
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief Defines a math function
|
33 |
+
*/
|
34 |
+
|
35 |
+
#include <stdexcept>
|
36 |
+
|
37 |
+
#include "cutlass/profiler/gpu_timer.h"
|
38 |
+
|
39 |
+
namespace cutlass {
|
40 |
+
namespace profiler {
|
41 |
+
|
42 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
43 |
+
|
44 |
+
GpuTimer::GpuTimer() {
|
45 |
+
cudaError_t result;
|
46 |
+
|
47 |
+
for (auto & event : events) {
|
48 |
+
result = cudaEventCreate(&event);
|
49 |
+
if (result != cudaSuccess) {
|
50 |
+
throw std::runtime_error("Failed to create CUDA event");
|
51 |
+
}
|
52 |
+
}
|
53 |
+
}
|
54 |
+
|
55 |
+
GpuTimer::~GpuTimer() {
|
56 |
+
for (auto & event : events) {
|
57 |
+
cudaEventDestroy(event);
|
58 |
+
}
|
59 |
+
}
|
60 |
+
|
61 |
+
/// Records a start event in the stream
|
62 |
+
void GpuTimer::start(cudaStream_t stream) {
|
63 |
+
cudaError_t result = cudaEventRecord(events[0], stream);
|
64 |
+
if (result != cudaSuccess) {
|
65 |
+
throw std::runtime_error("Failed to record start event.");
|
66 |
+
}
|
67 |
+
}
|
68 |
+
|
69 |
+
/// Records a stop event in the stream
|
70 |
+
void GpuTimer::stop(cudaStream_t stream) {
|
71 |
+
cudaError_t result = cudaEventRecord(events[1], stream);
|
72 |
+
if (result != cudaSuccess) {
|
73 |
+
throw std::runtime_error("Failed to record stop event.");
|
74 |
+
}
|
75 |
+
}
|
76 |
+
|
77 |
+
/// Records a stop event in the stream and synchronizes on the stream
|
78 |
+
void GpuTimer::stop_and_wait(cudaStream_t stream) {
|
79 |
+
|
80 |
+
stop(stream);
|
81 |
+
|
82 |
+
cudaError_t result;
|
83 |
+
if (stream) {
|
84 |
+
result = cudaStreamSynchronize(stream);
|
85 |
+
if (result != cudaSuccess) {
|
86 |
+
throw std::runtime_error("Failed to synchronize with non-null CUDA stream.");
|
87 |
+
}
|
88 |
+
}
|
89 |
+
else {
|
90 |
+
result = cudaDeviceSynchronize();
|
91 |
+
if (result != cudaSuccess) {
|
92 |
+
throw std::runtime_error("Failed to synchronize with CUDA device.");
|
93 |
+
}
|
94 |
+
}
|
95 |
+
}
|
96 |
+
|
97 |
+
/// Returns the duration in milliseconds
|
98 |
+
double GpuTimer::duration(int iterations) const {
|
99 |
+
|
100 |
+
float avg_ms;
|
101 |
+
|
102 |
+
cudaError_t result = cudaEventElapsedTime(&avg_ms, events[0], events[1]);
|
103 |
+
if (result != cudaSuccess) {
|
104 |
+
throw std::runtime_error("Failed to query elapsed time from CUDA events.");
|
105 |
+
}
|
106 |
+
|
107 |
+
return double(avg_ms) / double(iterations);
|
108 |
+
}
|
109 |
+
|
110 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
111 |
+
|
112 |
+
} // namespace profiler
|
113 |
+
} // namespace cutlass
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/options.cu
ADDED
@@ -0,0 +1,899 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief Command line options for performance test program
|
33 |
+
*/
|
34 |
+
|
35 |
+
#include <algorithm>
|
36 |
+
#include <set>
|
37 |
+
|
38 |
+
#include "cutlass/cutlass.h"
|
39 |
+
#include "cutlass/version.h"
|
40 |
+
|
41 |
+
#include "cutlass/library/util.h"
|
42 |
+
|
43 |
+
#include "cutlass/profiler/options.h"
|
44 |
+
|
45 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
46 |
+
|
47 |
+
namespace cutlass {
|
48 |
+
namespace profiler {
|
49 |
+
|
50 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
51 |
+
|
52 |
+
/// Newline and indent for help strings
|
53 |
+
static char const *end_of_line = "\n ";
|
54 |
+
|
55 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
56 |
+
|
57 |
+
Options::Device::Device(cutlass::CommandLine const &cmdline) {
|
58 |
+
|
59 |
+
// Gets the number of devices for future validation
|
60 |
+
cudaError_t result;
|
61 |
+
result = cudaGetDeviceCount(&num_devices);
|
62 |
+
if (result != cudaSuccess) {
|
63 |
+
throw std::runtime_error("cudaGetNumDevices() failed");
|
64 |
+
}
|
65 |
+
|
66 |
+
// Gets the devices specified by the user
|
67 |
+
// This preserves the user specified order and checks for duplicates
|
68 |
+
{
|
69 |
+
std::vector<int> temp_device_list;
|
70 |
+
cmdline.get_cmd_line_arguments("devices", temp_device_list);
|
71 |
+
if (temp_device_list.empty()) {
|
72 |
+
temp_device_list.push_back(0);
|
73 |
+
}
|
74 |
+
{
|
75 |
+
std::set<int> temp_device_set;
|
76 |
+
for (int device : temp_device_list) {
|
77 |
+
auto res = temp_device_set.insert(device);
|
78 |
+
if (!res.second) {
|
79 |
+
throw std::runtime_error("Duplicate device specified: " +
|
80 |
+
std::to_string(device));
|
81 |
+
} else if (device > num_devices) {
|
82 |
+
throw std::runtime_error("Bad device ID: " +
|
83 |
+
std::to_string(device));
|
84 |
+
} else {
|
85 |
+
devices.push_back(device);
|
86 |
+
}
|
87 |
+
}
|
88 |
+
}
|
89 |
+
}
|
90 |
+
|
91 |
+
properties.resize(devices.size());
|
92 |
+
// Retrieves properties for all specified devices
|
93 |
+
for (size_t device_index = 0; device_index < devices.size(); device_index++) {
|
94 |
+
int device = devices[device_index];
|
95 |
+
|
96 |
+
result = cudaGetDeviceProperties(&properties[device_index], device);
|
97 |
+
|
98 |
+
if (result != cudaSuccess) {
|
99 |
+
throw std::runtime_error("cudaGetDeviceProperties() failed for given device");
|
100 |
+
}
|
101 |
+
|
102 |
+
// Check that all devices are the same
|
103 |
+
if (device_index > 0) {
|
104 |
+
if ((properties[device_index].major != properties[0].major) ||
|
105 |
+
(properties[device_index].minor != properties[0].minor)) {
|
106 |
+
throw std::runtime_error("All selected devices must have the same "
|
107 |
+
"compute capability");
|
108 |
+
}
|
109 |
+
if (properties[device_index].l2CacheSize != properties[0].l2CacheSize) {
|
110 |
+
throw std::runtime_error("All selected devices must have the same "
|
111 |
+
"L2 cache size");
|
112 |
+
}
|
113 |
+
if (properties[device_index].multiProcessorCount != properties[0].multiProcessorCount) {
|
114 |
+
throw std::runtime_error("All selected devices must have the same "
|
115 |
+
"SM count");
|
116 |
+
}
|
117 |
+
}
|
118 |
+
|
119 |
+
result = cudaSetDevice(device);
|
120 |
+
if (result != cudaSuccess) {
|
121 |
+
throw std::runtime_error("cudaSetDevice() failed for given device.");
|
122 |
+
}
|
123 |
+
|
124 |
+
// Permit overriding the compute capability
|
125 |
+
if (cmdline.check_cmd_line_flag("compute-capability")) {
|
126 |
+
int cc = compute_capability(device_index);
|
127 |
+
cmdline.get_cmd_line_argument("compute-capability", cc, cc);
|
128 |
+
properties[device_index].major = cc / 10;
|
129 |
+
properties[device_index].minor = cc % 10;
|
130 |
+
}
|
131 |
+
|
132 |
+
// Permit overriding the L2 cache capacity
|
133 |
+
if (cmdline.check_cmd_line_flag("llc-capacity")) {
|
134 |
+
int llc_capacity = 0;
|
135 |
+
cmdline.get_cmd_line_argument("llc-capacity", llc_capacity, 0);
|
136 |
+
|
137 |
+
if (llc_capacity >= 0) {
|
138 |
+
properties[device_index].l2CacheSize = (llc_capacity << 10);
|
139 |
+
}
|
140 |
+
}
|
141 |
+
|
142 |
+
}
|
143 |
+
}
|
144 |
+
|
145 |
+
void Options::Device::print_usage(std::ostream &out) const {
|
146 |
+
|
147 |
+
out << "Device:\n"
|
148 |
+
<< " --devices=<int>,<int>,... "
|
149 |
+
<< " CUDA Device IDs\n\n";
|
150 |
+
|
151 |
+
int device_count = 0;
|
152 |
+
cudaError_t result = cudaGetDeviceCount(&device_count);
|
153 |
+
|
154 |
+
if (result != cudaSuccess) {
|
155 |
+
out << " <could not query for CUDA devices>\n";
|
156 |
+
}
|
157 |
+
else {
|
158 |
+
|
159 |
+
for (int idx = 0; idx < device_count; ++idx) {
|
160 |
+
cudaDeviceProp prop;
|
161 |
+
result = cudaGetDeviceProperties(&prop, idx);
|
162 |
+
if (result != cudaSuccess) {
|
163 |
+
out << " <could not obtain device properties for device " << idx << ">" << std::endl;
|
164 |
+
break;
|
165 |
+
}
|
166 |
+
else {
|
167 |
+
out << " [" << idx << "] - "
|
168 |
+
<< prop.name << " - SM " << prop.major << "." << prop.minor << ", "
|
169 |
+
<< prop.multiProcessorCount << " SMs @ " << (prop.clockRate / 1000.0) << " MHz, "
|
170 |
+
<< "L2 cache: " << (prop.l2CacheSize >> 20) << " MB, Global Memory: " << (prop.totalGlobalMem >> 30) << " GB"
|
171 |
+
<< std::endl;
|
172 |
+
}
|
173 |
+
}
|
174 |
+
out << "\n";
|
175 |
+
}
|
176 |
+
|
177 |
+
out
|
178 |
+
<< " --compute-capability=<int> "
|
179 |
+
<< " Override the compute capability.\n\n"
|
180 |
+
|
181 |
+
<< " --llc-capacity=<capacity in KiB> "
|
182 |
+
<< " Capacity of last-level cache in kilobytes. If this is non-zero," << end_of_line
|
183 |
+
<< " profiling phases cycle through different input tensors to induce" << end_of_line
|
184 |
+
<< " capacity misses in the L2.\n\n";
|
185 |
+
|
186 |
+
}
|
187 |
+
|
188 |
+
void Options::Device::print_device_info(std::ostream &out) const {
|
189 |
+
cudaDeviceProp props;
|
190 |
+
cudaError_t result;
|
191 |
+
|
192 |
+
out << "Device Name,SM,CUDA Device ID,Phy Device ID" << std::endl;
|
193 |
+
|
194 |
+
for (int device = 0; device < num_devices; device++) {
|
195 |
+
result = cudaSetDevice(device);
|
196 |
+
if (result != cudaSuccess) {
|
197 |
+
throw std::runtime_error("cudaSetDevice() failed for device");
|
198 |
+
}
|
199 |
+
|
200 |
+
result = cudaGetDeviceProperties(&props, device);
|
201 |
+
if (result != cudaSuccess) {
|
202 |
+
throw std::runtime_error("cudaGetDeviceProperties failed for device");
|
203 |
+
}
|
204 |
+
|
205 |
+
out << props.name << "," << props.major << props.minor << ","
|
206 |
+
<< device << "," << props.multiGpuBoardGroupID << std::endl;
|
207 |
+
|
208 |
+
}
|
209 |
+
}
|
210 |
+
|
211 |
+
void Options::Device::print_options(std::ostream &out, int indent) const {
|
212 |
+
|
213 |
+
out
|
214 |
+
<< indent_str(indent) << "devices: ";
|
215 |
+
for (int device : devices) {
|
216 |
+
out << device << ',';
|
217 |
+
}
|
218 |
+
out
|
219 |
+
<< "\n"
|
220 |
+
<< indent_str(indent) << "clock: " << int(double(properties[0].clockRate) / 1000.0) << "\n"
|
221 |
+
<< indent_str(indent) << "compute-capability: " << compute_capability(0) << "\n";
|
222 |
+
}
|
223 |
+
|
224 |
+
/// Returns the device ID from a device index
|
225 |
+
int Options::Device::device_id(size_t device_index) const {
|
226 |
+
if (device_index > devices.size()) {
|
227 |
+
throw std::runtime_error("Out of bounds device index: " +
|
228 |
+
std::to_string(device_index));
|
229 |
+
}
|
230 |
+
return devices.at(device_index);
|
231 |
+
}
|
232 |
+
|
233 |
+
/// Returns the compute capability of the listed device (e.g. 61, 60, 70, 75)
|
234 |
+
int Options::Device::compute_capability(int device_index) const {
|
235 |
+
return properties[device_index].major * 10 + properties[device_index].minor;
|
236 |
+
}
|
237 |
+
|
238 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
239 |
+
|
240 |
+
Options::Initialization::Initialization(cutlass::CommandLine const &cmdline) {
|
241 |
+
|
242 |
+
cmdline.get_cmd_line_argument("initialization-enabled", enabled, true);
|
243 |
+
|
244 |
+
if (cmdline.check_cmd_line_flag("initialization-provider")) {
|
245 |
+
std::string str;
|
246 |
+
cmdline.get_cmd_line_argument("initialization-provider", str);
|
247 |
+
provider = library::from_string<library::Provider>(str);
|
248 |
+
if (provider == library::Provider::kInvalid) {
|
249 |
+
enabled = false;
|
250 |
+
}
|
251 |
+
else if (provider != library::Provider::kReferenceHost && provider != library::Provider::kReferenceDevice) {
|
252 |
+
throw std::runtime_error("Unsupported initialization provider specified.");
|
253 |
+
}
|
254 |
+
}
|
255 |
+
else {
|
256 |
+
provider = library::Provider::kReferenceDevice;
|
257 |
+
}
|
258 |
+
|
259 |
+
cmdline.get_cmd_line_argument("seed", seed, 2019);
|
260 |
+
|
261 |
+
if (cmdline.check_cmd_line_flag("dist")) {
|
262 |
+
// user has set the data distribution (fix data distribution once set)
|
263 |
+
fix_data_distribution = true;
|
264 |
+
// set user provided data distribution
|
265 |
+
get_distribution(cmdline, "dist", data_distribution);
|
266 |
+
}
|
267 |
+
else {
|
268 |
+
// profiler chosen data distribution (allowed to change based on numeric types)
|
269 |
+
fix_data_distribution = false;
|
270 |
+
// set uniform data distribution with range [-4, 4]
|
271 |
+
data_distribution.set_uniform(-4, 4, 0);
|
272 |
+
}
|
273 |
+
|
274 |
+
|
275 |
+
}
|
276 |
+
|
277 |
+
/// Gets the initial distribution
|
278 |
+
void Options::Initialization::get_distribution(
|
279 |
+
cutlass::CommandLine const &args,
|
280 |
+
std::string const &arg,
|
281 |
+
cutlass::Distribution &dist) {
|
282 |
+
|
283 |
+
struct {
|
284 |
+
const char *label;
|
285 |
+
cutlass::Distribution::Kind kind;
|
286 |
+
} distribution_kinds[] = {
|
287 |
+
{"uniform", cutlass::Distribution::Uniform},
|
288 |
+
{"gaussian", cutlass::Distribution::Gaussian},
|
289 |
+
{"identity", cutlass::Distribution::Identity},
|
290 |
+
{"sequential", cutlass::Distribution::Sequential},
|
291 |
+
{0, cutlass::Distribution::Invalid}
|
292 |
+
};
|
293 |
+
|
294 |
+
struct {
|
295 |
+
char const *label;
|
296 |
+
double *member;
|
297 |
+
} members[] = {
|
298 |
+
{"min", &dist.uniform.min},
|
299 |
+
{"max", &dist.uniform.max},
|
300 |
+
{"mean", &dist.gaussian.mean},
|
301 |
+
{"stddev", &dist.gaussian.stddev},
|
302 |
+
{"pnzA", &dist.gaussian.pnzA},
|
303 |
+
{"pnzB", &dist.gaussian.pnzB},
|
304 |
+
{"pnzC", &dist.gaussian.pnzC},
|
305 |
+
{"start", &dist.sequential.start},
|
306 |
+
{"delta", &dist.sequential.delta},
|
307 |
+
{0, 0}
|
308 |
+
};
|
309 |
+
|
310 |
+
// Initalize pnz values to a default value of 100%
|
311 |
+
dist.gaussian.pnz = 1.0;
|
312 |
+
dist.gaussian.pnzA = 1.0;
|
313 |
+
dist.gaussian.pnzB = 1.0;
|
314 |
+
dist.gaussian.pnzC = 1.0;
|
315 |
+
|
316 |
+
using KeyValueVector = std::vector<std::pair<std::string, std::string> >;
|
317 |
+
|
318 |
+
KeyValueVector values;
|
319 |
+
args.get_cmd_line_argument_pairs(arg.c_str(), values);
|
320 |
+
|
321 |
+
// The parser expects the first token to be a string identifying the distribution type.
|
322 |
+
auto it = values.begin();
|
323 |
+
if (it != values.end()) {
|
324 |
+
for (int i = 0; distribution_kinds[i].label; ++i) {
|
325 |
+
if (it->first == distribution_kinds[i].label) {
|
326 |
+
dist.kind = distribution_kinds[i].kind;
|
327 |
+
break;
|
328 |
+
}
|
329 |
+
}
|
330 |
+
++it;
|
331 |
+
}
|
332 |
+
|
333 |
+
// Subsequent key-value pairs update the named field of the distribution struct.
|
334 |
+
for (; it != values.end(); ++it) {
|
335 |
+
// Integer scaling factor - if < 0, no integer rounding is performed.
|
336 |
+
if ((it->first.compare("scale") == 0) && !it->second.empty()) {
|
337 |
+
std::stringstream ss;
|
338 |
+
ss << it->second;
|
339 |
+
ss >> dist.int_scale;
|
340 |
+
continue; // next token
|
341 |
+
}
|
342 |
+
|
343 |
+
// Casts as integer without scaling
|
344 |
+
if (it->first.compare("integer") == 0) {
|
345 |
+
dist.int_scale = 0;
|
346 |
+
continue; // next token
|
347 |
+
}
|
348 |
+
|
349 |
+
// initialize other members
|
350 |
+
for (int m = 0; members[m].label; ++m) {
|
351 |
+
if (it->first == members[m].label && !it->second.empty()) {
|
352 |
+
std::stringstream ss;
|
353 |
+
ss << it->second;
|
354 |
+
ss >> *(members[m].member);
|
355 |
+
}
|
356 |
+
}
|
357 |
+
}
|
358 |
+
}
|
359 |
+
|
360 |
+
void Options::Initialization::print_usage(std::ostream &out) const {
|
361 |
+
|
362 |
+
out << "Initialization:\n"
|
363 |
+
|
364 |
+
<< " --initialization=<bool> "
|
365 |
+
<< " Enables initialization (default: true). If false, device memory is" << end_of_line
|
366 |
+
<< " not initialized after allocation.\n\n"
|
367 |
+
|
368 |
+
<< " --initialization-provider=<provider> "
|
369 |
+
<< " Selects initialization provider {host, device*}. (default: '*')\n\n"
|
370 |
+
|
371 |
+
<< " --dist=<distribution> "
|
372 |
+
<< " Data distribution of input tensors {uniform*, gaussian, identity, sequential}" << end_of_line
|
373 |
+
<< " --dist=uniform,min:<double>,max:<double>,scale:<integer>" << end_of_line
|
374 |
+
<< " --dist=gaussian,mean:<double>,stddev:<double>,scale:<integer>,pnzA:<double>,pnzB:<double>,pnzC:<double>" << end_of_line
|
375 |
+
<< " --dist=sequential,start:<double>,delta:<double>,scale:<integer>" << end_of_line
|
376 |
+
<< " --dist=identity\n\n"
|
377 |
+
|
378 |
+
<< " --seed=<int> "
|
379 |
+
<< " Random number generator seed. Used to enforce deterministic" << end_of_line
|
380 |
+
<< " initialization.\n\n";
|
381 |
+
|
382 |
+
}
|
383 |
+
|
384 |
+
void Options::Initialization::print_options(std::ostream &out, int indent) const {
|
385 |
+
|
386 |
+
}
|
387 |
+
|
388 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
389 |
+
|
390 |
+
Options::Library::Library(cutlass::CommandLine const &cmdline) {
|
391 |
+
|
392 |
+
algorithm_mode = AlgorithmMode::kDefault;
|
393 |
+
|
394 |
+
if (cmdline.check_cmd_line_flag("library-algo-mode")) {
|
395 |
+
std::string mode = "default";
|
396 |
+
cmdline.get_cmd_line_argument("library-algo-mode", mode);
|
397 |
+
algorithm_mode = from_string<AlgorithmMode>(mode);
|
398 |
+
}
|
399 |
+
|
400 |
+
if (cmdline.check_cmd_line_flag("library-algos")) {
|
401 |
+
|
402 |
+
// If algorithms are specified, override as kBest.
|
403 |
+
algorithm_mode = AlgorithmMode::kBest;
|
404 |
+
|
405 |
+
std::vector<std::string> tokens;
|
406 |
+
cmdline.get_cmd_line_arguments("library-algos", tokens);
|
407 |
+
|
408 |
+
algorithms.reserve(tokens.size());
|
409 |
+
|
410 |
+
for (auto const & token : tokens) {
|
411 |
+
if (token.find(":")) {
|
412 |
+
// TODO: tokenized range
|
413 |
+
}
|
414 |
+
else {
|
415 |
+
int algo;
|
416 |
+
std::stringstream ss;
|
417 |
+
|
418 |
+
ss << token;
|
419 |
+
ss >> algo;
|
420 |
+
|
421 |
+
algorithms.push_back(algo);
|
422 |
+
}
|
423 |
+
}
|
424 |
+
}
|
425 |
+
}
|
426 |
+
|
427 |
+
void Options::Library::print_usage(std::ostream &out) const {
|
428 |
+
|
429 |
+
out << "Library:\n"
|
430 |
+
|
431 |
+
<< " --library-algo-mode=<mode> "
|
432 |
+
<< " Indicates algorithm mode used to call libraries such as cuBLAS and cuDNN.\n"
|
433 |
+
<< " "
|
434 |
+
<< " mode={default*,matching,best}\n\n"
|
435 |
+
|
436 |
+
<< " --library-algos=<range-list> "
|
437 |
+
<< " If --algorithm-mode=best, permits specifying a selection of algorithms.\n\n";
|
438 |
+
|
439 |
+
}
|
440 |
+
|
441 |
+
void Options::Library::print_options(std::ostream &out, int indent) const {
|
442 |
+
|
443 |
+
out
|
444 |
+
<< indent_str(indent) << "library-algo-mode: " << to_string(algorithm_mode) << "\n"
|
445 |
+
<< indent_str(indent) << "library-algos: ";
|
446 |
+
|
447 |
+
int j = 0;
|
448 |
+
for (int x : algorithms) {
|
449 |
+
out << (j++ ? "," : "") << x;
|
450 |
+
}
|
451 |
+
|
452 |
+
out << "\n\n";
|
453 |
+
}
|
454 |
+
|
455 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
456 |
+
|
457 |
+
Options::Profiling::Profiling(cutlass::CommandLine const &cmdline) {
|
458 |
+
|
459 |
+
cmdline.get_cmd_line_argument("workspace-count", workspace_count, 0);
|
460 |
+
cmdline.get_cmd_line_argument("warmup-iterations", warmup_iterations, 10);
|
461 |
+
cmdline.get_cmd_line_argument("profiling-iterations", iterations, 100);
|
462 |
+
cmdline.get_cmd_line_argument("sleep-duration", sleep_duration, 50);
|
463 |
+
cmdline.get_cmd_line_argument("profiling-enabled", enabled, true);
|
464 |
+
|
465 |
+
if (cmdline.check_cmd_line_flag("providers")) {
|
466 |
+
|
467 |
+
std::vector<std::string> tokens;
|
468 |
+
cmdline.get_cmd_line_arguments("providers", tokens);
|
469 |
+
|
470 |
+
providers.clear();
|
471 |
+
|
472 |
+
for (auto const &token : tokens) {
|
473 |
+
providers.push_back(library::from_string<library::Provider>(token));
|
474 |
+
}
|
475 |
+
}
|
476 |
+
else {
|
477 |
+
providers.push_back(library::Provider::kCUTLASS);
|
478 |
+
providers.push_back(library::Provider::kCUBLAS);
|
479 |
+
providers.push_back(library::Provider::kCUDNN);
|
480 |
+
}
|
481 |
+
}
|
482 |
+
|
483 |
+
void Options::Profiling::print_usage(std::ostream &out) const {
|
484 |
+
|
485 |
+
out << "Profiling:\n"
|
486 |
+
|
487 |
+
<< " --workspace-count=<workspace count> "
|
488 |
+
<< " Number of discrete workspaces maintained to avoid cache-resident " << end_of_line
|
489 |
+
<< " If zero (default), the amount is chosen for each workload based on " << end_of_line
|
490 |
+
<< " capacity of the last-level cache.\n\n"
|
491 |
+
|
492 |
+
<< " --profiling-iterations=<iterations> "
|
493 |
+
<< " Number of iterations to profile each kernel. If zero, kernels" << end_of_line
|
494 |
+
<< " are launched up to the profiling duration.\n\n"
|
495 |
+
|
496 |
+
<< " --warmup-iterations=<iterations> "
|
497 |
+
<< " Number of iterations to execute each kernel prior to profiling.\n\n"
|
498 |
+
|
499 |
+
<< " --sleep-duration=<duration> "
|
500 |
+
<< " Number of ms to sleep between profiling periods (ms).\n\n"
|
501 |
+
|
502 |
+
<< " --profiling-enabled=<bool> "
|
503 |
+
<< " If true, profiling is actually conducted.\n\n"
|
504 |
+
|
505 |
+
;
|
506 |
+
}
|
507 |
+
|
508 |
+
void Options::Profiling::print_options(std::ostream &out, int indent) const {
|
509 |
+
|
510 |
+
out
|
511 |
+
<< indent_str(indent) << "profiling_iterations: " << iterations << "\n"
|
512 |
+
<< indent_str(indent) << "sleep_duration: " << sleep_duration << "\n"
|
513 |
+
<< indent_str(indent) << "profiling_enabled: " << enabled << "\n"
|
514 |
+
<< indent_str(indent) << "providers: [";
|
515 |
+
|
516 |
+
int j = 0;
|
517 |
+
for (auto const & provider : providers) {
|
518 |
+
out << (j++ ? ", " : "") << library::to_string(provider);
|
519 |
+
}
|
520 |
+
out << "]\n";
|
521 |
+
}
|
522 |
+
|
523 |
+
/// Returns true if a provider is enabled
|
524 |
+
bool Options::Profiling::provider_enabled(library::Provider provider) const {
|
525 |
+
return std::find(providers.begin(), providers.end(), provider) != providers.end();
|
526 |
+
}
|
527 |
+
|
528 |
+
/// Returns the index of a provider if its enabled
|
529 |
+
size_t Options::Profiling::index(library::Provider provider) const {
|
530 |
+
size_t idx = 0;
|
531 |
+
for (auto const & x : providers) {
|
532 |
+
if (x == provider) {
|
533 |
+
return idx;
|
534 |
+
}
|
535 |
+
++idx;
|
536 |
+
}
|
537 |
+
return idx;
|
538 |
+
}
|
539 |
+
|
540 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
541 |
+
|
542 |
+
Options::Verification::Verification(cutlass::CommandLine const &cmdline) {
|
543 |
+
|
544 |
+
cmdline.get_cmd_line_argument("verification-enabled", enabled, true);
|
545 |
+
if (enabled) {
|
546 |
+
cmdline.get_cmd_line_argument("verification-required", required, false);
|
547 |
+
}
|
548 |
+
|
549 |
+
cmdline.get_cmd_line_argument("epsilon", epsilon, 0.05);
|
550 |
+
|
551 |
+
cmdline.get_cmd_line_argument("nonzero-floor", nonzero_floor, 1.0 / 256.0);
|
552 |
+
|
553 |
+
if (cmdline.check_cmd_line_flag("save-workspace")) {
|
554 |
+
std::string value;
|
555 |
+
cmdline.get_cmd_line_argument("save-workspace", value);
|
556 |
+
save_workspace = from_string<SaveWorkspace>(value);
|
557 |
+
}
|
558 |
+
else {
|
559 |
+
save_workspace = SaveWorkspace::kNever;
|
560 |
+
}
|
561 |
+
|
562 |
+
if (cmdline.check_cmd_line_flag("verification-providers")) {
|
563 |
+
|
564 |
+
std::vector<std::string> tokens;
|
565 |
+
cmdline.get_cmd_line_arguments("verification-providers", tokens);
|
566 |
+
|
567 |
+
providers.clear();
|
568 |
+
|
569 |
+
for (auto const &token : tokens) {
|
570 |
+
library::Provider provider = library::from_string<library::Provider>(token);
|
571 |
+
if (provider != library::Provider::kInvalid) {
|
572 |
+
providers.push_back(provider);
|
573 |
+
}
|
574 |
+
}
|
575 |
+
}
|
576 |
+
else {
|
577 |
+
providers.push_back(library::Provider::kCUBLAS);
|
578 |
+
providers.push_back(library::Provider::kReferenceDevice);
|
579 |
+
providers.push_back(library::Provider::kCUDNN);
|
580 |
+
}
|
581 |
+
}
|
582 |
+
|
583 |
+
void Options::Verification::print_usage(std::ostream &out) const {
|
584 |
+
|
585 |
+
out << "Verification:\n"
|
586 |
+
|
587 |
+
<< " --verification-enabled=<bool> "
|
588 |
+
<< " Whether to perform verification checks.\n\n"
|
589 |
+
|
590 |
+
<< " --epsilon=<error> "
|
591 |
+
<< " Error threshold. Setting to zero (default) requires" << end_of_line
|
592 |
+
<< " bit-level equivalence.\n\n"
|
593 |
+
|
594 |
+
<< " --nonzero-floor=<floor> "
|
595 |
+
<< " Results whose absolute value is less than this quantity" << end_of_line
|
596 |
+
<< " are treated as zero for comparisons.\n\n"
|
597 |
+
|
598 |
+
<< " --save-workspace=<string> "
|
599 |
+
<< " Specifies when to save the GEMM inputs and results to the filesystem." << end_of_line
|
600 |
+
<< " --save-workspace=never never save workspace (default)" << end_of_line
|
601 |
+
<< " --save-workspace=incorrect save workspace for incorrect results" << end_of_line
|
602 |
+
<< " --save-workspace=always always save workspace\n\n"
|
603 |
+
|
604 |
+
<< " --verification-providers=<providers> "
|
605 |
+
<< " List of providers used to verify result. (default: '*')" << end_of_line
|
606 |
+
<< " Gemm verification-providers {cublas*}" << end_of_line
|
607 |
+
<< " Conv2d verification-providers {cudnn*, device*, host}"
|
608 |
+
<< "\n\n";
|
609 |
+
}
|
610 |
+
|
611 |
+
void Options::Verification::print_options(std::ostream &out, int indent) const {
|
612 |
+
|
613 |
+
out
|
614 |
+
<< indent_str(indent) << "verification_enabled: " << enabled << "\n"
|
615 |
+
<< indent_str(indent) << "epsilon: " << epsilon << "\n"
|
616 |
+
<< indent_str(indent) << "save_workspace: " << to_string(save_workspace) << "\n"
|
617 |
+
<< indent_str(indent) << "verification_providers: [";
|
618 |
+
|
619 |
+
int j = 0;
|
620 |
+
for (auto const & provider : providers) {
|
621 |
+
out << (j++ ? ", " : "") << library::to_string(provider);
|
622 |
+
}
|
623 |
+
out << "]\n";
|
624 |
+
}
|
625 |
+
|
626 |
+
/// Returns true if a provider is enabled
|
627 |
+
bool Options::Verification::provider_enabled(library::Provider provider) const {
|
628 |
+
return std::find(providers.begin(), providers.end(), provider) != providers.end();
|
629 |
+
}
|
630 |
+
|
631 |
+
/// Returns the index of a provider if its enabled
|
632 |
+
size_t Options::Verification::index(library::Provider provider) const {
|
633 |
+
size_t idx = 0;
|
634 |
+
for (auto const & x : providers) {
|
635 |
+
if (x == provider) {
|
636 |
+
return idx;
|
637 |
+
}
|
638 |
+
++idx;
|
639 |
+
}
|
640 |
+
return idx;
|
641 |
+
}
|
642 |
+
|
643 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
644 |
+
|
645 |
+
Options::Report::Report(cutlass::CommandLine const &cmdline) {
|
646 |
+
|
647 |
+
cmdline.get_cmd_line_argument("append", append, false);
|
648 |
+
cmdline.get_cmd_line_argument("output", output_path);
|
649 |
+
cmdline.get_cmd_line_argument("junit-output", junit_output_path);
|
650 |
+
|
651 |
+
if (cmdline.check_cmd_line_flag("tags")) {
|
652 |
+
cmdline.get_cmd_line_argument_pairs("tags", pivot_tags);
|
653 |
+
}
|
654 |
+
|
655 |
+
cmdline.get_cmd_line_argument("report-not-run", report_not_run, false);
|
656 |
+
|
657 |
+
cmdline.get_cmd_line_argument("verbose", verbose, true);
|
658 |
+
|
659 |
+
cmdline.get_cmd_line_argument("sort-results", sort_results, false);
|
660 |
+
|
661 |
+
cmdline.get_cmd_line_argument("print-kernel-before-running", print_kernel_before_running, false);
|
662 |
+
}
|
663 |
+
|
664 |
+
void Options::Report::print_usage(std::ostream &out) const {
|
665 |
+
|
666 |
+
out << "Report:\n"
|
667 |
+
|
668 |
+
<< " --append=<bool> "
|
669 |
+
<< " If true, result is appended to possibly existing file. Otherwise, " << end_of_line
|
670 |
+
<< " any existing file is overwritten.\n\n"
|
671 |
+
|
672 |
+
<< " --output=<path> "
|
673 |
+
<< " Path to output file for machine readable results. Operation kind and '.csv' is appended.\n\n"
|
674 |
+
|
675 |
+
<< " --junit-output=<path> "
|
676 |
+
<< " Path to junit output file for result reporting. Operation kind and '.junit.xml' is appended.\n\n"
|
677 |
+
|
678 |
+
<< " --print-kernel-before-running=<bool> "
|
679 |
+
<< " Prints the name of the kernel being profiled before running the kernel." << end_of_line
|
680 |
+
<< " This is useful for determining which kernel is causing a run of the profiler to hang\n\n"
|
681 |
+
|
682 |
+
<< " --report-not-run=<bool> "
|
683 |
+
<< " If true, reports the status of all kernels including those that" << end_of_line
|
684 |
+
<< " do not satisfy the given arguments.\n\n"
|
685 |
+
|
686 |
+
<< " --tags=<column:tag,...> "
|
687 |
+
<< " Inserts leading columns in output table and uniform values for each" << end_of_line
|
688 |
+
<< " column. Useful for generating pivot tables.\n\n"
|
689 |
+
|
690 |
+
<< " --verbose=<bool> "
|
691 |
+
<< " Prints human-readable text to stdout. If false, nothing is written to stdout.\n\n"
|
692 |
+
|
693 |
+
<< " --sort-results=<bool> "
|
694 |
+
<< " Sorts results (by flops-per-byte).\n\n";
|
695 |
+
}
|
696 |
+
|
697 |
+
void Options::Report::print_options(std::ostream &out, int indent) const {
|
698 |
+
|
699 |
+
out
|
700 |
+
<< indent_str(indent) << "append: " << append << "\n"
|
701 |
+
<< indent_str(indent) << "output: " << output_path << "\n"
|
702 |
+
<< indent_str(indent) << "junit-output: " << junit_output_path << "\n"
|
703 |
+
<< indent_str(indent) << "print-kernel-before-running: " << print_kernel_before_running << "\n"
|
704 |
+
<< indent_str(indent) << "report-not-run: " << report_not_run << "\n"
|
705 |
+
<< indent_str(indent) << "tags:\n";
|
706 |
+
|
707 |
+
for (auto const & tag : pivot_tags) {
|
708 |
+
out << indent_str(indent + 1) << tag.first << ": " << tag.second << "\n";
|
709 |
+
}
|
710 |
+
|
711 |
+
out
|
712 |
+
<< indent_str(indent) << "verbose: " << verbose << "\n";
|
713 |
+
}
|
714 |
+
|
715 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
716 |
+
|
717 |
+
Options::About::About(cutlass::CommandLine const &cmdline) {
|
718 |
+
help = cmdline.check_cmd_line_flag("help");
|
719 |
+
version = cmdline.check_cmd_line_flag("version");
|
720 |
+
device_info = cmdline.check_cmd_line_flag("device-info");
|
721 |
+
}
|
722 |
+
|
723 |
+
void Options::About::print_usage(std::ostream &out) const {
|
724 |
+
|
725 |
+
out << "About:\n"
|
726 |
+
<< " --version ";
|
727 |
+
|
728 |
+
print_version(out);
|
729 |
+
|
730 |
+
out << "\n";
|
731 |
+
}
|
732 |
+
|
733 |
+
void Options::About::print_version(std::ostream &out) {
|
734 |
+
out << "CUTLASS " << cutlass::getVersionString()
|
735 |
+
<< " built on " << __DATE__ << " at " << __TIME__;
|
736 |
+
if (!cutlass::getGitRevision().empty()) out << " with commit " << cutlass::getGitRevision() << "";
|
737 |
+
}
|
738 |
+
|
739 |
+
void Options::About::print_options(std::ostream &out, int indent) const {
|
740 |
+
|
741 |
+
}
|
742 |
+
|
743 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
744 |
+
|
745 |
+
Options::Options(cutlass::CommandLine const &cmdline):
|
746 |
+
cmdline(cmdline),
|
747 |
+
device(cmdline),
|
748 |
+
initialization(cmdline),
|
749 |
+
library(cmdline),
|
750 |
+
profiling(cmdline),
|
751 |
+
verification(cmdline),
|
752 |
+
report(cmdline),
|
753 |
+
about(cmdline) {
|
754 |
+
|
755 |
+
if (cmdline.check_cmd_line_flag("mode")) {
|
756 |
+
std::string token;
|
757 |
+
cmdline.get_cmd_line_argument("mode", token);
|
758 |
+
execution_mode = from_string<ExecutionMode>(token);
|
759 |
+
}
|
760 |
+
else {
|
761 |
+
execution_mode = ExecutionMode::kProfile;
|
762 |
+
}
|
763 |
+
|
764 |
+
// Enumerating kernels is equivalent to a dry run.
|
765 |
+
if (execution_mode == ExecutionMode::kEnumerate) {
|
766 |
+
execution_mode = ExecutionMode::kDryRun;
|
767 |
+
}
|
768 |
+
|
769 |
+
if (cmdline.check_cmd_line_flag("operation")) {
|
770 |
+
std::string str;
|
771 |
+
cmdline.get_cmd_line_argument("operation", str);
|
772 |
+
operation_kind = library::from_string<library::OperationKind>(str);
|
773 |
+
}
|
774 |
+
else if (cmdline.check_cmd_line_flag("function")) {
|
775 |
+
std::string str;
|
776 |
+
cmdline.get_cmd_line_argument("function", str);
|
777 |
+
operation_kind = library::from_string<library::OperationKind>(str);
|
778 |
+
}
|
779 |
+
else {
|
780 |
+
operation_kind = library::OperationKind::kInvalid;
|
781 |
+
}
|
782 |
+
|
783 |
+
if (cmdline.check_cmd_line_flag("operation_names")) {
|
784 |
+
cmdline.get_cmd_line_arguments("operation_names", operation_names);
|
785 |
+
}
|
786 |
+
else if (cmdline.check_cmd_line_flag("kernels")) {
|
787 |
+
cmdline.get_cmd_line_arguments("kernels", operation_names);
|
788 |
+
profiling.error_on_no_match = cmdline.check_cmd_line_flag("error-on-no-match");
|
789 |
+
profiling.error_if_nothing_is_profiled = cmdline.check_cmd_line_flag("error-if-nothing-is-profiled");
|
790 |
+
}
|
791 |
+
|
792 |
+
if (cmdline.check_cmd_line_flag("ignore-kernels")) {
|
793 |
+
cmdline.get_cmd_line_arguments("ignore-kernels", excluded_operation_names);
|
794 |
+
profiling.error_on_no_match = cmdline.check_cmd_line_flag("error-on-no-match");
|
795 |
+
profiling.error_if_nothing_is_profiled = cmdline.check_cmd_line_flag("error-if-nothing-is-profiled");
|
796 |
+
}
|
797 |
+
|
798 |
+
// Prevent launches on the device for anything other than CUTLASS operation
|
799 |
+
// Allow verification only on host
|
800 |
+
if (execution_mode == ExecutionMode::kTrace) {
|
801 |
+
initialization.provider = library::Provider::kReferenceHost;
|
802 |
+
verification.providers = {library::Provider::kReferenceHost};
|
803 |
+
profiling.enabled = false;
|
804 |
+
}
|
805 |
+
}
|
806 |
+
|
807 |
+
void Options::print_usage(std::ostream &out) const {
|
808 |
+
|
809 |
+
out
|
810 |
+
<< "CUTLASS Profiler\n"
|
811 |
+
<< "usage:\n\n"
|
812 |
+
<< " cutlass_profiler [options]\n\n"
|
813 |
+
<< " --help\n\n"
|
814 |
+
|
815 |
+
<< " --mode=<string> "
|
816 |
+
<< " Cutlass profiler execution mode." << end_of_line
|
817 |
+
<< " --mode=profile regular verification and profiling (default)" << end_of_line
|
818 |
+
<< " --mode=dry_run no kernels are launched or workspaces allocated" << end_of_line
|
819 |
+
<< " --mode=enumerate lists all operation kind and operations" << end_of_line
|
820 |
+
<< " --mode=trace executes a single device-side computation with" << end_of_line
|
821 |
+
<< " no other kernel launches\n\n"
|
822 |
+
|
823 |
+
<< " --device-info "
|
824 |
+
<< " Prints information on all GPUs present in the system\n\n"
|
825 |
+
|
826 |
+
<< " --operation=<operation_kind> "
|
827 |
+
<< " CUTLASS operation to profile.\n\n"
|
828 |
+
|
829 |
+
<< " --kernels=<string_list> "
|
830 |
+
<< " Filter operations by kernel names. For example, call all kernels with" << end_of_line
|
831 |
+
<< " (\"s1688\" and \"nt\") or (\"s844\" and \"tn\" and \"align8\") in their" << end_of_line
|
832 |
+
<< " operation name using --kernels=\"s1688*nt, s884*tn*align8\"\n\n"
|
833 |
+
|
834 |
+
<< " --ignore-kernels=<string_list> "
|
835 |
+
<< " Excludes kernels whose names match anything in this list.\n\n"
|
836 |
+
;
|
837 |
+
|
838 |
+
//
|
839 |
+
// Detailed options
|
840 |
+
//
|
841 |
+
|
842 |
+
device.print_usage(out);
|
843 |
+
out << "\n";
|
844 |
+
|
845 |
+
initialization.print_usage(out);
|
846 |
+
out << "\n";
|
847 |
+
|
848 |
+
library.print_usage(out);
|
849 |
+
out << "\n";
|
850 |
+
|
851 |
+
profiling.print_usage(out);
|
852 |
+
out << "\n";
|
853 |
+
|
854 |
+
verification.print_usage(out);
|
855 |
+
out << "\n";
|
856 |
+
|
857 |
+
report.print_usage(out);
|
858 |
+
out << "\n";
|
859 |
+
|
860 |
+
about.print_usage(out);
|
861 |
+
out << "\n";
|
862 |
+
}
|
863 |
+
|
864 |
+
void Options::print_options(std::ostream &out) const {
|
865 |
+
|
866 |
+
out
|
867 |
+
<< "options:\n"
|
868 |
+
<< " help: " << about.help << "\n"
|
869 |
+
<< " mode: " << to_string(execution_mode) << "\n";
|
870 |
+
|
871 |
+
out
|
872 |
+
<< " device:\n";
|
873 |
+
device.print_options(out, 2);
|
874 |
+
|
875 |
+
out
|
876 |
+
<< " initialization:\n";
|
877 |
+
initialization.print_options(out, 2);
|
878 |
+
|
879 |
+
out
|
880 |
+
<< " profiling:\n";
|
881 |
+
profiling.print_options(out, 2);
|
882 |
+
|
883 |
+
out
|
884 |
+
<< " verification:\n";
|
885 |
+
verification.print_options(out, 2);
|
886 |
+
|
887 |
+
out
|
888 |
+
<< " report:\n";
|
889 |
+
report.print_options(out, 2);
|
890 |
+
}
|
891 |
+
|
892 |
+
std::string Options::indent_str(int indent) {
|
893 |
+
return std::string(indent * 2, ' ');
|
894 |
+
}
|
895 |
+
|
896 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
897 |
+
|
898 |
+
} // namespace profiler
|
899 |
+
} // namespace cutlass
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/performance_report.cpp
ADDED
@@ -0,0 +1,505 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief Execution environment
|
33 |
+
*/
|
34 |
+
|
35 |
+
#include <iostream>
|
36 |
+
#include <stdexcept>
|
37 |
+
#include <iomanip>
|
38 |
+
#include <algorithm>
|
39 |
+
#include <cstring>
|
40 |
+
|
41 |
+
#include "cutlass/library/util.h"
|
42 |
+
|
43 |
+
#include "cutlass/library/util.h"
|
44 |
+
|
45 |
+
#include "cutlass/profiler/performance_report.h"
|
46 |
+
#include "cutlass/profiler/debug.h"
|
47 |
+
namespace cutlass {
|
48 |
+
namespace profiler {
|
49 |
+
|
50 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
51 |
+
|
52 |
+
#if defined(__unix__)
|
53 |
+
|
54 |
+
#define SHELL_COLOR_BRIGHT() "\033[1;37m"
|
55 |
+
#define SHELL_COLOR_GREEN() "\033[1;32m"
|
56 |
+
#define SHELL_COLOR_RED() "\033[1;31m"
|
57 |
+
#define SHELL_COLOR_END() "\033[0m"
|
58 |
+
|
59 |
+
#else
|
60 |
+
|
61 |
+
#define SHELL_COLOR_BRIGHT() ""
|
62 |
+
#define SHELL_COLOR_GREEN() ""
|
63 |
+
#define SHELL_COLOR_RED() ""
|
64 |
+
#define SHELL_COLOR_END() ""
|
65 |
+
|
66 |
+
#endif
|
67 |
+
|
68 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
69 |
+
|
70 |
+
PerformanceReport::PerformanceReport(
|
71 |
+
Options const &options,
|
72 |
+
std::vector<std::string> const &argument_names,
|
73 |
+
library::OperationKind const &op_kind
|
74 |
+
):
|
75 |
+
options_(options), argument_names_(argument_names), problem_index_(0), good_(true), op_kind_(op_kind) {
|
76 |
+
|
77 |
+
// Strip '.csv' if present
|
78 |
+
std::string base_path = options_.report.output_path;
|
79 |
+
base_path = base_path.substr(0, base_path.rfind(".csv"));
|
80 |
+
op_file_name_ = base_path + "." + to_string(op_kind_) + ".csv";
|
81 |
+
|
82 |
+
base_path = options_.report.junit_output_path;
|
83 |
+
base_path = base_path.substr(0, base_path.rfind(".xml"));
|
84 |
+
base_path = base_path.substr(0, base_path.rfind(".junit"));
|
85 |
+
op_junit_file_name_ = base_path + "." + to_string(op_kind_) + ".junit.xml";
|
86 |
+
|
87 |
+
//
|
88 |
+
// Open output file for operation of PerformanceReport::op_kind
|
89 |
+
//
|
90 |
+
if (!options_.report.output_path.empty()) {
|
91 |
+
|
92 |
+
bool print_header = true;
|
93 |
+
|
94 |
+
if (options_.report.append) {
|
95 |
+
|
96 |
+
std::ifstream test_output_file(op_file_name_);
|
97 |
+
|
98 |
+
if (test_output_file.is_open()) {
|
99 |
+
print_header = false;
|
100 |
+
test_output_file.close();
|
101 |
+
}
|
102 |
+
|
103 |
+
output_file_.open(op_file_name_, std::ios::app);
|
104 |
+
}
|
105 |
+
else {
|
106 |
+
output_file_.open(op_file_name_);
|
107 |
+
}
|
108 |
+
|
109 |
+
if (!output_file_.good()) {
|
110 |
+
|
111 |
+
std::cerr << "Could not open output file at path '"
|
112 |
+
<< options_.report.output_path << "'" << std::endl;
|
113 |
+
|
114 |
+
good_ = false;
|
115 |
+
}
|
116 |
+
|
117 |
+
if (print_header) {
|
118 |
+
print_csv_header_(output_file_) << std::endl;
|
119 |
+
}
|
120 |
+
}
|
121 |
+
|
122 |
+
if (!options_.report.junit_output_path.empty()) {
|
123 |
+
|
124 |
+
junit_output_file_.open(op_junit_file_name_);
|
125 |
+
|
126 |
+
if (!junit_output_file_.good()) {
|
127 |
+
|
128 |
+
std::cerr << "Could not open junit output file at path '"
|
129 |
+
<< options_.report.junit_output_path << "'" << std::endl;
|
130 |
+
|
131 |
+
good_ = false;
|
132 |
+
}
|
133 |
+
|
134 |
+
print_junit_header_(junit_output_file_);
|
135 |
+
}
|
136 |
+
}
|
137 |
+
|
138 |
+
void PerformanceReport::next_problem() {
|
139 |
+
++problem_index_;
|
140 |
+
}
|
141 |
+
|
142 |
+
void PerformanceReport::append_result(PerformanceResult result) {
|
143 |
+
|
144 |
+
result.problem_index = problem_index_;
|
145 |
+
|
146 |
+
if (options_.report.verbose) {
|
147 |
+
std::cout << "\n";
|
148 |
+
print_result_pretty_(std::cout, result) << std::flush;
|
149 |
+
}
|
150 |
+
|
151 |
+
if (junit_output_file_.is_open()) {
|
152 |
+
print_junit_result_(junit_output_file_, result);
|
153 |
+
}
|
154 |
+
|
155 |
+
if (output_file_.is_open()) {
|
156 |
+
print_result_csv_(output_file_, result) << std::endl;
|
157 |
+
}
|
158 |
+
else {
|
159 |
+
concatenated_results_.push_back(result);
|
160 |
+
}
|
161 |
+
}
|
162 |
+
|
163 |
+
void PerformanceReport::sort_results(PerformanceResultVector &results) {
|
164 |
+
|
165 |
+
struct FlopsPerByteCompare
|
166 |
+
{
|
167 |
+
bool operator()(const PerformanceResult &a, const PerformanceResult &b)
|
168 |
+
{
|
169 |
+
double a_flops_per_byte = double(a.flops) / double(a.bytes);
|
170 |
+
double b_flops_per_byte = double(b.flops) / double(b.bytes);
|
171 |
+
|
172 |
+
return (a_flops_per_byte < b_flops_per_byte);
|
173 |
+
}
|
174 |
+
};
|
175 |
+
|
176 |
+
std::stable_sort(results.begin(), results.end(), FlopsPerByteCompare());
|
177 |
+
}
|
178 |
+
|
179 |
+
void PerformanceReport::append_results(PerformanceResultVector const &results) {
|
180 |
+
|
181 |
+
if (options_.report.verbose) {
|
182 |
+
std::cout << "\n\n";
|
183 |
+
}
|
184 |
+
|
185 |
+
// For each result
|
186 |
+
for (auto const & result : results) {
|
187 |
+
append_result(result);
|
188 |
+
}
|
189 |
+
}
|
190 |
+
|
191 |
+
PerformanceReport::~PerformanceReport() {
|
192 |
+
|
193 |
+
//
|
194 |
+
// Output results to stdout if they were not written to a file already.
|
195 |
+
//
|
196 |
+
if (options_.report.verbose && !concatenated_results_.empty()) {
|
197 |
+
|
198 |
+
if (options_.report.sort_results) {
|
199 |
+
sort_results(concatenated_results_);
|
200 |
+
}
|
201 |
+
|
202 |
+
std::cout << "\n\n";
|
203 |
+
std::cout << "=============================\n\n";
|
204 |
+
std::cout << "CSV Results:\n\n";
|
205 |
+
|
206 |
+
print_csv_header_(std::cout) << std::endl;
|
207 |
+
|
208 |
+
for (auto const &result : concatenated_results_) {
|
209 |
+
print_result_csv_(std::cout, result) << "\n";
|
210 |
+
}
|
211 |
+
}
|
212 |
+
else if (output_file_.is_open() && options_.report.verbose) {
|
213 |
+
std::cout << "\nWrote results to '" << op_file_name_ << "'" << std::endl;
|
214 |
+
}
|
215 |
+
|
216 |
+
if (output_file_.is_open()) {
|
217 |
+
output_file_.close();
|
218 |
+
}
|
219 |
+
|
220 |
+
if (junit_output_file_.is_open()) {
|
221 |
+
print_junit_footer_(junit_output_file_);
|
222 |
+
junit_output_file_.close();
|
223 |
+
std::cout << "\nWrote jUnit results to '" << op_junit_file_name_ << "'" << std::endl;
|
224 |
+
}
|
225 |
+
}
|
226 |
+
|
227 |
+
static const char *disposition_status_color(Disposition disposition) {
|
228 |
+
switch (disposition) {
|
229 |
+
case Disposition::kPassed: return SHELL_COLOR_GREEN();
|
230 |
+
case Disposition::kIncorrect: return SHELL_COLOR_RED();
|
231 |
+
case Disposition::kFailed: return SHELL_COLOR_RED();
|
232 |
+
default:
|
233 |
+
break;
|
234 |
+
}
|
235 |
+
return SHELL_COLOR_END();
|
236 |
+
}
|
237 |
+
|
238 |
+
/// Prints the result in human readable form
|
239 |
+
std::ostream & PerformanceReport::print_result_pretty_(
|
240 |
+
std::ostream &out,
|
241 |
+
PerformanceResult const &result,
|
242 |
+
bool use_shell_coloring) {
|
243 |
+
|
244 |
+
out << "=============================\n"
|
245 |
+
<< " Problem ID: " << result.problem_index << "\n";
|
246 |
+
|
247 |
+
if (!options_.report.pivot_tags.empty()) {
|
248 |
+
|
249 |
+
out << " Tags: ";
|
250 |
+
|
251 |
+
int column_idx = 0;
|
252 |
+
for (auto const & tag : options_.report.pivot_tags) {
|
253 |
+
out << (column_idx++ ? "," : "") << tag.first << ":" << tag.second;
|
254 |
+
}
|
255 |
+
|
256 |
+
out << "\n";
|
257 |
+
}
|
258 |
+
|
259 |
+
std::string shell_color_bright = use_shell_coloring ? SHELL_COLOR_BRIGHT() : "";
|
260 |
+
std::string shell_color_end = use_shell_coloring ? SHELL_COLOR_END() : "";
|
261 |
+
auto _disposition_status_color = [&](Disposition d) -> const char * {
|
262 |
+
return use_shell_coloring ? disposition_status_color(d) : "";
|
263 |
+
};
|
264 |
+
|
265 |
+
out
|
266 |
+
<< "\n"
|
267 |
+
<< " Provider: " << shell_color_bright << library::to_string(result.provider, true) << shell_color_end << "\n"
|
268 |
+
<< " OperationKind: " << shell_color_bright << library::to_string(result.op_kind) << shell_color_end << "\n"
|
269 |
+
<< " Operation: " << result.operation_name << "\n\n"
|
270 |
+
<< " Status: " << shell_color_bright << library::to_string(result.status, true) << shell_color_end << "\n"
|
271 |
+
<< " Verification: " << shell_color_bright << (options_.verification.enabled ? "ON":"OFF") << shell_color_end << "\n"
|
272 |
+
<< " Disposition: " << _disposition_status_color(result.disposition) << to_string(result.disposition, true) << shell_color_end << "\n\n";
|
273 |
+
|
274 |
+
// Display individual verification results for each verification-provider
|
275 |
+
if (options_.verification.enabled) {
|
276 |
+
|
277 |
+
static int const indent_spaces = 16;
|
278 |
+
|
279 |
+
for(auto & m : result.verification_map) {
|
280 |
+
out << std::right << std::setw(indent_spaces) << library::to_string(m.first, true) << ": " << to_string(m.second, true) << "\n";
|
281 |
+
}
|
282 |
+
}
|
283 |
+
|
284 |
+
out
|
285 |
+
<< "\n Arguments:";
|
286 |
+
|
287 |
+
int column_idx = 0;
|
288 |
+
for (auto const &arg : result.arguments) {
|
289 |
+
if (!arg.second.empty()) {
|
290 |
+
out << " --" << arg.first << "=" << arg.second;
|
291 |
+
column_idx += int(4 + arg.first.size() + arg.second.size());
|
292 |
+
if (column_idx > 98) {
|
293 |
+
out << " \\\n ";
|
294 |
+
column_idx = 0;
|
295 |
+
}
|
296 |
+
}
|
297 |
+
}
|
298 |
+
out << "\n\n";
|
299 |
+
|
300 |
+
out
|
301 |
+
<< " Bytes: " << result.bytes << " bytes\n"
|
302 |
+
<< " FLOPs: " << result.flops << " flops\n"
|
303 |
+
<< " FLOPs/Byte: " << (result.flops / result.bytes) << "\n\n";
|
304 |
+
|
305 |
+
if (result.good()) {
|
306 |
+
|
307 |
+
out
|
308 |
+
<< " Runtime: " << result.runtime << " ms\n"
|
309 |
+
<< " Memory: " << result.gbytes_per_sec() << " GiB/s\n"
|
310 |
+
<< "\n Math: " << result.gflops_per_sec() << " GFLOP/s\n";
|
311 |
+
|
312 |
+
}
|
313 |
+
|
314 |
+
return out;
|
315 |
+
}
|
316 |
+
|
317 |
+
/// Prints the CSV header
|
318 |
+
std::ostream & PerformanceReport::print_csv_header_(
|
319 |
+
std::ostream &out) {
|
320 |
+
|
321 |
+
int column_idx = 0;
|
322 |
+
|
323 |
+
// Pivot tags
|
324 |
+
for (auto const & tag : options_.report.pivot_tags) {
|
325 |
+
out << (column_idx++ ? "," : "") << tag.first;
|
326 |
+
}
|
327 |
+
|
328 |
+
out
|
329 |
+
<< (column_idx ? "," : "") << "Problem,Provider"
|
330 |
+
<< ",OperationKind,Operation,Disposition,Status";
|
331 |
+
|
332 |
+
for (auto const &arg_name : argument_names_) {
|
333 |
+
out << "," << arg_name;
|
334 |
+
}
|
335 |
+
|
336 |
+
out
|
337 |
+
<< ",Bytes"
|
338 |
+
<< ",Flops"
|
339 |
+
<< ",Flops/Byte"
|
340 |
+
<< ",Runtime"
|
341 |
+
<< ",GB/s"
|
342 |
+
<< ",GFLOPs"
|
343 |
+
;
|
344 |
+
|
345 |
+
return out;
|
346 |
+
}
|
347 |
+
|
348 |
+
/// Print the result in CSV output
|
349 |
+
std::ostream & PerformanceReport::print_result_csv_(
|
350 |
+
std::ostream &out,
|
351 |
+
PerformanceResult const &result) {
|
352 |
+
|
353 |
+
int column_idx = 0;
|
354 |
+
|
355 |
+
// Pivot tags
|
356 |
+
for (auto const & tag : options_.report.pivot_tags) {
|
357 |
+
out << (column_idx++ ? "," : "") << tag.second;
|
358 |
+
}
|
359 |
+
|
360 |
+
out
|
361 |
+
<< (column_idx ? "," : "")
|
362 |
+
<< result.problem_index
|
363 |
+
<< "," << to_string(result.provider, true)
|
364 |
+
<< "," << to_string(result.op_kind)
|
365 |
+
<< "," << result.operation_name
|
366 |
+
<< "," << to_string(result.disposition)
|
367 |
+
<< "," << library::to_string(result.status);
|
368 |
+
|
369 |
+
for (auto const & arg : result.arguments) {
|
370 |
+
out << "," << arg.second;
|
371 |
+
}
|
372 |
+
|
373 |
+
out
|
374 |
+
<< "," << result.bytes
|
375 |
+
<< "," << result.flops
|
376 |
+
<< "," << result.flops / result.bytes
|
377 |
+
<< "," << result.runtime;
|
378 |
+
|
379 |
+
if (result.good()) {
|
380 |
+
|
381 |
+
out
|
382 |
+
<< "," << result.gbytes_per_sec()
|
383 |
+
<< "," << result.gflops_per_sec()
|
384 |
+
;
|
385 |
+
|
386 |
+
}
|
387 |
+
else {
|
388 |
+
out << std::string(2
|
389 |
+
, ','
|
390 |
+
);
|
391 |
+
}
|
392 |
+
|
393 |
+
return out;
|
394 |
+
}
|
395 |
+
|
396 |
+
std::ostream & PerformanceReport::print_junit_header_(std::ostream &out) {
|
397 |
+
|
398 |
+
out << "<?xml version=\"1.0\" encoding=\"UTF-8\"?>" << std::endl;
|
399 |
+
out << "<testsuite name=\"cutlass_profiler\">" << std::endl;
|
400 |
+
return out;
|
401 |
+
|
402 |
+
}
|
403 |
+
|
404 |
+
namespace {
|
405 |
+
|
406 |
+
std::string escape_xml_special_chars(const std::string& src) {
|
407 |
+
std::stringstream dst;
|
408 |
+
for (char ch : src) {
|
409 |
+
switch (ch) {
|
410 |
+
case '&': dst << "&"; break;
|
411 |
+
case '\'': dst << "'"; break;
|
412 |
+
case '"': dst << """; break;
|
413 |
+
case '<': dst << "<"; break;
|
414 |
+
case '>': dst << ">"; break;
|
415 |
+
default: dst << ch; break;
|
416 |
+
}
|
417 |
+
}
|
418 |
+
return dst.str();
|
419 |
+
}
|
420 |
+
|
421 |
+
template<typename T>
|
422 |
+
std::ostream & print_junit_result_property_(std::ostream & os, const std::string & name, const T & property) {
|
423 |
+
return os << " <property name=\"" << name << "\" value=\"" << property << "\" />" << std::endl;
|
424 |
+
}
|
425 |
+
}
|
426 |
+
|
427 |
+
std::ostream & PerformanceReport::print_junit_result_(std::ostream &out, PerformanceResult const &result) {
|
428 |
+
|
429 |
+
out << " " << "<testcase name=\"";
|
430 |
+
|
431 |
+
std::string delim = "";
|
432 |
+
|
433 |
+
// Pivot tags
|
434 |
+
for (auto const & tag : options_.report.pivot_tags) {
|
435 |
+
out << delim << tag.second; delim = "_";
|
436 |
+
}
|
437 |
+
|
438 |
+
out << delim << to_string(result.op_kind); delim = "_";
|
439 |
+
out << delim << result.operation_name;
|
440 |
+
|
441 |
+
for (auto const & arg : result.arguments) {
|
442 |
+
out << delim << arg.second;
|
443 |
+
}
|
444 |
+
|
445 |
+
out << "\" ";
|
446 |
+
|
447 |
+
bool skipped = false, failed = false, error = false;
|
448 |
+
|
449 |
+
switch (result.disposition) {
|
450 |
+
case Disposition::kNotRun:
|
451 |
+
case Disposition::kNotSupported:
|
452 |
+
skipped = true;
|
453 |
+
break;
|
454 |
+
case Disposition::kPassed:
|
455 |
+
case Disposition::kNotVerified:
|
456 |
+
break;
|
457 |
+
case Disposition::kFailed:
|
458 |
+
case Disposition::kIncorrect:
|
459 |
+
failed = true;
|
460 |
+
break;
|
461 |
+
case Disposition::kInvalidProblem:
|
462 |
+
case Disposition::kInvalid:
|
463 |
+
error = true;
|
464 |
+
break;
|
465 |
+
};
|
466 |
+
|
467 |
+
if (skipped) {
|
468 |
+
out << "status=\"notrun\"";
|
469 |
+
} else {
|
470 |
+
out << "status=\"run\"";
|
471 |
+
}
|
472 |
+
|
473 |
+
out << ">" << std::endl;
|
474 |
+
|
475 |
+
if (failed) {
|
476 |
+
out << " <failure message=\"" << to_string(result.disposition) << "\" />" << std::endl;
|
477 |
+
}
|
478 |
+
|
479 |
+
if (error) {
|
480 |
+
out << " <error message=\"" << to_string(result.disposition) << "\" />" << std::endl;
|
481 |
+
}
|
482 |
+
|
483 |
+
out << " <system-out><![CDATA[" << std::endl;
|
484 |
+
std::stringstream ss;
|
485 |
+
print_result_pretty_(ss, result, false);
|
486 |
+
out << escape_xml_special_chars(ss.str()) << std::endl;
|
487 |
+
out << " ]]></system-out>" << std::endl;
|
488 |
+
|
489 |
+
out << " </testcase>" << std::endl;
|
490 |
+
|
491 |
+
return out;
|
492 |
+
|
493 |
+
}
|
494 |
+
|
495 |
+
std::ostream & PerformanceReport::print_junit_footer_(std::ostream &out) {
|
496 |
+
|
497 |
+
out << "</testsuite>" << std::endl;
|
498 |
+
return out;
|
499 |
+
|
500 |
+
}
|
501 |
+
|
502 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
503 |
+
|
504 |
+
} // namespace profiler
|
505 |
+
} // namespace cutlass
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/performance_result.cu
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief
|
33 |
+
*/
|
34 |
+
|
35 |
+
#pragma once
|
36 |
+
|
37 |
+
#include <vector>
|
38 |
+
|
39 |
+
#include "cutlass/cutlass.h"
|
40 |
+
|
41 |
+
// CUTLASS Profiler includes
|
42 |
+
#include "cutlass/profiler/enumerated_types.h"
|
43 |
+
#include "cutlass/profiler/performance_result.h"
|
44 |
+
|
45 |
+
// CUTLASS Library includes
|
46 |
+
#include "cutlass/library/library.h"
|
47 |
+
#include "cutlass/library/util.h"
|
48 |
+
|
49 |
+
namespace cutlass {
|
50 |
+
namespace profiler {
|
51 |
+
|
52 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
53 |
+
|
54 |
+
|
55 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
56 |
+
|
57 |
+
} // namespace profiler
|
58 |
+
} // namespace cutlass
|
59 |
+
|
60 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
61 |
+
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/problem_space.cpp
ADDED
@@ -0,0 +1,1263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief
|
33 |
+
*/
|
34 |
+
|
35 |
+
#include <string>
|
36 |
+
#include <stdexcept>
|
37 |
+
#include <sstream>
|
38 |
+
|
39 |
+
#include "cutlass/library/util.h"
|
40 |
+
|
41 |
+
#include "cutlass/profiler/problem_space.h"
|
42 |
+
|
43 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
44 |
+
|
45 |
+
namespace cutlass {
|
46 |
+
namespace profiler {
|
47 |
+
|
48 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
49 |
+
|
50 |
+
template <typename T>
|
51 |
+
static T lexical_cast(std::string const &str) {
|
52 |
+
std::stringstream ss;
|
53 |
+
T value;
|
54 |
+
|
55 |
+
ss << str;
|
56 |
+
ss >> value;
|
57 |
+
|
58 |
+
return value;
|
59 |
+
}
|
60 |
+
|
61 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
62 |
+
|
63 |
+
std::ostream & KernelArgument::ValueIterator::print(std::ostream &out) const {
|
64 |
+
out << "[" << (void *)this << " " << argument->qualified_name() << "] ";
|
65 |
+
if (this->null_argument) {
|
66 |
+
out << "<null>";
|
67 |
+
}
|
68 |
+
else {
|
69 |
+
out << "<not null>";
|
70 |
+
}
|
71 |
+
return out;
|
72 |
+
}
|
73 |
+
|
74 |
+
KernelArgument::~KernelArgument() {
|
75 |
+
|
76 |
+
}
|
77 |
+
|
78 |
+
//////////////////////////////////////////////////////////////////////////////////////////////////
|
79 |
+
|
80 |
+
ScalarArgument::ScalarValue::ScalarValue(
|
81 |
+
std::string const &value_,
|
82 |
+
ScalarArgument const *argument_,
|
83 |
+
bool not_null_
|
84 |
+
):
|
85 |
+
KernelArgument::Value(argument_, not_null_),
|
86 |
+
value(value_) {
|
87 |
+
|
88 |
+
}
|
89 |
+
|
90 |
+
std::ostream &ScalarArgument::ScalarValue::print(std::ostream &out) const {
|
91 |
+
out << argument->qualified_name() << ": ";
|
92 |
+
if (not_null) {
|
93 |
+
out << value;
|
94 |
+
}
|
95 |
+
else {
|
96 |
+
out << "<null>";
|
97 |
+
}
|
98 |
+
return out;
|
99 |
+
}
|
100 |
+
|
101 |
+
ScalarArgument::ScalarValueIterator::ScalarValueIterator(
|
102 |
+
ScalarArgument const *argument_
|
103 |
+
):
|
104 |
+
KernelArgument::ValueIterator(argument_) {
|
105 |
+
|
106 |
+
if (argument_) {
|
107 |
+
value_it = argument_->values.begin();
|
108 |
+
}
|
109 |
+
}
|
110 |
+
|
111 |
+
void ScalarArgument::ScalarValueIterator::operator++() {
|
112 |
+
if (this->null_argument) {
|
113 |
+
this->null_argument = false;
|
114 |
+
}
|
115 |
+
else {
|
116 |
+
++value_it;
|
117 |
+
}
|
118 |
+
}
|
119 |
+
|
120 |
+
bool ScalarArgument::ScalarValueIterator::operator==(ValueIterator const &it) const {
|
121 |
+
if (it.type() != ArgumentTypeID::kScalar) {
|
122 |
+
throw std::runtime_error("Cannot compare ScalarValueIterator with iterator of different type");
|
123 |
+
}
|
124 |
+
auto const & scalar_it = static_cast<ScalarValueIterator const &>(it);
|
125 |
+
return value_it == scalar_it.value_it;
|
126 |
+
}
|
127 |
+
|
128 |
+
/// Gets the value pointed to
|
129 |
+
std::unique_ptr<KernelArgument::Value> ScalarArgument::ScalarValueIterator::at() const {
|
130 |
+
if (this->null_argument) {
|
131 |
+
return std::unique_ptr<KernelArgument::Value>(
|
132 |
+
new ScalarArgument::ScalarValue(
|
133 |
+
std::string(),
|
134 |
+
static_cast<ScalarArgument const *>(argument),
|
135 |
+
false));
|
136 |
+
}
|
137 |
+
else {
|
138 |
+
return std::unique_ptr<KernelArgument::Value>(
|
139 |
+
new ScalarArgument::ScalarValue(
|
140 |
+
*value_it,
|
141 |
+
static_cast<ScalarArgument const *>(argument)));
|
142 |
+
}
|
143 |
+
}
|
144 |
+
|
145 |
+
std::unique_ptr<KernelArgument::ValueIterator> ScalarArgument::begin() const {
|
146 |
+
return std::unique_ptr<KernelArgument::ValueIterator>(new ScalarValueIterator(this));
|
147 |
+
}
|
148 |
+
|
149 |
+
std::unique_ptr<KernelArgument::ValueIterator> ScalarArgument::end() const {
|
150 |
+
ScalarValueIterator *it = new ScalarValueIterator(this);
|
151 |
+
it->value_it = this->values.end();
|
152 |
+
it->null_argument = false;
|
153 |
+
return std::unique_ptr<ValueIterator>(it);
|
154 |
+
}
|
155 |
+
|
156 |
+
//////////////////////////////////////////////////////////////////////////////////////////////////
|
157 |
+
|
158 |
+
IntegerArgument::IntegerValue::IntegerValue(
|
159 |
+
int64_t value_,
|
160 |
+
IntegerArgument const *argument_,
|
161 |
+
bool not_null_
|
162 |
+
): KernelArgument::Value(argument_, not_null_), value(value_) {
|
163 |
+
|
164 |
+
}
|
165 |
+
|
166 |
+
|
167 |
+
/// Pretty printer for debugging
|
168 |
+
std::ostream &IntegerArgument::IntegerValue::print(std::ostream &out) const {
|
169 |
+
out << argument->qualified_name() << ": ";
|
170 |
+
if (not_null) {
|
171 |
+
out << value;
|
172 |
+
}
|
173 |
+
else {
|
174 |
+
out << "<null>";
|
175 |
+
}
|
176 |
+
return out;
|
177 |
+
}
|
178 |
+
|
179 |
+
IntegerArgument::IntegerValueIterator::IntegerValueIterator(IntegerArgument const *argument_):
|
180 |
+
KernelArgument::ValueIterator(argument_) {
|
181 |
+
|
182 |
+
if (argument_) {
|
183 |
+
range_it = argument_->ranges.begin();
|
184 |
+
if (range_it != argument_->ranges.end()) {
|
185 |
+
value_it = range_it->begin();
|
186 |
+
}
|
187 |
+
}
|
188 |
+
}
|
189 |
+
|
190 |
+
void IntegerArgument::IntegerValueIterator::operator++() {
|
191 |
+
|
192 |
+
if (this->null_argument) {
|
193 |
+
this->null_argument = false;
|
194 |
+
}
|
195 |
+
else {
|
196 |
+
++value_it;
|
197 |
+
if (value_it == range_it->end()) {
|
198 |
+
++range_it;
|
199 |
+
if (range_it != static_cast<IntegerArgument const *>(argument)->ranges.end()) {
|
200 |
+
value_it = range_it->begin();
|
201 |
+
}
|
202 |
+
}
|
203 |
+
}
|
204 |
+
}
|
205 |
+
|
206 |
+
bool IntegerArgument::IntegerValueIterator::operator==(ValueIterator const &it) const {
|
207 |
+
if (it.type() != ArgumentTypeID::kInteger) {
|
208 |
+
throw std::runtime_error("Cannot compare IntegerValueIterator with iterator of different type");
|
209 |
+
}
|
210 |
+
|
211 |
+
auto const & integer_iterator = static_cast<IntegerValueIterator const &>(it);
|
212 |
+
|
213 |
+
if (this->null_argument) {
|
214 |
+
return it.null_argument;
|
215 |
+
}
|
216 |
+
else {
|
217 |
+
if (range_it != integer_iterator.range_it) {
|
218 |
+
return false;
|
219 |
+
}
|
220 |
+
if (range_it == static_cast<IntegerArgument const *>(argument)->ranges.end() &&
|
221 |
+
range_it == integer_iterator.range_it) {
|
222 |
+
return true;
|
223 |
+
}
|
224 |
+
return value_it == integer_iterator.value_it;
|
225 |
+
}
|
226 |
+
}
|
227 |
+
|
228 |
+
std::unique_ptr<KernelArgument::Value> IntegerArgument::IntegerValueIterator::at() const {
|
229 |
+
if (this->null_argument) {
|
230 |
+
return std::unique_ptr<KernelArgument::Value>(
|
231 |
+
new IntegerArgument::IntegerValue(
|
232 |
+
0, static_cast<IntegerArgument const *>(argument), false));
|
233 |
+
}
|
234 |
+
else {
|
235 |
+
return std::unique_ptr<KernelArgument::Value>(
|
236 |
+
new IntegerArgument::IntegerValue(
|
237 |
+
*value_it, static_cast<IntegerArgument const *>(argument)));
|
238 |
+
}
|
239 |
+
}
|
240 |
+
|
241 |
+
std::unique_ptr<KernelArgument::ValueIterator> IntegerArgument::begin() const {
|
242 |
+
return std::unique_ptr<KernelArgument::ValueIterator>(new IntegerValueIterator(this));
|
243 |
+
}
|
244 |
+
|
245 |
+
std::unique_ptr<KernelArgument::ValueIterator> IntegerArgument::end() const {
|
246 |
+
IntegerValueIterator *it = new IntegerValueIterator(this);
|
247 |
+
it->range_it = this->ranges.end();
|
248 |
+
it->null_argument = false;
|
249 |
+
return std::unique_ptr<ValueIterator>(it);
|
250 |
+
}
|
251 |
+
|
252 |
+
//////////////////////////////////////////////////////////////////////////////////////////////////
|
253 |
+
|
254 |
+
TensorArgument::TensorValue::TensorValue(
|
255 |
+
TensorDescription const &desc_,
|
256 |
+
TensorArgument const *argument_,
|
257 |
+
bool not_null_
|
258 |
+
):
|
259 |
+
KernelArgument::Value(argument_, not_null_),
|
260 |
+
desc(desc_) {
|
261 |
+
|
262 |
+
}
|
263 |
+
|
264 |
+
/// Pretty printer for debugging
|
265 |
+
std::ostream &TensorArgument::TensorValue::print(std::ostream &out) const {
|
266 |
+
out << argument->qualified_name() << ": " << to_string(desc.element) << ": " << to_string(desc.layout);
|
267 |
+
return out;
|
268 |
+
}
|
269 |
+
|
270 |
+
TensorArgument::TensorValueIterator::TensorValueIterator(
|
271 |
+
TensorArgument const *argument_
|
272 |
+
):
|
273 |
+
KernelArgument::ValueIterator(argument_) {
|
274 |
+
|
275 |
+
if (argument_) {
|
276 |
+
value_it = argument_->values.begin();
|
277 |
+
}
|
278 |
+
}
|
279 |
+
|
280 |
+
void TensorArgument::TensorValueIterator::operator++() {
|
281 |
+
if (this->null_argument) {
|
282 |
+
this->null_argument = false;
|
283 |
+
}
|
284 |
+
else {
|
285 |
+
++value_it;
|
286 |
+
}
|
287 |
+
}
|
288 |
+
|
289 |
+
bool TensorArgument::TensorValueIterator::operator==(ValueIterator const &it) const {
|
290 |
+
if (it.type() != ArgumentTypeID::kTensor) {
|
291 |
+
throw std::runtime_error("Cannot compare TensorValueIterator with iterator of different type");
|
292 |
+
}
|
293 |
+
auto const & tensor_it = static_cast<TensorValueIterator const &>(it);
|
294 |
+
return value_it == tensor_it.value_it;
|
295 |
+
}
|
296 |
+
|
297 |
+
/// Gets the value pointed to
|
298 |
+
std::unique_ptr<KernelArgument::Value> TensorArgument::TensorValueIterator::at() const {
|
299 |
+
|
300 |
+
if (this->null_argument) {
|
301 |
+
return std::unique_ptr<KernelArgument::Value>(
|
302 |
+
new TensorArgument::TensorValue(
|
303 |
+
TensorDescription(), static_cast<TensorArgument const *>(argument), false));
|
304 |
+
}
|
305 |
+
else {
|
306 |
+
return std::unique_ptr<KernelArgument::Value>(
|
307 |
+
new TensorArgument::TensorValue(
|
308 |
+
*value_it, static_cast<TensorArgument const *>(argument)));
|
309 |
+
}
|
310 |
+
}
|
311 |
+
|
312 |
+
std::unique_ptr<KernelArgument::ValueIterator> TensorArgument::begin() const {
|
313 |
+
return std::unique_ptr<KernelArgument::ValueIterator>(new TensorValueIterator(this));
|
314 |
+
}
|
315 |
+
|
316 |
+
std::unique_ptr<KernelArgument::ValueIterator> TensorArgument::end() const {
|
317 |
+
TensorValueIterator *it = new TensorValueIterator(this);
|
318 |
+
it->value_it = this->values.end();
|
319 |
+
it->null_argument = false;
|
320 |
+
return std::unique_ptr<ValueIterator>(it);
|
321 |
+
}
|
322 |
+
|
323 |
+
//////////////////////////////////////////////////////////////////////////////////////////////////
|
324 |
+
|
325 |
+
EnumeratedTypeArgument::EnumeratedTypeValue::EnumeratedTypeValue(
|
326 |
+
std::string const & element_,
|
327 |
+
EnumeratedTypeArgument const *argument_,
|
328 |
+
bool not_null_
|
329 |
+
):
|
330 |
+
KernelArgument::Value(argument_, not_null_),
|
331 |
+
element(element_) {
|
332 |
+
|
333 |
+
}
|
334 |
+
|
335 |
+
/// Pretty printer for debugging
|
336 |
+
std::ostream &EnumeratedTypeArgument::EnumeratedTypeValue::print(std::ostream &out) const {
|
337 |
+
out << argument->qualified_name() << ": " << element;
|
338 |
+
return out;
|
339 |
+
}
|
340 |
+
|
341 |
+
EnumeratedTypeArgument::EnumeratedTypeValueIterator::EnumeratedTypeValueIterator(
|
342 |
+
EnumeratedTypeArgument const *argument_
|
343 |
+
):
|
344 |
+
KernelArgument::ValueIterator(argument_) {
|
345 |
+
|
346 |
+
if (argument_) {
|
347 |
+
value_it = argument_->values.begin();
|
348 |
+
}
|
349 |
+
}
|
350 |
+
|
351 |
+
void EnumeratedTypeArgument::EnumeratedTypeValueIterator::operator++() {
|
352 |
+
if (this->null_argument) {
|
353 |
+
this->null_argument = false;
|
354 |
+
}
|
355 |
+
else {
|
356 |
+
++value_it;
|
357 |
+
}
|
358 |
+
}
|
359 |
+
|
360 |
+
bool EnumeratedTypeArgument::EnumeratedTypeValueIterator::operator==(ValueIterator const &it) const {
|
361 |
+
|
362 |
+
if (it.type() != ArgumentTypeID::kEnumerated) {
|
363 |
+
throw std::runtime_error("Cannot compare EnumeratedTypeValueIterator with iterator of different type");
|
364 |
+
}
|
365 |
+
|
366 |
+
auto const & enumerated_type_it = static_cast<EnumeratedTypeValueIterator const &>(it);
|
367 |
+
return value_it == enumerated_type_it.value_it;
|
368 |
+
}
|
369 |
+
|
370 |
+
/// Gets the value pointed to
|
371 |
+
std::unique_ptr<KernelArgument::Value> EnumeratedTypeArgument::EnumeratedTypeValueIterator::at() const {
|
372 |
+
|
373 |
+
if (this->null_argument) {
|
374 |
+
return std::unique_ptr<KernelArgument::Value>(
|
375 |
+
new EnumeratedTypeValue(
|
376 |
+
std::string(), static_cast<EnumeratedTypeArgument const *>(argument), false));
|
377 |
+
}
|
378 |
+
else {
|
379 |
+
return std::unique_ptr<KernelArgument::Value>(
|
380 |
+
new EnumeratedTypeValue(
|
381 |
+
*value_it, static_cast<EnumeratedTypeArgument const *>(argument)));
|
382 |
+
}
|
383 |
+
}
|
384 |
+
|
385 |
+
std::unique_ptr<KernelArgument::ValueIterator> EnumeratedTypeArgument::begin() const {
|
386 |
+
return std::unique_ptr<KernelArgument::ValueIterator>(new EnumeratedTypeValueIterator(this));
|
387 |
+
}
|
388 |
+
|
389 |
+
std::unique_ptr<KernelArgument::ValueIterator> EnumeratedTypeArgument::end() const {
|
390 |
+
EnumeratedTypeValueIterator *it = new EnumeratedTypeValueIterator(this);
|
391 |
+
it->value_it = this->values.end();
|
392 |
+
it->null_argument = false;
|
393 |
+
return std::unique_ptr<ValueIterator>(it);
|
394 |
+
}
|
395 |
+
|
396 |
+
//////////////////////////////////////////////////////////////////////////////////////////////////
|
397 |
+
|
398 |
+
ProblemSpace::Iterator::Iterator(ProblemSpace const &problem_space) {
|
399 |
+
for (auto const & arg_ptr : problem_space.arguments) {
|
400 |
+
construct_(arg_ptr.get());
|
401 |
+
}
|
402 |
+
}
|
403 |
+
|
404 |
+
ProblemSpace::Iterator::Iterator(Iterator && it) {
|
405 |
+
iterators = std::move(it.iterators);
|
406 |
+
}
|
407 |
+
|
408 |
+
/// Helper for recursively constructing iterators
|
409 |
+
void ProblemSpace::Iterator::construct_(KernelArgument const *argument) {
|
410 |
+
iterators.emplace_back(argument->begin());
|
411 |
+
}
|
412 |
+
|
413 |
+
/// Given a set of ranges, iterate over the points within their Cartesian product. No big deal.
|
414 |
+
void ProblemSpace::Iterator::operator++() {
|
415 |
+
|
416 |
+
// Define a pair of iterator into the vector of iterators.
|
417 |
+
IteratorVector::iterator iterator_it = iterators.begin();
|
418 |
+
IteratorVector::iterator next_iterator = iterator_it;
|
419 |
+
|
420 |
+
// Advance the first argument.
|
421 |
+
++(**iterator_it);
|
422 |
+
|
423 |
+
// Maintain a pair of iterators over consecutive arguments.
|
424 |
+
++next_iterator;
|
425 |
+
|
426 |
+
// Carry logic
|
427 |
+
while (next_iterator != iterators.end() &&
|
428 |
+
**iterator_it == *((*iterator_it)->argument->end())) { // Did an iterator reach the end of its range?
|
429 |
+
|
430 |
+
(*iterator_it) = (*iterator_it)->argument->begin(); // Reset that iterator,
|
431 |
+
|
432 |
+
++(**next_iterator); // and increment the next argument's iterator.
|
433 |
+
|
434 |
+
iterator_it = next_iterator; // Advance to the next argument
|
435 |
+
++next_iterator;
|
436 |
+
}
|
437 |
+
}
|
438 |
+
|
439 |
+
/// Moves iterator to end
|
440 |
+
void ProblemSpace::Iterator::move_to_end() {
|
441 |
+
if (!iterators.empty()) {
|
442 |
+
std::unique_ptr<KernelArgument::ValueIterator> new_iter = iterators.back()->argument->end();
|
443 |
+
std::swap(iterators.back(), new_iter);
|
444 |
+
}
|
445 |
+
}
|
446 |
+
|
447 |
+
ProblemSpace::Problem ProblemSpace::Iterator::at() const {
|
448 |
+
Problem problem;
|
449 |
+
|
450 |
+
for (std::unique_ptr<KernelArgument::ValueIterator> const & it : iterators) {
|
451 |
+
problem.emplace_back(it->at());
|
452 |
+
}
|
453 |
+
|
454 |
+
return problem;
|
455 |
+
}
|
456 |
+
|
457 |
+
/// Equality operator
|
458 |
+
bool ProblemSpace::Iterator::operator==(Iterator const &it) const {
|
459 |
+
|
460 |
+
// This would be an opportunity for auto, but explicitly denoting references to
|
461 |
+
// owning smart pointers to dynamic polymorphic objects seems like a kindness to the reader.
|
462 |
+
IteratorVector::const_iterator first_it = iterators.begin();
|
463 |
+
IteratorVector::const_iterator second_it = it.iterators.begin();
|
464 |
+
|
465 |
+
int idx = 0;
|
466 |
+
for (; first_it != iterators.end(); ++first_it, ++second_it, ++idx) {
|
467 |
+
|
468 |
+
KernelArgument::ValueIterator const *my_it = first_it->get();
|
469 |
+
KernelArgument::ValueIterator const *their_it = second_it->get();
|
470 |
+
|
471 |
+
if (*my_it != *their_it) {
|
472 |
+
return false;
|
473 |
+
}
|
474 |
+
}
|
475 |
+
|
476 |
+
return true;
|
477 |
+
}
|
478 |
+
|
479 |
+
std::ostream &ProblemSpace::Iterator::print(std::ostream &out) const {
|
480 |
+
|
481 |
+
for (std::unique_ptr<KernelArgument::ValueIterator> const & iter_ptr : iterators) {
|
482 |
+
out << " [iter " << (iter_ptr->null_argument ? "null" : "<not null>")
|
483 |
+
<< ", type: " << to_string(iter_ptr->argument->description->type) << "]" << std::endl;
|
484 |
+
}
|
485 |
+
|
486 |
+
return out;
|
487 |
+
}
|
488 |
+
|
489 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
490 |
+
|
491 |
+
ProblemSpace::ProblemSpace(ArgumentDescriptionVector const &schema, CommandLine const &cmdline) {
|
492 |
+
|
493 |
+
// Clone the arguments
|
494 |
+
for (ArgumentDescription const & arg_desc : schema) {
|
495 |
+
clone_(arguments, &arg_desc);
|
496 |
+
}
|
497 |
+
|
498 |
+
// Parse values from the command line
|
499 |
+
for (auto & arg : arguments) {
|
500 |
+
parse_(arg.get(), cmdline);
|
501 |
+
}
|
502 |
+
}
|
503 |
+
|
504 |
+
|
505 |
+
/// Returns the index of an argument by name
|
506 |
+
size_t ProblemSpace::argument_index(char const *name) const {
|
507 |
+
return argument_index_map.at(name);
|
508 |
+
}
|
509 |
+
|
510 |
+
/// Helper for recursively cloning
|
511 |
+
void ProblemSpace::clone_(
|
512 |
+
KernelArgumentVector &kernel_args,
|
513 |
+
ArgumentDescription const *arg_desc) {
|
514 |
+
|
515 |
+
KernelArgument *kernel_arg = nullptr;
|
516 |
+
|
517 |
+
switch (arg_desc->type) {
|
518 |
+
case ArgumentTypeID::kScalar:
|
519 |
+
kernel_arg = new ScalarArgument(arg_desc);
|
520 |
+
break;
|
521 |
+
case ArgumentTypeID::kInteger:
|
522 |
+
kernel_arg = new IntegerArgument(arg_desc);
|
523 |
+
break;
|
524 |
+
case ArgumentTypeID::kTensor:
|
525 |
+
kernel_arg = new TensorArgument(arg_desc);
|
526 |
+
break;
|
527 |
+
case ArgumentTypeID::kStructure:
|
528 |
+
{
|
529 |
+
throw std::runtime_error("ArgumentTypeID::kStructure not supported");
|
530 |
+
}
|
531 |
+
break;
|
532 |
+
case ArgumentTypeID::kEnumerated:
|
533 |
+
kernel_arg = new EnumeratedTypeArgument(arg_desc);
|
534 |
+
break;
|
535 |
+
|
536 |
+
default: break;
|
537 |
+
}
|
538 |
+
|
539 |
+
if (kernel_arg) {
|
540 |
+
size_t idx = kernel_args.size();
|
541 |
+
for (auto const &alias : arg_desc->aliases) {
|
542 |
+
argument_index_map.insert(std::make_pair(alias, idx));
|
543 |
+
}
|
544 |
+
kernel_args.emplace_back(kernel_arg);
|
545 |
+
}
|
546 |
+
}
|
547 |
+
|
548 |
+
/// Parses a command line
|
549 |
+
void ProblemSpace::parse_(KernelArgument *arg, CommandLine const &cmdline) {
|
550 |
+
|
551 |
+
switch (arg->description->type) {
|
552 |
+
case ArgumentTypeID::kScalar:
|
553 |
+
{
|
554 |
+
auto * scalar = static_cast<ScalarArgument *>(arg);
|
555 |
+
|
556 |
+
for (auto const &alias : arg->description->aliases) {
|
557 |
+
if (cmdline.check_cmd_line_flag(alias.c_str())) {
|
558 |
+
|
559 |
+
std::vector<std::vector<std::string>> tokens;
|
560 |
+
cmdline.get_cmd_line_argument_ranges(alias.c_str(), tokens);
|
561 |
+
|
562 |
+
for (auto const & vec : tokens) {
|
563 |
+
if (!vec.empty()) {
|
564 |
+
scalar->values.push_back(vec.front());
|
565 |
+
}
|
566 |
+
}
|
567 |
+
break;
|
568 |
+
}
|
569 |
+
}
|
570 |
+
}
|
571 |
+
break;
|
572 |
+
case ArgumentTypeID::kInteger:
|
573 |
+
{
|
574 |
+
auto *integer = static_cast<IntegerArgument *>(arg);
|
575 |
+
|
576 |
+
for (auto const &alias : arg->description->aliases) {
|
577 |
+
if (cmdline.check_cmd_line_flag(alias.c_str())) {
|
578 |
+
|
579 |
+
std::vector<std::vector<std::string> > tokens;
|
580 |
+
cmdline.get_cmd_line_argument_ranges(alias.c_str(), tokens);
|
581 |
+
|
582 |
+
for (auto &range_tokens : tokens) {
|
583 |
+
|
584 |
+
if (!range_tokens.empty()) {
|
585 |
+
|
586 |
+
Range range;
|
587 |
+
|
588 |
+
if (range_tokens.front() == "rand") {
|
589 |
+
range.mode = Range::Mode::kRandom;
|
590 |
+
}
|
591 |
+
else if (range_tokens.front() == "randlg2") {
|
592 |
+
range.mode = Range::Mode::kRandomLog2;
|
593 |
+
}
|
594 |
+
|
595 |
+
switch (range.mode) {
|
596 |
+
case Range::Mode::kSequence:
|
597 |
+
{
|
598 |
+
range.first = lexical_cast<int64_t>(range_tokens.front());
|
599 |
+
|
600 |
+
if (range_tokens.size() > 1) {
|
601 |
+
range.last = lexical_cast<int64_t>(range_tokens.at(1));
|
602 |
+
}
|
603 |
+
else {
|
604 |
+
range.last = range.first;
|
605 |
+
}
|
606 |
+
|
607 |
+
if (range_tokens.size() > 2) {
|
608 |
+
range.increment = lexical_cast<int64_t>(range_tokens.at(2));
|
609 |
+
}
|
610 |
+
else {
|
611 |
+
range.increment = 1;
|
612 |
+
}
|
613 |
+
}
|
614 |
+
break;
|
615 |
+
case Range::Mode::kRandom: // fall-through
|
616 |
+
case Range::Mode::kRandomLog2:
|
617 |
+
{
|
618 |
+
if (range_tokens.size() < 4) {
|
619 |
+
throw std::runtime_error(
|
620 |
+
"Range of mode 'rand' must have four tokens showing "
|
621 |
+
"the minimum, maximum, and number of iterations. For example, "
|
622 |
+
"rand:16:128:1000");
|
623 |
+
}
|
624 |
+
|
625 |
+
range.minimum = lexical_cast<int64_t>(range_tokens.at(1));
|
626 |
+
range.maximum = lexical_cast<int64_t>(range_tokens.at(2));
|
627 |
+
range.first = 1;
|
628 |
+
range.last = lexical_cast<int64_t>(range_tokens.at(3));
|
629 |
+
range.increment = 1;
|
630 |
+
|
631 |
+
if (range_tokens.size() > 4) {
|
632 |
+
range.divisible = lexical_cast<int64_t>(range_tokens.at(4));
|
633 |
+
}
|
634 |
+
}
|
635 |
+
break;
|
636 |
+
default:
|
637 |
+
throw std::runtime_error("Unsupported range mode.");
|
638 |
+
break;
|
639 |
+
}
|
640 |
+
|
641 |
+
integer->ranges.push_back(range);
|
642 |
+
}
|
643 |
+
}
|
644 |
+
break;
|
645 |
+
}
|
646 |
+
}
|
647 |
+
}
|
648 |
+
break;
|
649 |
+
case ArgumentTypeID::kTensor:
|
650 |
+
{
|
651 |
+
auto *tensor = static_cast<TensorArgument *>(arg);
|
652 |
+
|
653 |
+
for (auto const &alias : arg->description->aliases) {
|
654 |
+
if (cmdline.check_cmd_line_flag(alias.c_str())) {
|
655 |
+
|
656 |
+
std::vector<std::vector<std::string>> tokens;
|
657 |
+
|
658 |
+
cmdline.get_cmd_line_argument_ranges(alias.c_str(), tokens);
|
659 |
+
|
660 |
+
for (auto const & tensor_tokens : tokens) {
|
661 |
+
if (!tensor_tokens.empty()) {
|
662 |
+
TensorArgument::TensorDescription tensor_desc;
|
663 |
+
|
664 |
+
tensor_desc.element = cutlass::library::from_string<library::NumericTypeID>(tensor_tokens.front());
|
665 |
+
|
666 |
+
// Layout
|
667 |
+
if (tensor_tokens.size() > 1) {
|
668 |
+
tensor_desc.layout = cutlass::library::from_string<library::LayoutTypeID>(tensor_tokens.at(1));
|
669 |
+
}
|
670 |
+
|
671 |
+
// Stride
|
672 |
+
for (size_t i = 2; i < tensor_tokens.size(); ++i) {
|
673 |
+
tensor_desc.stride.push_back(lexical_cast<int>(tensor_tokens.at(i)));
|
674 |
+
}
|
675 |
+
|
676 |
+
tensor->values.push_back(tensor_desc);
|
677 |
+
}
|
678 |
+
}
|
679 |
+
break;
|
680 |
+
}
|
681 |
+
}
|
682 |
+
}
|
683 |
+
break;
|
684 |
+
case ArgumentTypeID::kStructure:
|
685 |
+
{
|
686 |
+
throw std::runtime_error("Structure arguments not supported");
|
687 |
+
}
|
688 |
+
break;
|
689 |
+
case ArgumentTypeID::kEnumerated:
|
690 |
+
{
|
691 |
+
auto *enumerated_type = static_cast<EnumeratedTypeArgument *>(arg);
|
692 |
+
|
693 |
+
for (auto const &alias : arg->description->aliases) {
|
694 |
+
if (cmdline.check_cmd_line_flag(alias.c_str())) {
|
695 |
+
|
696 |
+
std::vector<std::string> tokens;
|
697 |
+
cmdline.get_cmd_line_arguments(alias.c_str(), tokens);
|
698 |
+
|
699 |
+
for (auto const & token : tokens) {
|
700 |
+
enumerated_type->values.push_back(token);
|
701 |
+
}
|
702 |
+
|
703 |
+
break;
|
704 |
+
}
|
705 |
+
}
|
706 |
+
}
|
707 |
+
break;
|
708 |
+
default:
|
709 |
+
break;
|
710 |
+
}
|
711 |
+
}
|
712 |
+
|
713 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
714 |
+
|
715 |
+
ProblemSpace::Iterator ProblemSpace::begin() const {
|
716 |
+
return ProblemSpace::Iterator(*this);
|
717 |
+
}
|
718 |
+
|
719 |
+
ProblemSpace::Iterator ProblemSpace::end() const {
|
720 |
+
ProblemSpace::Iterator it(*this);
|
721 |
+
it.move_to_end();
|
722 |
+
return it;
|
723 |
+
}
|
724 |
+
|
725 |
+
/// Gets all argument names as an ordered vector
|
726 |
+
std::vector<std::string> ProblemSpace::argument_names() const {
|
727 |
+
|
728 |
+
Problem problem = this->begin().at();
|
729 |
+
|
730 |
+
std::vector<std::string> names;
|
731 |
+
names.reserve(problem.size());
|
732 |
+
|
733 |
+
for (auto const & arg : problem) {
|
734 |
+
names.push_back(arg->argument->description->aliases.front());
|
735 |
+
}
|
736 |
+
|
737 |
+
return names;
|
738 |
+
}
|
739 |
+
|
740 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
741 |
+
|
742 |
+
/// Lexically casts an argument to an int64 if it is defined. Returns true if not null.
|
743 |
+
bool arg_as_int(int64_t &int_value, KernelArgument::Value const *value_ptr) {
|
744 |
+
if (value_ptr->not_null) {
|
745 |
+
if (value_ptr->argument->description->type == ArgumentTypeID::kInteger) {
|
746 |
+
int_value = static_cast<IntegerArgument::IntegerValue const *>(value_ptr)->value;
|
747 |
+
}
|
748 |
+
else if (value_ptr->argument->description->type == ArgumentTypeID::kScalar) {
|
749 |
+
std::stringstream ss;
|
750 |
+
ss << static_cast<ScalarArgument::ScalarValue const *>(value_ptr)->value;
|
751 |
+
ss >> int_value;
|
752 |
+
}
|
753 |
+
else {
|
754 |
+
throw std::runtime_error(
|
755 |
+
"arg_as_int64_t() - illegal cast. Problem space argument must be integer or scalar");
|
756 |
+
}
|
757 |
+
|
758 |
+
return true;
|
759 |
+
}
|
760 |
+
|
761 |
+
return false;
|
762 |
+
}
|
763 |
+
|
764 |
+
/// Lexically casts an argument to an int64 if it is defined. Returns true if not null.
|
765 |
+
bool arg_as_int(int &int_value, KernelArgument::Value const *value_ptr) {
|
766 |
+
int64_t value64;
|
767 |
+
bool obtained = arg_as_int(value64, value_ptr);
|
768 |
+
if (obtained) {
|
769 |
+
int_value = int(value64);
|
770 |
+
return true;
|
771 |
+
}
|
772 |
+
return false;
|
773 |
+
}
|
774 |
+
|
775 |
+
/// Lexically casts an argument to an int
|
776 |
+
bool arg_as_int(
|
777 |
+
int &int_value,
|
778 |
+
char const *name,
|
779 |
+
ProblemSpace const &problem_space,
|
780 |
+
ProblemSpace::Problem const &problem) {
|
781 |
+
|
782 |
+
size_t idx = problem_space.argument_index(name);
|
783 |
+
KernelArgument::Value const *value_ptr = problem.at(idx).get();
|
784 |
+
|
785 |
+
return arg_as_int(int_value, value_ptr);
|
786 |
+
}
|
787 |
+
|
788 |
+
/// Lexically casts an argument to an int64
|
789 |
+
bool arg_as_int(
|
790 |
+
int64_t &int_value,
|
791 |
+
char const *name,
|
792 |
+
ProblemSpace const &problem_space,
|
793 |
+
ProblemSpace::Problem const &problem) {
|
794 |
+
|
795 |
+
size_t idx = problem_space.argument_index(name);
|
796 |
+
KernelArgument::Value const *value_ptr = problem.at(idx).get();
|
797 |
+
|
798 |
+
return arg_as_int(int_value, value_ptr);
|
799 |
+
}
|
800 |
+
|
801 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
802 |
+
|
803 |
+
/// Lexically casts an argument to an int64 if it is defined. Returns true if not null.
|
804 |
+
bool arg_as_NumericTypeID(
|
805 |
+
library::NumericTypeID &numeric_type,
|
806 |
+
KernelArgument::Value const *value_ptr) {
|
807 |
+
|
808 |
+
if (value_ptr->not_null) {
|
809 |
+
if (value_ptr->argument->description->type == ArgumentTypeID::kEnumerated) {
|
810 |
+
|
811 |
+
numeric_type = library::from_string<library::NumericTypeID>(
|
812 |
+
static_cast<EnumeratedTypeArgument::EnumeratedTypeValue const *>(value_ptr)->element);
|
813 |
+
|
814 |
+
if (numeric_type == library::NumericTypeID::kInvalid) {
|
815 |
+
throw std::runtime_error(
|
816 |
+
"arg_as_NumericTypeID() - illegal cast.");
|
817 |
+
}
|
818 |
+
}
|
819 |
+
else {
|
820 |
+
|
821 |
+
throw std::runtime_error(
|
822 |
+
"arg_as_NumericTypeID() - illegal cast.");
|
823 |
+
}
|
824 |
+
return true;
|
825 |
+
}
|
826 |
+
return false;
|
827 |
+
}
|
828 |
+
|
829 |
+
/// Lexically casts an argument to an int64 if it is defined. Returns true if not null.
|
830 |
+
bool arg_as_NumericTypeID(
|
831 |
+
library::NumericTypeID &numeric_type,
|
832 |
+
char const *name,
|
833 |
+
ProblemSpace const &problem_space,
|
834 |
+
ProblemSpace::Problem const &problem) {
|
835 |
+
|
836 |
+
size_t idx = problem_space.argument_index(name);
|
837 |
+
KernelArgument::Value const *value_ptr = problem.at(idx).get();
|
838 |
+
|
839 |
+
return arg_as_NumericTypeID(numeric_type, value_ptr);
|
840 |
+
}
|
841 |
+
|
842 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
843 |
+
|
844 |
+
/// Lexically casts an argument to an int64 if it is defined. Returns true if not null.
|
845 |
+
bool arg_as_RasterOrder(
|
846 |
+
library::RasterOrder &raster_order,
|
847 |
+
KernelArgument::Value const *value_ptr) {
|
848 |
+
|
849 |
+
if (value_ptr->not_null) {
|
850 |
+
if (value_ptr->argument->description->type == ArgumentTypeID::kEnumerated) {
|
851 |
+
|
852 |
+
raster_order = library::from_string<library::RasterOrder>(
|
853 |
+
static_cast<EnumeratedTypeArgument::EnumeratedTypeValue const *>(value_ptr)->element);
|
854 |
+
|
855 |
+
if (raster_order == library::RasterOrder::kInvalid) {
|
856 |
+
throw std::runtime_error(
|
857 |
+
"arg_as_RasterOrder() - illegal cast.");
|
858 |
+
}
|
859 |
+
}
|
860 |
+
else {
|
861 |
+
throw std::runtime_error(
|
862 |
+
"arg_as_RasterOrder() - illegal cast.");
|
863 |
+
}
|
864 |
+
return true;
|
865 |
+
}
|
866 |
+
return false;
|
867 |
+
}
|
868 |
+
|
869 |
+
/// Lexically casts an argument to an int64 if it is defined. Returns true if not null.
|
870 |
+
bool arg_as_RasterOrder(
|
871 |
+
library::RasterOrder &raster_order,
|
872 |
+
char const *name,
|
873 |
+
ProblemSpace const &problem_space,
|
874 |
+
ProblemSpace::Problem const &problem) {
|
875 |
+
|
876 |
+
size_t idx = problem_space.argument_index(name);
|
877 |
+
KernelArgument::Value const *value_ptr = problem.at(idx).get();
|
878 |
+
|
879 |
+
return arg_as_RasterOrder(raster_order, value_ptr);
|
880 |
+
}
|
881 |
+
|
882 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
883 |
+
|
884 |
+
/// Lexically casts an argument to an int64 if it is defined. Returns true if not null.
|
885 |
+
bool arg_as_LayoutTypeID(
|
886 |
+
library::LayoutTypeID &layout_type,
|
887 |
+
KernelArgument::Value const *value_ptr) {
|
888 |
+
|
889 |
+
if (value_ptr->not_null) {
|
890 |
+
if (value_ptr->argument->description->type == ArgumentTypeID::kEnumerated) {
|
891 |
+
|
892 |
+
layout_type = library::from_string<library::LayoutTypeID>(
|
893 |
+
static_cast<EnumeratedTypeArgument::EnumeratedTypeValue const *>(value_ptr)->element);
|
894 |
+
|
895 |
+
if (layout_type == library::LayoutTypeID::kInvalid) {
|
896 |
+
throw std::runtime_error(
|
897 |
+
"arg_as_LayoutTypeID() - illegal cast.");
|
898 |
+
}
|
899 |
+
}
|
900 |
+
else {
|
901 |
+
|
902 |
+
throw std::runtime_error(
|
903 |
+
"arg_as_LayoutTypeID() - illegal cast.");
|
904 |
+
}
|
905 |
+
return true;
|
906 |
+
}
|
907 |
+
return false;
|
908 |
+
}
|
909 |
+
|
910 |
+
/// Lexically casts an argument to an int64 if it is defined. Returns true if not null.
|
911 |
+
bool arg_as_LayoutTypeID(
|
912 |
+
library::LayoutTypeID &layout_type,
|
913 |
+
char const *name,
|
914 |
+
ProblemSpace const &problem_space,
|
915 |
+
ProblemSpace::Problem const &problem) {
|
916 |
+
|
917 |
+
size_t idx = problem_space.argument_index(name);
|
918 |
+
KernelArgument::Value const *value_ptr = problem.at(idx).get();
|
919 |
+
|
920 |
+
return arg_as_LayoutTypeID(layout_type, value_ptr);
|
921 |
+
}
|
922 |
+
|
923 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
924 |
+
|
925 |
+
/// Lexically casts an argument to an int64 if it is defined. Returns true if not null.
|
926 |
+
bool arg_as_OpcodeClassID(
|
927 |
+
library::OpcodeClassID &opcode_class,
|
928 |
+
KernelArgument::Value const *value_ptr) {
|
929 |
+
|
930 |
+
if (value_ptr->not_null) {
|
931 |
+
if (value_ptr->argument->description->type == ArgumentTypeID::kEnumerated) {
|
932 |
+
|
933 |
+
opcode_class = library::from_string<library::OpcodeClassID>(
|
934 |
+
static_cast<EnumeratedTypeArgument::EnumeratedTypeValue const *>(value_ptr)->element);
|
935 |
+
|
936 |
+
if (opcode_class == library::OpcodeClassID::kInvalid) {
|
937 |
+
throw std::runtime_error(
|
938 |
+
"arg_as_OpcodeClassID() - illegal cast.");
|
939 |
+
}
|
940 |
+
}
|
941 |
+
else {
|
942 |
+
|
943 |
+
throw std::runtime_error(
|
944 |
+
"arg_as_OpcodeClassID() - illegal cast.");
|
945 |
+
}
|
946 |
+
return true;
|
947 |
+
}
|
948 |
+
return false;
|
949 |
+
}
|
950 |
+
|
951 |
+
/// Lexically casts an argument to an int64 if it is defined. Returns true if not null.
|
952 |
+
bool arg_as_OpcodeClassID(
|
953 |
+
library::OpcodeClassID &opcode_class,
|
954 |
+
char const *name,
|
955 |
+
ProblemSpace const &problem_space,
|
956 |
+
ProblemSpace::Problem const &problem) {
|
957 |
+
|
958 |
+
size_t idx = problem_space.argument_index(name);
|
959 |
+
KernelArgument::Value const *value_ptr = problem.at(idx).get();
|
960 |
+
|
961 |
+
return arg_as_OpcodeClassID(opcode_class, value_ptr);
|
962 |
+
}
|
963 |
+
|
964 |
+
|
965 |
+
/// Lexically casts an argument to an int64 if it is defined. Returns true if not null.
|
966 |
+
bool arg_as_SplitKModeID(
|
967 |
+
library::SplitKMode &split_k_mode,
|
968 |
+
KernelArgument::Value const *value_ptr) {
|
969 |
+
|
970 |
+
if (value_ptr->not_null) {
|
971 |
+
if (value_ptr->argument->description->type == ArgumentTypeID::kEnumerated) {
|
972 |
+
|
973 |
+
split_k_mode = library::from_string<library::SplitKMode>(
|
974 |
+
static_cast<EnumeratedTypeArgument::EnumeratedTypeValue const *>(value_ptr)->element);
|
975 |
+
|
976 |
+
if (split_k_mode == library::SplitKMode::kInvalid) {
|
977 |
+
throw std::runtime_error(
|
978 |
+
"arg_as_SplitKModeID() - illegal cast.");
|
979 |
+
}
|
980 |
+
}
|
981 |
+
else {
|
982 |
+
|
983 |
+
throw std::runtime_error(
|
984 |
+
"arg_as_SplitKModeID() - illegal cast.");
|
985 |
+
}
|
986 |
+
return true;
|
987 |
+
}
|
988 |
+
return false;
|
989 |
+
}
|
990 |
+
|
991 |
+
/// Lexically casts an argument to an int64 if it is defined. Returns true if not null.
|
992 |
+
bool arg_as_SplitKModeID(
|
993 |
+
library::SplitKMode &split_k_mode,
|
994 |
+
char const *name,
|
995 |
+
ProblemSpace const &problem_space,
|
996 |
+
ProblemSpace::Problem const &problem) {
|
997 |
+
|
998 |
+
size_t idx = problem_space.argument_index(name);
|
999 |
+
KernelArgument::Value const *value_ptr = problem.at(idx).get();
|
1000 |
+
|
1001 |
+
return arg_as_SplitKModeID(split_k_mode, value_ptr);
|
1002 |
+
}
|
1003 |
+
|
1004 |
+
|
1005 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
1006 |
+
/// Lexically casts an argument to an int64 if it is defined. Returns true if not null.
|
1007 |
+
bool arg_as_ConvModeID(
|
1008 |
+
library::ConvModeID &conv_mode,
|
1009 |
+
KernelArgument::Value const *value_ptr) {
|
1010 |
+
|
1011 |
+
if (value_ptr->not_null) {
|
1012 |
+
if (value_ptr->argument->description->type == ArgumentTypeID::kEnumerated) {
|
1013 |
+
|
1014 |
+
conv_mode = library::from_string<library::ConvModeID>(
|
1015 |
+
static_cast<EnumeratedTypeArgument::EnumeratedTypeValue const *>(value_ptr)->element);
|
1016 |
+
|
1017 |
+
if (conv_mode == library::ConvModeID::kInvalid) {
|
1018 |
+
throw std::runtime_error(
|
1019 |
+
"arg_as_ConvModeID() - illegal cast.");
|
1020 |
+
}
|
1021 |
+
}
|
1022 |
+
else {
|
1023 |
+
|
1024 |
+
throw std::runtime_error(
|
1025 |
+
"arg_as_ConvModeID() - illegal cast.");
|
1026 |
+
}
|
1027 |
+
return true;
|
1028 |
+
}
|
1029 |
+
return false;
|
1030 |
+
}
|
1031 |
+
|
1032 |
+
/// Lexically casts an argument to an int64 if it is defined. Returns true if not null.
|
1033 |
+
bool arg_as_ConvModeID(
|
1034 |
+
library::ConvModeID &conv_mode,
|
1035 |
+
char const *name,
|
1036 |
+
ProblemSpace const &problem_space,
|
1037 |
+
ProblemSpace::Problem const &problem) {
|
1038 |
+
|
1039 |
+
size_t idx = problem_space.argument_index(name);
|
1040 |
+
KernelArgument::Value const *value_ptr = problem.at(idx).get();
|
1041 |
+
|
1042 |
+
return arg_as_ConvModeID(conv_mode, value_ptr);
|
1043 |
+
}
|
1044 |
+
|
1045 |
+
/// Lexically casts an argument to an int64 if it is defined. Returns true if not null.
|
1046 |
+
bool arg_as_ProviderID(
|
1047 |
+
library::Provider &provider,
|
1048 |
+
KernelArgument::Value const *value_ptr) {
|
1049 |
+
|
1050 |
+
if (value_ptr->not_null) {
|
1051 |
+
if (value_ptr->argument->description->type == ArgumentTypeID::kEnumerated) {
|
1052 |
+
|
1053 |
+
provider = library::from_string<library::Provider>(
|
1054 |
+
static_cast<EnumeratedTypeArgument::EnumeratedTypeValue const *>(value_ptr)->element);
|
1055 |
+
|
1056 |
+
if (provider == library::Provider::kInvalid) {
|
1057 |
+
throw std::runtime_error(
|
1058 |
+
"arg_as_ProviderID() - illegal cast.");
|
1059 |
+
}
|
1060 |
+
}
|
1061 |
+
else {
|
1062 |
+
|
1063 |
+
throw std::runtime_error(
|
1064 |
+
"arg_as_ProviderID() - illegal cast.");
|
1065 |
+
}
|
1066 |
+
return true;
|
1067 |
+
}
|
1068 |
+
return false;
|
1069 |
+
}
|
1070 |
+
|
1071 |
+
/// Lexically casts an argument to an int64 if it is defined. Returns true if not null.
|
1072 |
+
bool arg_as_ProviderID(
|
1073 |
+
library::Provider &provider,
|
1074 |
+
char const *name,
|
1075 |
+
ProblemSpace const &problem_space,
|
1076 |
+
ProblemSpace::Problem const &problem) {
|
1077 |
+
|
1078 |
+
size_t idx = problem_space.argument_index(name);
|
1079 |
+
KernelArgument::Value const *value_ptr = problem.at(idx).get();
|
1080 |
+
|
1081 |
+
return arg_as_ProviderID(provider, value_ptr);
|
1082 |
+
}
|
1083 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
1084 |
+
|
1085 |
+
/// Lexically casts an argument to a given type stored in a byte array. Returns true if not null.
|
1086 |
+
bool arg_as_scalar(
|
1087 |
+
std::vector<uint8_t> &bytes,
|
1088 |
+
library::NumericTypeID numeric_type,
|
1089 |
+
KernelArgument::Value const *value_ptr) {
|
1090 |
+
|
1091 |
+
if (value_ptr->not_null) {
|
1092 |
+
if (value_ptr->argument->description->type == ArgumentTypeID::kInteger) {
|
1093 |
+
int64_t int_value = static_cast<IntegerArgument::IntegerValue const *>(value_ptr)->value;
|
1094 |
+
|
1095 |
+
// TODO - convert int64_t => destination type
|
1096 |
+
}
|
1097 |
+
else if (value_ptr->argument->description->type == ArgumentTypeID::kScalar) {
|
1098 |
+
std::string const &str_value = static_cast<ScalarArgument::ScalarValue const *>(value_ptr)->value;
|
1099 |
+
|
1100 |
+
return lexical_cast(bytes, numeric_type, str_value);
|
1101 |
+
}
|
1102 |
+
else {
|
1103 |
+
throw std::runtime_error(
|
1104 |
+
"arg_as_int() - illegal cast. Problem space argument must be integer or scalar");
|
1105 |
+
}
|
1106 |
+
|
1107 |
+
return true;
|
1108 |
+
}
|
1109 |
+
|
1110 |
+
return false;
|
1111 |
+
}
|
1112 |
+
|
1113 |
+
/// Lexically casts an argument to a given type and returns a byte array
|
1114 |
+
bool arg_as_scalar(
|
1115 |
+
std::vector<uint8_t> &bytes,
|
1116 |
+
library::NumericTypeID numeric_type,
|
1117 |
+
char const *name,
|
1118 |
+
ProblemSpace const &problem_space,
|
1119 |
+
ProblemSpace::Problem const &problem) {
|
1120 |
+
|
1121 |
+
size_t idx = problem_space.argument_index(name);
|
1122 |
+
KernelArgument::Value const *value_ptr = problem.at(idx).get();
|
1123 |
+
|
1124 |
+
return arg_as_scalar(bytes, numeric_type, value_ptr);
|
1125 |
+
}
|
1126 |
+
|
1127 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
1128 |
+
|
1129 |
+
/// Returns true if a tensor description satisfies a `tensor` value
|
1130 |
+
bool tensor_description_satisfies(
|
1131 |
+
library::TensorDescription const &tensor_desc,
|
1132 |
+
TensorArgument::TensorValue const *value_ptr) {
|
1133 |
+
|
1134 |
+
if (value_ptr->not_null) {
|
1135 |
+
if (value_ptr->desc.element != library::NumericTypeID::kUnknown &&
|
1136 |
+
value_ptr->desc.element != tensor_desc.element) {
|
1137 |
+
|
1138 |
+
return false;
|
1139 |
+
}
|
1140 |
+
|
1141 |
+
if (value_ptr->desc.layout != library::LayoutTypeID::kUnknown &&
|
1142 |
+
value_ptr->desc.layout != tensor_desc.layout) {
|
1143 |
+
|
1144 |
+
return false;
|
1145 |
+
}
|
1146 |
+
}
|
1147 |
+
|
1148 |
+
return true;
|
1149 |
+
}
|
1150 |
+
|
1151 |
+
/// Returns true if a tensor description satisfies a `tensor` value
|
1152 |
+
bool tensor_description_satisfies(
|
1153 |
+
library::TensorDescription const &tensor_desc,
|
1154 |
+
char const *name,
|
1155 |
+
ProblemSpace const &problem_space,
|
1156 |
+
ProblemSpace::Problem const &problem) {
|
1157 |
+
|
1158 |
+
size_t idx = problem_space.argument_index(name);
|
1159 |
+
KernelArgument::Value const *value_ptr = problem.at(idx).get();
|
1160 |
+
|
1161 |
+
if (value_ptr->argument->description->type == ArgumentTypeID::kTensor) {
|
1162 |
+
return tensor_description_satisfies(
|
1163 |
+
tensor_desc,
|
1164 |
+
static_cast<TensorArgument::TensorValue const *>(value_ptr));
|
1165 |
+
}
|
1166 |
+
else {
|
1167 |
+
throw std::runtime_error("Kernel argument mismatch");
|
1168 |
+
}
|
1169 |
+
|
1170 |
+
return false;
|
1171 |
+
}
|
1172 |
+
|
1173 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
1174 |
+
|
1175 |
+
/// Returns true if conv_kind satisfies the value
|
1176 |
+
bool conv_kind_satisfies(
|
1177 |
+
library::ConvKind const &conv_kind,
|
1178 |
+
EnumeratedTypeArgument::EnumeratedTypeValue const *value_ptr) {
|
1179 |
+
|
1180 |
+
if (value_ptr->not_null) {
|
1181 |
+
library::ConvKind conv_kind_cmd_line =
|
1182 |
+
library::from_string<library::ConvKind>(value_ptr->element);
|
1183 |
+
|
1184 |
+
if (conv_kind_cmd_line != library::ConvKind::kUnknown &&
|
1185 |
+
conv_kind_cmd_line != conv_kind) {
|
1186 |
+
|
1187 |
+
return false;
|
1188 |
+
}
|
1189 |
+
}
|
1190 |
+
|
1191 |
+
return true;
|
1192 |
+
}
|
1193 |
+
|
1194 |
+
/// Returns true if conv_kind satisfies the value
|
1195 |
+
bool conv_kind_satisfies(
|
1196 |
+
library::ConvKind const &conv_kind,
|
1197 |
+
char const *name,
|
1198 |
+
ProblemSpace const &problem_space,
|
1199 |
+
ProblemSpace::Problem const &problem) {
|
1200 |
+
|
1201 |
+
size_t idx = problem_space.argument_index(name);
|
1202 |
+
KernelArgument::Value const *value_ptr = problem.at(idx).get();
|
1203 |
+
|
1204 |
+
if (value_ptr->argument->description->type == ArgumentTypeID::kEnumerated) {
|
1205 |
+
return conv_kind_satisfies(
|
1206 |
+
conv_kind,
|
1207 |
+
static_cast<EnumeratedTypeArgument::EnumeratedTypeValue const *>(value_ptr));
|
1208 |
+
}
|
1209 |
+
else {
|
1210 |
+
throw std::runtime_error("Kernel argument mismatch");
|
1211 |
+
}
|
1212 |
+
|
1213 |
+
return false;
|
1214 |
+
}
|
1215 |
+
|
1216 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
1217 |
+
|
1218 |
+
/// Returns true if a iterator algorithm satisfies the value
|
1219 |
+
bool iterator_algorithm_satisfies(
|
1220 |
+
library::IteratorAlgorithmID const &iterator_algorithm,
|
1221 |
+
EnumeratedTypeArgument::EnumeratedTypeValue const *value_ptr) {
|
1222 |
+
|
1223 |
+
if (value_ptr->not_null) {
|
1224 |
+
library::IteratorAlgorithmID iterator_algorithm_cmd_line =
|
1225 |
+
library::from_string<library::IteratorAlgorithmID>(value_ptr->element);
|
1226 |
+
|
1227 |
+
if (iterator_algorithm_cmd_line != library::IteratorAlgorithmID::kNone &&
|
1228 |
+
iterator_algorithm_cmd_line != iterator_algorithm) {
|
1229 |
+
|
1230 |
+
return false;
|
1231 |
+
}
|
1232 |
+
}
|
1233 |
+
|
1234 |
+
return true;
|
1235 |
+
}
|
1236 |
+
|
1237 |
+
/// Returns true if a iterator algorithm satisfies the value
|
1238 |
+
bool iterator_algorithm_satisfies(
|
1239 |
+
library::IteratorAlgorithmID const &iterator_algorithm,
|
1240 |
+
char const *name,
|
1241 |
+
ProblemSpace const &problem_space,
|
1242 |
+
ProblemSpace::Problem const &problem) {
|
1243 |
+
|
1244 |
+
size_t idx = problem_space.argument_index(name);
|
1245 |
+
KernelArgument::Value const *value_ptr = problem.at(idx).get();
|
1246 |
+
|
1247 |
+
if (value_ptr->argument->description->type == ArgumentTypeID::kEnumerated) {
|
1248 |
+
return iterator_algorithm_satisfies(
|
1249 |
+
iterator_algorithm,
|
1250 |
+
static_cast<EnumeratedTypeArgument::EnumeratedTypeValue const *>(value_ptr));
|
1251 |
+
}
|
1252 |
+
else {
|
1253 |
+
throw std::runtime_error("Kernel argument mismatch");
|
1254 |
+
}
|
1255 |
+
|
1256 |
+
return false;
|
1257 |
+
}
|
1258 |
+
|
1259 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
1260 |
+
} // namespace profiler
|
1261 |
+
} // namespace cutlass
|
1262 |
+
|
1263 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/rank_2k_operation_profiler.cu
ADDED
@@ -0,0 +1,752 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief Execution environment
|
33 |
+
|
34 |
+
|
35 |
+
*/
|
36 |
+
|
37 |
+
#include <iostream>
|
38 |
+
#include <stdexcept>
|
39 |
+
#include <iomanip>
|
40 |
+
#include <ios>
|
41 |
+
|
42 |
+
#include "cutlass/core_io.h"
|
43 |
+
|
44 |
+
#include "cutlass/profiler/cublas_helpers.h"
|
45 |
+
#include "cutlass/profiler/rank_2k_operation_profiler.h"
|
46 |
+
#include "cutlass/profiler/gpu_timer.h"
|
47 |
+
|
48 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
49 |
+
|
50 |
+
namespace cutlass {
|
51 |
+
namespace profiler {
|
52 |
+
|
53 |
+
|
54 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
55 |
+
|
56 |
+
/// Ctor
|
57 |
+
Rank2KOperationProfiler::Rank2KOperationProfiler(Options const &options):
|
58 |
+
OperationProfiler(
|
59 |
+
options,
|
60 |
+
library::OperationKind::kRank2K,
|
61 |
+
{
|
62 |
+
{ArgumentTypeID::kEnumerated, {"rank_k_kind"}, "Variant of RankK (universal)"},
|
63 |
+
{ArgumentTypeID::kInteger, {"n", "problem-size::n"}, "N dimension of the RankK problem space"},
|
64 |
+
{ArgumentTypeID::kInteger, {"k", "problem-size::k"}, "K dimension of the RankK problem space"},
|
65 |
+
{ArgumentTypeID::kTensor, {"A"}, "Tensor storing the A operand"},
|
66 |
+
{ArgumentTypeID::kTensor, {"B"}, "Tensor storing the B operand"},
|
67 |
+
{ArgumentTypeID::kTensor, {"C"}, "Tensor storing the C operand"},
|
68 |
+
{ArgumentTypeID::kEnumerated, {"fill_mode"}, "Fill Mode for RankK kernel (lower or upper)"},
|
69 |
+
{ArgumentTypeID::kEnumerated, {"blas_mode"}, "Blas Mode for RankK kernel (symmetric or hermitian)"},
|
70 |
+
{ArgumentTypeID::kScalar, {"alpha", "epilogue::alpha"}, "Epilogue scalar alpha"},
|
71 |
+
{ArgumentTypeID::kScalar, {"beta", "epilogue::beta"}, "Epilogue scalar beta"},
|
72 |
+
{ArgumentTypeID::kInteger, {"split_k_slices", "split-k-slices"}, "Number of partitions of K dimension"},
|
73 |
+
{ArgumentTypeID::kInteger, {"batch_count", "batch-count"}, "Number of RankK computed in one batch"},
|
74 |
+
},
|
75 |
+
{ library::Provider::kCUBLAS}
|
76 |
+
) {
|
77 |
+
description_ = " Rank 2k Update. D = alpha * (A*B^T + B*A^T) + beta * C (symmetric) or D = alpha * (A*B^H+B*A^H) + beta * C (hermitian)";
|
78 |
+
}
|
79 |
+
|
80 |
+
/// Destructor
|
81 |
+
Rank2KOperationProfiler::~Rank2KOperationProfiler() {
|
82 |
+
|
83 |
+
}
|
84 |
+
|
85 |
+
/// Prints usage statement for the math function
|
86 |
+
void Rank2KOperationProfiler::print_usage(std::ostream &out) const {
|
87 |
+
out << "RankK" << "\n\n";
|
88 |
+
|
89 |
+
OperationProfiler::print_usage(out);
|
90 |
+
}
|
91 |
+
|
92 |
+
/// Prints examples
|
93 |
+
void Rank2KOperationProfiler::print_examples(std::ostream &out) const {
|
94 |
+
|
95 |
+
out << "\nExamples:\n\n"
|
96 |
+
<< "Profile a particular problem size Syrk kernel:\n"
|
97 |
+
<< " $ cutlass_profiler --operation=rank_2k --blas_mode=symmetric --n=1024 --k=128\n\n"
|
98 |
+
|
99 |
+
<< "Profile a particular problem size Herk kernel:\n"
|
100 |
+
<< " $ cutlass_profiler --operation=rank_2k --blas_mode=hermitian --n=1024 --k=128\n\n"
|
101 |
+
|
102 |
+
<< "Schmoo over problem size and beta:\n"
|
103 |
+
<< " $ cutlass_profiler --operation=rank_2k --n=1024:4096:256 --k=128:8192:128 --beta=0,1,2.5\n\n"
|
104 |
+
|
105 |
+
<< "Schmoo over accumulator types:\n"
|
106 |
+
<< " $ cutlass_profiler --operation=rank_2k --accumulator-type=f16,f32\n\n"
|
107 |
+
|
108 |
+
<< "Schmoo over fill modees:\n"
|
109 |
+
<< " $ cutlass_profiler --operation=rank_2k --fill_mode=lower/upper\n\n"
|
110 |
+
|
111 |
+
<< "Run when A is f16 with column-major or A is any datatype with row-major (For column major, use column, col, or n. For row major use, row or t):\n"
|
112 |
+
<< " $ cutlass_profiler --operation=rank_2k --A=f16:column or --A=*:row\n\n"
|
113 |
+
|
114 |
+
<< "Using various input value distribution:\n"
|
115 |
+
<< " $ cutlass_profiler --operation=rank_2k --dist=uniform,min:0,max:3\n"
|
116 |
+
<< " $ cutlass_profiler --operation=rank_2k --dist=gaussian,mean:0,stddev:3\n"
|
117 |
+
<< " $ cutlass_profiler --operation=rank_2k --dist=sequential,start:0,delta:1\n\n"
|
118 |
+
|
119 |
+
<< "Run a kernel with cta tile size of 256x128x32 and save workspace if results are incorrect (note that --cta-tile::k=32 is default cta-tile size):\n"
|
120 |
+
<< " $ cutlass_profiler --operation=rank_2k --cta_m=256 --cta_n=128 --cta_k=32 --save-workspace=incorrect\n\n"
|
121 |
+
|
122 |
+
<< "Test your changes to rank_2k kernels with a quick functional test and save results in functional-test.csv:\n"
|
123 |
+
<< " $ cutlass_profiler --operation=rank_2k \\ \n"
|
124 |
+
<< " --n=8,56,120,136,256,264,512,520,1024,1032,4096,8192,16384 \\ \n"
|
125 |
+
<< " --k=8,16,32,64,128,256,288,384,504,512,520 \\ \n"
|
126 |
+
<< " --beta=0,1,2 --profiling-iterations=1 \\ \n"
|
127 |
+
<< " --providers=cutlass --output=functional-test.csv\n\n";
|
128 |
+
}
|
129 |
+
|
130 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
131 |
+
|
132 |
+
#if 0
|
133 |
+
// used this for debugging
|
134 |
+
static std::string byte_string(std::vector<uint8_t> const &bytes) {
|
135 |
+
std::stringstream ss;
|
136 |
+
|
137 |
+
ss << "0x";
|
138 |
+
|
139 |
+
for (size_t idx = bytes.size(); idx > 0; --idx) {
|
140 |
+
ss << std::hex << std::setw(2) << std::setfill('0') << uint32_t(bytes.at(idx - 1));
|
141 |
+
}
|
142 |
+
|
143 |
+
return ss.str();
|
144 |
+
}
|
145 |
+
#endif
|
146 |
+
|
147 |
+
Status Rank2KOperationProfiler::RankKProblem::parse(
|
148 |
+
library::RankKDescription const &operation_desc,
|
149 |
+
ProblemSpace const &problem_space,
|
150 |
+
ProblemSpace::Problem const &problem) {
|
151 |
+
|
152 |
+
if (!arg_as_int(this->n, "n", problem_space, problem)) {
|
153 |
+
// default value
|
154 |
+
this->n = 1024;
|
155 |
+
}
|
156 |
+
|
157 |
+
if (!arg_as_int(this->k, "k", problem_space, problem)) {
|
158 |
+
// default value
|
159 |
+
this->k = 1024;
|
160 |
+
}
|
161 |
+
|
162 |
+
if (!arg_as_int(this->split_k_slices, "split_k_slices", problem_space, problem)) {
|
163 |
+
// default value
|
164 |
+
this->split_k_slices = 1;
|
165 |
+
}
|
166 |
+
|
167 |
+
if (!arg_as_int(this->batch_count, "batch_count", problem_space, problem)) {
|
168 |
+
// default value
|
169 |
+
this->batch_count = 1;
|
170 |
+
}
|
171 |
+
|
172 |
+
if (this->split_k_slices > 1 && this->batch_count > 1) {
|
173 |
+
// At least one of these must be one
|
174 |
+
return Status::kErrorInvalidProblem;
|
175 |
+
}
|
176 |
+
|
177 |
+
if (!tensor_description_satisfies(operation_desc.A, "A", problem_space, problem)) {
|
178 |
+
return Status::kErrorInvalidProblem;
|
179 |
+
}
|
180 |
+
|
181 |
+
if (!tensor_description_satisfies(operation_desc.B, "B", problem_space, problem)) {
|
182 |
+
return Status::kErrorInvalidProblem;
|
183 |
+
}
|
184 |
+
|
185 |
+
if (!tensor_description_satisfies(operation_desc.C, "C", problem_space, problem)) {
|
186 |
+
return Status::kErrorInvalidProblem;
|
187 |
+
}
|
188 |
+
|
189 |
+
if (!arg_as_scalar(
|
190 |
+
this->alpha,
|
191 |
+
operation_desc.element_epilogue,
|
192 |
+
"alpha",
|
193 |
+
problem_space,
|
194 |
+
problem)) {
|
195 |
+
|
196 |
+
if (!cast_from_double(this->alpha, operation_desc.element_epilogue, 1)) {
|
197 |
+
return Status::kErrorInternal;
|
198 |
+
}
|
199 |
+
}
|
200 |
+
|
201 |
+
if (!arg_as_scalar(
|
202 |
+
this->beta,
|
203 |
+
operation_desc.element_epilogue,
|
204 |
+
"beta",
|
205 |
+
problem_space,
|
206 |
+
problem)) {
|
207 |
+
|
208 |
+
if (!cast_from_double(this->beta, operation_desc.element_epilogue, 0)) {
|
209 |
+
return Status::kErrorInternal;
|
210 |
+
}
|
211 |
+
}
|
212 |
+
|
213 |
+
this->lda = DeviceAllocation::get_packed_layout(
|
214 |
+
operation_desc.A.layout, {int(this->n), int(this->k)}).front();
|
215 |
+
|
216 |
+
this->ldb = DeviceAllocation::get_packed_layout(
|
217 |
+
operation_desc.B.layout, {int(this->n), int(this->k)}).front();
|
218 |
+
|
219 |
+
this->ldc = DeviceAllocation::get_packed_layout(
|
220 |
+
operation_desc.C.layout, {int(this->n), int(this->n)}).front();
|
221 |
+
|
222 |
+
return Status::kSuccess;
|
223 |
+
}
|
224 |
+
|
225 |
+
/// Total number of bytes loaded
|
226 |
+
int64_t Rank2KOperationProfiler::RankKProblem::bytes(library::RankKDescription const &operation_desc) const {
|
227 |
+
// Input bytes read and Output bytes written for the gemm problem
|
228 |
+
int64_t bytes =
|
229 |
+
2 * int64_t(library::sizeof_bits(operation_desc.A.element) * n / 8) * k +
|
230 |
+
2 * int64_t(library::sizeof_bits(operation_desc.B.element) * n / 8) * k +
|
231 |
+
// Half matrix including the diagonal will have (N*(N+1))/2 elements
|
232 |
+
int64_t(library::sizeof_bits(operation_desc.C.element) * n / 8) * (n+1) / 2;
|
233 |
+
|
234 |
+
// Set is_beta_zero true if beta is zero
|
235 |
+
bool is_beta_zero = std::all_of(beta.begin(), beta.end(), [](uint8_t i) { return i==0; });
|
236 |
+
|
237 |
+
// Output bytes read for the gemm problem for non-zero beta values
|
238 |
+
if (!is_beta_zero) {
|
239 |
+
bytes += int64_t(library::sizeof_bits(operation_desc.C.element) * n / 8) * (n+1) / 2;
|
240 |
+
}
|
241 |
+
|
242 |
+
bytes *= batch_count;
|
243 |
+
|
244 |
+
return bytes;
|
245 |
+
}
|
246 |
+
|
247 |
+
/// Total number of flops computed
|
248 |
+
int64_t Rank2KOperationProfiler::RankKProblem::flops(library::RankKDescription const &operation_desc) const {
|
249 |
+
|
250 |
+
// FLOPs = 2 * n(n+1)k/2 [mma1] + 2 * n(n+1)k/2 [mma2] + 2 * n(n+1)/2 [epilogue]
|
251 |
+
// FLOPs = n(n+1)(2k + 1)
|
252 |
+
int64_t flops_ = n * (n + 1) * (2*k + 1);
|
253 |
+
|
254 |
+
// complex-valued support
|
255 |
+
switch (operation_desc.tile_description.math_instruction.math_operation) {
|
256 |
+
case library::MathOperationID::kMultiplyAddComplex:
|
257 |
+
flops_ *= 4;
|
258 |
+
break;
|
259 |
+
|
260 |
+
case library::MathOperationID::kMultiplyAddComplexFastF32:
|
261 |
+
flops_ *= 4;
|
262 |
+
break;
|
263 |
+
|
264 |
+
case library::MathOperationID::kMultiplyAddGaussianComplex:
|
265 |
+
flops_ *= 3;
|
266 |
+
break;
|
267 |
+
|
268 |
+
default: break;
|
269 |
+
}
|
270 |
+
|
271 |
+
return flops_;
|
272 |
+
}
|
273 |
+
|
274 |
+
/// Initializes a performance result
|
275 |
+
void Rank2KOperationProfiler::RankKProblem::initialize_result(
|
276 |
+
PerformanceResult &result,
|
277 |
+
library::RankKDescription const &operation_desc,
|
278 |
+
ProblemSpace const &problem_space) {
|
279 |
+
|
280 |
+
result.arguments.resize(problem_space.rank());
|
281 |
+
|
282 |
+
set_argument(result, "rank_k_kind", problem_space, library::to_string(operation_desc.rank_k_kind));
|
283 |
+
|
284 |
+
set_argument(result, "A", problem_space,
|
285 |
+
std::string(library::to_string(operation_desc.A.element)) + ":" + library::to_string(operation_desc.A.layout));
|
286 |
+
|
287 |
+
set_argument(result, "B", problem_space,
|
288 |
+
std::string(library::to_string(operation_desc.B.element)) + ":" + library::to_string(operation_desc.B.layout));
|
289 |
+
|
290 |
+
set_argument(result, "C", problem_space,
|
291 |
+
std::string(library::to_string(operation_desc.C.element)) + ":" + library::to_string(operation_desc.C.layout));
|
292 |
+
|
293 |
+
set_argument(result, "fill_mode", problem_space, library::to_string(operation_desc.fill_mode));
|
294 |
+
|
295 |
+
set_argument(result, "blas_mode", problem_space, library::to_string(operation_desc.blas_mode));
|
296 |
+
|
297 |
+
set_argument(result, "n", problem_space, n);
|
298 |
+
set_argument(result, "k", problem_space, k);
|
299 |
+
|
300 |
+
set_argument(result, "split_k_slices", problem_space, split_k_slices);
|
301 |
+
set_argument(result, "batch_count", problem_space, batch_count);
|
302 |
+
|
303 |
+
set_argument(result, "alpha", problem_space,
|
304 |
+
library::lexical_cast(alpha, operation_desc.element_epilogue));
|
305 |
+
|
306 |
+
set_argument(result, "beta", problem_space,
|
307 |
+
library::lexical_cast(beta, operation_desc.element_epilogue));
|
308 |
+
}
|
309 |
+
|
310 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
311 |
+
|
312 |
+
/// Extracts the problem dimensions
|
313 |
+
Status Rank2KOperationProfiler::initialize_configuration(
|
314 |
+
Options const &options,
|
315 |
+
PerformanceReport &report,
|
316 |
+
DeviceContext &device_context,
|
317 |
+
library::Operation const *operation,
|
318 |
+
ProblemSpace const &problem_space,
|
319 |
+
ProblemSpace::Problem const &problem) {
|
320 |
+
|
321 |
+
library::RankKDescription const &operation_desc =
|
322 |
+
static_cast<library::RankKDescription const &>(operation->description());
|
323 |
+
|
324 |
+
if (operation_desc.rank_k_kind != library::RankKKind::kUniversal) {
|
325 |
+
return Status::kErrorInvalidProblem;
|
326 |
+
}
|
327 |
+
|
328 |
+
Status status = problem_.parse(operation_desc, problem_space, problem);
|
329 |
+
|
330 |
+
if (status != Status::kSuccess) {
|
331 |
+
return status;
|
332 |
+
}
|
333 |
+
|
334 |
+
rank_k_workspace_.configuration.problem_size.m() = int(problem_.n);
|
335 |
+
rank_k_workspace_.configuration.problem_size.n() = int(problem_.n);
|
336 |
+
rank_k_workspace_.configuration.problem_size.k() = int(problem_.k);
|
337 |
+
rank_k_workspace_.configuration.lda = problem_.lda;
|
338 |
+
rank_k_workspace_.configuration.ldb = problem_.ldb;
|
339 |
+
rank_k_workspace_.configuration.ldc = problem_.ldc;
|
340 |
+
rank_k_workspace_.configuration.ldd = problem_.ldc;
|
341 |
+
//rank_k_workspace_.configuration.split_k_slices = int(problem_.split_k_slices);
|
342 |
+
rank_k_workspace_.configuration.batch_count = int(problem_.split_k_slices);
|
343 |
+
|
344 |
+
rank_k_workspace_.arguments.A = nullptr;
|
345 |
+
rank_k_workspace_.arguments.B = nullptr;
|
346 |
+
rank_k_workspace_.arguments.C = nullptr;
|
347 |
+
rank_k_workspace_.arguments.D = nullptr;
|
348 |
+
rank_k_workspace_.arguments.alpha = problem_.alpha.data();
|
349 |
+
rank_k_workspace_.arguments.beta = problem_.beta.data();
|
350 |
+
rank_k_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
351 |
+
|
352 |
+
initialize_result_(this->model_result_, options, operation_desc, problem_space);
|
353 |
+
|
354 |
+
return operation->can_implement(&rank_k_workspace_.configuration, &rank_k_workspace_.arguments);
|
355 |
+
}
|
356 |
+
|
357 |
+
/// Initializes the performance result
|
358 |
+
void Rank2KOperationProfiler::initialize_result_(
|
359 |
+
PerformanceResult &result,
|
360 |
+
Options const &options,
|
361 |
+
library::RankKDescription const &operation_desc,
|
362 |
+
ProblemSpace const &problem_space) {
|
363 |
+
|
364 |
+
result.provider = library::Provider::kCUTLASS;
|
365 |
+
result.disposition = Disposition::kNotRun;
|
366 |
+
result.status = Status::kSuccess;
|
367 |
+
result.operation_name = operation_desc.name;
|
368 |
+
|
369 |
+
problem_.initialize_result(result, operation_desc, problem_space);
|
370 |
+
|
371 |
+
OperationProfiler::initialize_result_(result, operation_desc, problem_space);
|
372 |
+
|
373 |
+
|
374 |
+
result.bytes = problem_.bytes(operation_desc);
|
375 |
+
result.flops = problem_.flops(operation_desc);
|
376 |
+
result.runtime = 0;
|
377 |
+
|
378 |
+
|
379 |
+
}
|
380 |
+
|
381 |
+
/// Initializes workspace
|
382 |
+
Status Rank2KOperationProfiler::initialize_workspace(
|
383 |
+
Options const &options,
|
384 |
+
PerformanceReport &report,
|
385 |
+
DeviceContext &device_context,
|
386 |
+
library::Operation const *operation,
|
387 |
+
ProblemSpace const &problem_space,
|
388 |
+
ProblemSpace::Problem const &problem) {
|
389 |
+
|
390 |
+
if (options.device.devices.size() != 1) {
|
391 |
+
throw std::runtime_error("This operation profiler only supports a single "
|
392 |
+
"device.");
|
393 |
+
}
|
394 |
+
|
395 |
+
cudaError_t result;
|
396 |
+
result = cudaSetDevice(options.device.device_id(0));
|
397 |
+
if (result != cudaSuccess) {
|
398 |
+
throw std::runtime_error("cudaSetDevice() failed.");
|
399 |
+
}
|
400 |
+
|
401 |
+
library::RankKDescription const &operation_desc =
|
402 |
+
static_cast<library::RankKDescription const &>(operation->description());
|
403 |
+
|
404 |
+
if (options.execution_mode != ExecutionMode::kDryRun) {
|
405 |
+
int seed_shift = 0;
|
406 |
+
rank_k_workspace_.A = device_context.allocate_and_initialize_tensor(
|
407 |
+
options,
|
408 |
+
"A",
|
409 |
+
operation_desc.A.element,
|
410 |
+
operation_desc.A.layout,
|
411 |
+
{int(problem_.n), int(problem_.k)},
|
412 |
+
{int(problem_.lda)},
|
413 |
+
1, // batch_count
|
414 |
+
seed_shift++,
|
415 |
+
0 // device_index
|
416 |
+
);
|
417 |
+
|
418 |
+
rank_k_workspace_.B = device_context.allocate_and_initialize_tensor(
|
419 |
+
options,
|
420 |
+
"B",
|
421 |
+
operation_desc.B.element,
|
422 |
+
operation_desc.B.layout,
|
423 |
+
{int(problem_.n), int(problem_.k)},
|
424 |
+
{int(problem_.ldb)},
|
425 |
+
1, // batch_count
|
426 |
+
seed_shift++,
|
427 |
+
0 // device_index
|
428 |
+
);
|
429 |
+
|
430 |
+
rank_k_workspace_.C = device_context.allocate_and_initialize_tensor(
|
431 |
+
options,
|
432 |
+
"C",
|
433 |
+
operation_desc.C.element,
|
434 |
+
operation_desc.C.layout,
|
435 |
+
{int(problem_.n), int(problem_.n)},
|
436 |
+
{int(problem_.ldc)},
|
437 |
+
1, // batch_count
|
438 |
+
seed_shift++,
|
439 |
+
0 // device_index
|
440 |
+
);
|
441 |
+
|
442 |
+
rank_k_workspace_.Computed = device_context.allocate_tensor(
|
443 |
+
options,
|
444 |
+
"D",
|
445 |
+
operation_desc.C.element,
|
446 |
+
operation_desc.C.layout,
|
447 |
+
{int(problem_.n), int(problem_.n)},
|
448 |
+
{int(problem_.ldc)},
|
449 |
+
1, // batch_count
|
450 |
+
0 // device_index
|
451 |
+
);
|
452 |
+
|
453 |
+
rank_k_workspace_.Reference = device_context.allocate_tensor(
|
454 |
+
options,
|
455 |
+
"Reference",
|
456 |
+
operation_desc.C.element,
|
457 |
+
operation_desc.C.layout,
|
458 |
+
{int(problem_.n), int(problem_.n)},
|
459 |
+
{int(problem_.ldc)},
|
460 |
+
1, // batch_count
|
461 |
+
0 // device_index
|
462 |
+
);
|
463 |
+
|
464 |
+
rank_k_workspace_.Computed->copy_from_device(rank_k_workspace_.C->data());
|
465 |
+
rank_k_workspace_.Reference->copy_from_device(rank_k_workspace_.C->data());
|
466 |
+
}
|
467 |
+
|
468 |
+
|
469 |
+
//
|
470 |
+
// Initialize the CUTLASS operation
|
471 |
+
//
|
472 |
+
Status status = Status::kSuccess;
|
473 |
+
|
474 |
+
if (options.profiling.provider_enabled(library::Provider::kCUTLASS)) {
|
475 |
+
|
476 |
+
if (options.execution_mode != ExecutionMode::kDryRun) {
|
477 |
+
|
478 |
+
uint64_t workspace_size = operation->get_host_workspace_size(&rank_k_workspace_.configuration);
|
479 |
+
rank_k_workspace_.host_workspace.resize(workspace_size, 0);
|
480 |
+
|
481 |
+
workspace_size = operation->get_device_workspace_size(&rank_k_workspace_.configuration);
|
482 |
+
rank_k_workspace_.device_workspace.reset(library::NumericTypeID::kU8, workspace_size);
|
483 |
+
|
484 |
+
status = operation->initialize(
|
485 |
+
&rank_k_workspace_.configuration,
|
486 |
+
rank_k_workspace_.host_workspace.data(),
|
487 |
+
rank_k_workspace_.device_workspace.data());
|
488 |
+
}
|
489 |
+
|
490 |
+
//
|
491 |
+
// If CUTLASS is enabled, generate a result for it
|
492 |
+
//
|
493 |
+
results_.push_back(model_result_);
|
494 |
+
results_.back().provider = library::Provider::kCUTLASS;
|
495 |
+
results_.back().op_kind = library::OperationKind::kRank2K;
|
496 |
+
results_.back().disposition = Disposition::kNotRun;
|
497 |
+
|
498 |
+
for(auto provider : verification_providers_) {
|
499 |
+
results_.back().verification_map[provider] = Disposition::kNotRun;
|
500 |
+
}
|
501 |
+
}
|
502 |
+
|
503 |
+
return status;
|
504 |
+
}
|
505 |
+
|
506 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
507 |
+
|
508 |
+
/// Verifies CUTLASS against references
|
509 |
+
bool Rank2KOperationProfiler::verify_cutlass(
|
510 |
+
Options const &options,
|
511 |
+
PerformanceReport &report,
|
512 |
+
DeviceContext &device_context,
|
513 |
+
library::Operation const *operation,
|
514 |
+
ProblemSpace const &problem_space,
|
515 |
+
ProblemSpace::Problem const &problem) {
|
516 |
+
|
517 |
+
if (!options.profiling.provider_enabled(library::Provider::kCUTLASS)) {
|
518 |
+
return true;
|
519 |
+
}
|
520 |
+
|
521 |
+
if (options.execution_mode == ExecutionMode::kDryRun) {
|
522 |
+
return true;
|
523 |
+
}
|
524 |
+
|
525 |
+
// Initialize structure containing RankK arguments
|
526 |
+
rank_k_workspace_.arguments.A = rank_k_workspace_.A->data();
|
527 |
+
rank_k_workspace_.arguments.B = rank_k_workspace_.B->data();
|
528 |
+
rank_k_workspace_.arguments.C = rank_k_workspace_.C->data();
|
529 |
+
rank_k_workspace_.arguments.D = rank_k_workspace_.Computed->data();
|
530 |
+
rank_k_workspace_.arguments.alpha = problem_.alpha.data();
|
531 |
+
rank_k_workspace_.arguments.beta = problem_.beta.data();
|
532 |
+
rank_k_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
533 |
+
|
534 |
+
//
|
535 |
+
// Run the CUTLASS operation
|
536 |
+
//
|
537 |
+
|
538 |
+
results_.back().status = operation->run(
|
539 |
+
&rank_k_workspace_.arguments,
|
540 |
+
rank_k_workspace_.host_workspace.data(),
|
541 |
+
rank_k_workspace_.device_workspace.data());
|
542 |
+
|
543 |
+
if (results_.back().status != Status::kSuccess) {
|
544 |
+
results_.back().disposition = Disposition::kFailed;
|
545 |
+
return false;
|
546 |
+
}
|
547 |
+
|
548 |
+
cudaError_t result = cudaDeviceSynchronize();
|
549 |
+
if (result != cudaSuccess) {
|
550 |
+
results_.back().disposition = Disposition::kFailed;
|
551 |
+
return false;
|
552 |
+
}
|
553 |
+
|
554 |
+
// CUTLASS op ran the but not yet verified against any verification provider
|
555 |
+
results_.back().disposition = Disposition::kNotVerified;
|
556 |
+
|
557 |
+
//
|
558 |
+
// Run verification providers
|
559 |
+
//
|
560 |
+
|
561 |
+
if (options.verification.enabled) {
|
562 |
+
|
563 |
+
#if CUTLASS_ENABLE_CUBLAS
|
564 |
+
if (options.verification.provider_enabled(library::Provider::kCUBLAS)) {
|
565 |
+
|
566 |
+
// Guard against unsupported cases
|
567 |
+
auto const & rank_k_desc = static_cast<library::RankKDescription const &>(operation->description());
|
568 |
+
|
569 |
+
if (cublas_satisfies(rank_k_desc) == Status::kSuccess) {
|
570 |
+
|
571 |
+
// call cublas verification if supported
|
572 |
+
verify_with_cublas_(
|
573 |
+
options,
|
574 |
+
report,
|
575 |
+
device_context,
|
576 |
+
operation,
|
577 |
+
problem_space,
|
578 |
+
problem);
|
579 |
+
}
|
580 |
+
|
581 |
+
else {
|
582 |
+
// set verification map for cublas to not supported
|
583 |
+
results_.back().verification_map[library::Provider::kCUBLAS] = Disposition::kNotSupported;
|
584 |
+
}
|
585 |
+
}
|
586 |
+
#endif // #if CUTLASS_ENABLE_CUBLAS
|
587 |
+
|
588 |
+
// Update disposition to worst case verification outcome among all
|
589 |
+
// verification providers which are supported
|
590 |
+
bool is_any_verification_run_passed = false;
|
591 |
+
for(auto &m : results_.back().verification_map) {
|
592 |
+
if(m.second == Disposition::kFailed || m.second == Disposition::kIncorrect) {
|
593 |
+
results_.back().disposition = m.second;
|
594 |
+
return true;
|
595 |
+
}
|
596 |
+
if(!is_any_verification_run_passed && m.second == Disposition::kPassed) {
|
597 |
+
is_any_verification_run_passed = true;
|
598 |
+
}
|
599 |
+
}
|
600 |
+
|
601 |
+
if(is_any_verification_run_passed) {
|
602 |
+
results_.back().disposition = Disposition::kPassed;
|
603 |
+
}
|
604 |
+
}
|
605 |
+
|
606 |
+
// Return true means continue profiling
|
607 |
+
return true;
|
608 |
+
}
|
609 |
+
|
610 |
+
///////////////////////////////////////////////////////////////////////////////////////////////////
|
611 |
+
|
612 |
+
/// Verifies CUTLASS against references
|
613 |
+
bool Rank2KOperationProfiler::verify_with_cublas_(
|
614 |
+
Options const &options,
|
615 |
+
PerformanceReport &report,
|
616 |
+
DeviceContext &device_context,
|
617 |
+
library::Operation const *operation,
|
618 |
+
ProblemSpace const &problem_space,
|
619 |
+
ProblemSpace::Problem const &problem) {
|
620 |
+
|
621 |
+
|
622 |
+
#if CUTLASS_ENABLE_CUBLAS
|
623 |
+
|
624 |
+
library::RankKDescription const &rank_k_desc =
|
625 |
+
static_cast<library::RankKDescription const &>(operation->description());
|
626 |
+
|
627 |
+
//
|
628 |
+
// Construct cuBLAS operators
|
629 |
+
//
|
630 |
+
|
631 |
+
CublasCreate handle;
|
632 |
+
cublasStatus_t status = handle.get_cublas_create_status();
|
633 |
+
|
634 |
+
if (status != CUBLAS_STATUS_SUCCESS) {
|
635 |
+
|
636 |
+
results_.back().verification_map[library::Provider::kCUBLAS] = Disposition::kFailed;
|
637 |
+
return true;
|
638 |
+
}
|
639 |
+
|
640 |
+
//
|
641 |
+
// Initialize state
|
642 |
+
//
|
643 |
+
|
644 |
+
try {
|
645 |
+
|
646 |
+
//
|
647 |
+
// Construct dispatcher to cublas<t>Syr2k()
|
648 |
+
//
|
649 |
+
|
650 |
+
// Initialize structure containing RankK arguments
|
651 |
+
rank_k_workspace_.arguments.A = rank_k_workspace_.A->data();
|
652 |
+
rank_k_workspace_.arguments.B = rank_k_workspace_.B->data();
|
653 |
+
rank_k_workspace_.arguments.C = rank_k_workspace_.Reference->data();
|
654 |
+
rank_k_workspace_.arguments.D = rank_k_workspace_.Reference->data();
|
655 |
+
rank_k_workspace_.arguments.alpha = problem_.alpha.data();
|
656 |
+
rank_k_workspace_.arguments.beta = problem_.beta.data();
|
657 |
+
rank_k_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
658 |
+
|
659 |
+
detail::cublasRankKDispatcher rank_k_op(
|
660 |
+
rank_k_desc,
|
661 |
+
rank_k_workspace_.configuration,
|
662 |
+
rank_k_workspace_.arguments
|
663 |
+
);
|
664 |
+
|
665 |
+
if (rank_k_op.status != Status::kSuccess) {
|
666 |
+
results_.back().verification_map[library::Provider::kCUBLAS] = Disposition::kNotRun;
|
667 |
+
return true;
|
668 |
+
}
|
669 |
+
|
670 |
+
results_.back().status = Status::kSuccess;
|
671 |
+
|
672 |
+
status = rank_k_op(handle);
|
673 |
+
|
674 |
+
// Handle errors
|
675 |
+
if (status != CUBLAS_STATUS_SUCCESS) {
|
676 |
+
|
677 |
+
results_.back().verification_map[library::Provider::kCUBLAS] = Disposition::kFailed;
|
678 |
+
return true;
|
679 |
+
}
|
680 |
+
|
681 |
+
//
|
682 |
+
// Verify results
|
683 |
+
//
|
684 |
+
|
685 |
+
results_.back().verification_map[library::Provider::kCUBLAS] = compare_tensors(
|
686 |
+
options,
|
687 |
+
*rank_k_workspace_.Computed,
|
688 |
+
*rank_k_workspace_.Reference
|
689 |
+
);
|
690 |
+
|
691 |
+
// Save workspace if incorrect
|
692 |
+
if (options.verification.save_workspace == SaveWorkspace::kIncorrect &&
|
693 |
+
results_.back().verification_map[library::Provider::kCUBLAS] == Disposition::kIncorrect) {
|
694 |
+
|
695 |
+
save_workspace(
|
696 |
+
device_context,
|
697 |
+
options,
|
698 |
+
rank_k_desc,
|
699 |
+
library::Provider::kCUTLASS,
|
700 |
+
library::Provider::kCUBLAS);
|
701 |
+
}
|
702 |
+
}
|
703 |
+
catch (...) {
|
704 |
+
results_.back().verification_map[library::Provider::kCUBLAS] = Disposition::kFailed;
|
705 |
+
}
|
706 |
+
|
707 |
+
#endif
|
708 |
+
|
709 |
+
// Return true means continue profiling
|
710 |
+
return true;
|
711 |
+
}
|
712 |
+
|
713 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
714 |
+
|
715 |
+
/// Measures performance results
|
716 |
+
bool Rank2KOperationProfiler::profile(
|
717 |
+
Options const &options,
|
718 |
+
PerformanceReport &report,
|
719 |
+
DeviceContext &device_context,
|
720 |
+
library::Operation const *operation,
|
721 |
+
ProblemSpace const &problem_space,
|
722 |
+
ProblemSpace::Problem const &problem) {
|
723 |
+
|
724 |
+
if (options.profiling.provider_enabled(library::Provider::kCUTLASS)) {
|
725 |
+
|
726 |
+
// Initialize structure containing RankK arguments
|
727 |
+
rank_k_workspace_.arguments.A = rank_k_workspace_.A->data();
|
728 |
+
rank_k_workspace_.arguments.B = rank_k_workspace_.B->data();
|
729 |
+
rank_k_workspace_.arguments.C = rank_k_workspace_.C->data();
|
730 |
+
rank_k_workspace_.arguments.D = rank_k_workspace_.Computed->data();
|
731 |
+
rank_k_workspace_.arguments.alpha = problem_.alpha.data();
|
732 |
+
rank_k_workspace_.arguments.beta = problem_.beta.data();
|
733 |
+
rank_k_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
734 |
+
|
735 |
+
results_.back().status = profile_cutlass_(
|
736 |
+
results_.back().runtime,
|
737 |
+
options,
|
738 |
+
operation,
|
739 |
+
&rank_k_workspace_.arguments,
|
740 |
+
rank_k_workspace_.host_workspace.data(),
|
741 |
+
rank_k_workspace_.device_workspace.data()
|
742 |
+
);
|
743 |
+
}
|
744 |
+
return true;
|
745 |
+
}
|
746 |
+
|
747 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
748 |
+
|
749 |
+
} // namespace profiler
|
750 |
+
} // namespace cutlass
|
751 |
+
|
752 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/rank_k_operation_profiler.cu
ADDED
@@ -0,0 +1,737 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief Execution environment
|
33 |
+
|
34 |
+
|
35 |
+
*/
|
36 |
+
|
37 |
+
#include <iostream>
|
38 |
+
#include <stdexcept>
|
39 |
+
#include <iomanip>
|
40 |
+
#include <ios>
|
41 |
+
|
42 |
+
#include "cutlass/core_io.h"
|
43 |
+
|
44 |
+
#include "cutlass/profiler/cublas_helpers.h"
|
45 |
+
#include "cutlass/profiler/rank_k_operation_profiler.h"
|
46 |
+
#include "cutlass/profiler/gpu_timer.h"
|
47 |
+
|
48 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
49 |
+
|
50 |
+
namespace cutlass {
|
51 |
+
namespace profiler {
|
52 |
+
|
53 |
+
|
54 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
55 |
+
|
56 |
+
/// Ctor
|
57 |
+
RankKOperationProfiler::RankKOperationProfiler(Options const &options):
|
58 |
+
OperationProfiler(
|
59 |
+
options,
|
60 |
+
library::OperationKind::kRankK,
|
61 |
+
{
|
62 |
+
{ArgumentTypeID::kEnumerated, {"rank_k_kind"}, "Variant of RankK (universal)"},
|
63 |
+
{ArgumentTypeID::kInteger, {"n", "problem-size::n"}, "N dimension of the RankK problem space"},
|
64 |
+
{ArgumentTypeID::kInteger, {"k", "problem-size::k"}, "K dimension of the RankK problem space"},
|
65 |
+
{ArgumentTypeID::kTensor, {"A"}, "Tensor storing the A operand"},
|
66 |
+
{ArgumentTypeID::kTensor, {"C"}, "Tensor storing the C operand"},
|
67 |
+
{ArgumentTypeID::kEnumerated, {"fill_mode"}, "Fill Mode for RankK kernel (lower or upper)"},
|
68 |
+
{ArgumentTypeID::kEnumerated, {"blas_mode"}, "Blas Mode for RankK kernel (symmetric or hermitian)"},
|
69 |
+
{ArgumentTypeID::kScalar, {"alpha", "epilogue::alpha"}, "Epilogue scalar alpha"},
|
70 |
+
{ArgumentTypeID::kScalar, {"beta", "epilogue::beta"}, "Epilogue scalar beta"},
|
71 |
+
{ArgumentTypeID::kInteger, {"split_k_slices", "split-k-slices"}, "Number of partitions of K dimension"},
|
72 |
+
{ArgumentTypeID::kInteger, {"batch_count", "batch-count"}, "Number of RankK computed in one batch"},
|
73 |
+
},
|
74 |
+
{ library::Provider::kCUBLAS}
|
75 |
+
) {
|
76 |
+
description_ = " Rank-k Update. D = alpha * A*A^T + beta * C (symmetric) or D = alpha * A*A^H + beta * C (hermitian)";
|
77 |
+
}
|
78 |
+
|
79 |
+
/// Destructor
|
80 |
+
RankKOperationProfiler::~RankKOperationProfiler() {
|
81 |
+
|
82 |
+
}
|
83 |
+
|
84 |
+
/// Prints usage statement for the math function
|
85 |
+
void RankKOperationProfiler::print_usage(std::ostream &out) const {
|
86 |
+
out << "RankK" << "\n\n";
|
87 |
+
|
88 |
+
OperationProfiler::print_usage(out);
|
89 |
+
}
|
90 |
+
|
91 |
+
/// Prints examples
|
92 |
+
void RankKOperationProfiler::print_examples(std::ostream &out) const {
|
93 |
+
|
94 |
+
out << "\nExamples:\n\n"
|
95 |
+
<< "Profile a particular problem size Syrk kernel:\n"
|
96 |
+
<< " $ cutlass_profiler --operation=rank_k --blas_mode=symmetric --n=1024 --k=128\n\n"
|
97 |
+
|
98 |
+
<< "Profile a particular problem size Herk kernel:\n"
|
99 |
+
<< " $ cutlass_profiler --operation=rank_k --blas_mode=hermitian --n=1024 --k=128\n\n"
|
100 |
+
|
101 |
+
<< "Schmoo over problem size and beta:\n"
|
102 |
+
<< " $ cutlass_profiler --operation=rank_k --n=1024:4096:256 --k=128:8192:128 --beta=0,1,2.5\n\n"
|
103 |
+
|
104 |
+
<< "Schmoo over accumulator types:\n"
|
105 |
+
<< " $ cutlass_profiler --operation=rank_k --accumulator-type=f16,f32\n\n"
|
106 |
+
|
107 |
+
<< "Schmoo over fill modees:\n"
|
108 |
+
<< " $ cutlass_profiler --operation=rank_k --fill_mode=lower/upper\n\n"
|
109 |
+
|
110 |
+
<< "Run when A is f16 with column-major or A is any datatype with row-major (For column major, use column, col, or n. For row major use, row or t):\n"
|
111 |
+
<< " $ cutlass_profiler --operation=rank_k --A=f16:column or --A=*:row\n\n"
|
112 |
+
|
113 |
+
<< "Using various input value distribution:\n"
|
114 |
+
<< " $ cutlass_profiler --operation=rank_k --dist=uniform,min:0,max:3\n"
|
115 |
+
<< " $ cutlass_profiler --operation=rank_k --dist=gaussian,mean:0,stddev:3\n"
|
116 |
+
<< " $ cutlass_profiler --operation=rank_k --dist=sequential,start:0,delta:1\n\n"
|
117 |
+
|
118 |
+
<< "Run a kernel with cta tile size of 256x128x32 and save workspace if results are incorrect (note that --cta-tile::k=32 is default cta-tile size):\n"
|
119 |
+
<< " $ cutlass_profiler --operation=rank_k --cta_m=256 --cta_n=128 --cta_k=32 --save-workspace=incorrect\n\n"
|
120 |
+
|
121 |
+
<< "Test your changes to rank_k kernels with a quick functional test and save results in functional-test.csv:\n"
|
122 |
+
<< " $ cutlass_profiler --operation=rank_k \\ \n"
|
123 |
+
<< " --n=8,56,120,136,256,264,512,520,1024,1032,4096,8192,16384 \\ \n"
|
124 |
+
<< " --k=8,16,32,64,128,256,288,384,504,512,520 \\ \n"
|
125 |
+
<< " --beta=0,1,2 --profiling-iterations=1 \\ \n"
|
126 |
+
<< " --providers=cutlass --output=functional-test.csv\n\n";
|
127 |
+
}
|
128 |
+
|
129 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
130 |
+
|
131 |
+
#if 0
|
132 |
+
// used this for debugging
|
133 |
+
static std::string byte_string(std::vector<uint8_t> const &bytes) {
|
134 |
+
std::stringstream ss;
|
135 |
+
|
136 |
+
ss << "0x";
|
137 |
+
|
138 |
+
for (size_t idx = bytes.size(); idx > 0; --idx) {
|
139 |
+
ss << std::hex << std::setw(2) << std::setfill('0') << uint32_t(bytes.at(idx - 1));
|
140 |
+
}
|
141 |
+
|
142 |
+
return ss.str();
|
143 |
+
}
|
144 |
+
#endif
|
145 |
+
|
146 |
+
Status RankKOperationProfiler::RankKProblem::parse(
|
147 |
+
library::RankKDescription const &operation_desc,
|
148 |
+
ProblemSpace const &problem_space,
|
149 |
+
ProblemSpace::Problem const &problem) {
|
150 |
+
|
151 |
+
if (!arg_as_int(this->n, "n", problem_space, problem)) {
|
152 |
+
// default value
|
153 |
+
this->n = 1024;
|
154 |
+
}
|
155 |
+
|
156 |
+
if (!arg_as_int(this->k, "k", problem_space, problem)) {
|
157 |
+
// default value
|
158 |
+
this->k = 1024;
|
159 |
+
}
|
160 |
+
|
161 |
+
if (!arg_as_int(this->split_k_slices, "split_k_slices", problem_space, problem)) {
|
162 |
+
// default value
|
163 |
+
this->split_k_slices = 1;
|
164 |
+
}
|
165 |
+
|
166 |
+
if (!arg_as_int(this->batch_count, "batch_count", problem_space, problem)) {
|
167 |
+
// default value
|
168 |
+
this->batch_count = 1;
|
169 |
+
}
|
170 |
+
|
171 |
+
if (this->split_k_slices > 1 && this->batch_count > 1) {
|
172 |
+
// At least one of these must be one
|
173 |
+
return Status::kErrorInvalidProblem;
|
174 |
+
}
|
175 |
+
|
176 |
+
if (!tensor_description_satisfies(operation_desc.A, "A", problem_space, problem)) {
|
177 |
+
return Status::kErrorInvalidProblem;
|
178 |
+
}
|
179 |
+
|
180 |
+
if (!tensor_description_satisfies(operation_desc.C, "C", problem_space, problem)) {
|
181 |
+
return Status::kErrorInvalidProblem;
|
182 |
+
}
|
183 |
+
|
184 |
+
if (!arg_as_scalar(
|
185 |
+
this->alpha,
|
186 |
+
operation_desc.element_epilogue,
|
187 |
+
"alpha",
|
188 |
+
problem_space,
|
189 |
+
problem)) {
|
190 |
+
|
191 |
+
if (!cast_from_double(this->alpha, operation_desc.element_epilogue, 1)) {
|
192 |
+
return Status::kErrorInternal;
|
193 |
+
}
|
194 |
+
}
|
195 |
+
|
196 |
+
if (!arg_as_scalar(
|
197 |
+
this->beta,
|
198 |
+
operation_desc.element_epilogue,
|
199 |
+
"beta",
|
200 |
+
problem_space,
|
201 |
+
problem)) {
|
202 |
+
|
203 |
+
if (!cast_from_double(this->beta, operation_desc.element_epilogue, 0)) {
|
204 |
+
return Status::kErrorInternal;
|
205 |
+
}
|
206 |
+
}
|
207 |
+
|
208 |
+
this->lda = DeviceAllocation::get_packed_layout(
|
209 |
+
operation_desc.A.layout, {int(this->n), int(this->k)}).front();
|
210 |
+
|
211 |
+
this->ldc = DeviceAllocation::get_packed_layout(
|
212 |
+
operation_desc.C.layout, {int(this->n), int(this->n)}).front();
|
213 |
+
|
214 |
+
return Status::kSuccess;
|
215 |
+
}
|
216 |
+
|
217 |
+
/// Total number of bytes loaded
|
218 |
+
int64_t RankKOperationProfiler::RankKProblem::bytes(library::RankKDescription const &operation_desc) const {
|
219 |
+
// Input bytes read and Output bytes written for the gemm problem
|
220 |
+
int64_t bytes =
|
221 |
+
int64_t(library::sizeof_bits(operation_desc.A.element) * n / 8) * k +
|
222 |
+
int64_t(library::sizeof_bits(operation_desc.A.element) * n / 8) * k +
|
223 |
+
// Half matrix including the diagonal will have (N*(N+1))/2 elements
|
224 |
+
int64_t(library::sizeof_bits(operation_desc.C.element) * n / 8) * (n+1) / 2;
|
225 |
+
|
226 |
+
// Set is_beta_zero true if beta is zero
|
227 |
+
bool is_beta_zero = std::all_of(beta.begin(), beta.end(), [](uint8_t i) { return i==0; });
|
228 |
+
|
229 |
+
// Output bytes read for the gemm problem for non-zero beta values
|
230 |
+
if (!is_beta_zero) {
|
231 |
+
bytes += int64_t(library::sizeof_bits(operation_desc.C.element) * n / 8) * (n+1) / 2;
|
232 |
+
}
|
233 |
+
|
234 |
+
bytes *= batch_count;
|
235 |
+
|
236 |
+
return bytes;
|
237 |
+
}
|
238 |
+
|
239 |
+
/// Total number of flops computed
|
240 |
+
int64_t RankKOperationProfiler::RankKProblem::flops(library::RankKDescription const &operation_desc) const {
|
241 |
+
|
242 |
+
// FLOPs = 2 * n(n+1)k/2 [mma] + 2 * n(n+1)/2 [epilogue]
|
243 |
+
// FLOPs = n(n+1)(k + 1)
|
244 |
+
int64_t flops_ = n * (n + 1) * (k + 1);
|
245 |
+
|
246 |
+
// complex-valued support
|
247 |
+
switch (operation_desc.tile_description.math_instruction.math_operation) {
|
248 |
+
case library::MathOperationID::kMultiplyAddComplex:
|
249 |
+
flops_ *= 4;
|
250 |
+
break;
|
251 |
+
|
252 |
+
case library::MathOperationID::kMultiplyAddComplexFastF32:
|
253 |
+
flops_ *= 4;
|
254 |
+
break;
|
255 |
+
|
256 |
+
case library::MathOperationID::kMultiplyAddGaussianComplex:
|
257 |
+
flops_ *= 3;
|
258 |
+
break;
|
259 |
+
|
260 |
+
default: break;
|
261 |
+
}
|
262 |
+
|
263 |
+
return flops_;
|
264 |
+
}
|
265 |
+
|
266 |
+
/// Initializes a performance result
|
267 |
+
void RankKOperationProfiler::RankKProblem::initialize_result(
|
268 |
+
PerformanceResult &result,
|
269 |
+
library::RankKDescription const &operation_desc,
|
270 |
+
ProblemSpace const &problem_space) {
|
271 |
+
|
272 |
+
result.arguments.resize(problem_space.rank());
|
273 |
+
|
274 |
+
set_argument(result, "rank_k_kind", problem_space, library::to_string(operation_desc.rank_k_kind));
|
275 |
+
|
276 |
+
set_argument(result, "A", problem_space,
|
277 |
+
std::string(library::to_string(operation_desc.A.element)) + ":" + library::to_string(operation_desc.A.layout));
|
278 |
+
|
279 |
+
set_argument(result, "C", problem_space,
|
280 |
+
std::string(library::to_string(operation_desc.C.element)) + ":" + library::to_string(operation_desc.C.layout));
|
281 |
+
|
282 |
+
set_argument(result, "fill_mode", problem_space, library::to_string(operation_desc.fill_mode));
|
283 |
+
|
284 |
+
set_argument(result, "blas_mode", problem_space, library::to_string(operation_desc.blas_mode));
|
285 |
+
|
286 |
+
set_argument(result, "n", problem_space, n);
|
287 |
+
set_argument(result, "k", problem_space, k);
|
288 |
+
|
289 |
+
set_argument(result, "split_k_slices", problem_space, split_k_slices);
|
290 |
+
set_argument(result, "batch_count", problem_space, batch_count);
|
291 |
+
|
292 |
+
set_argument(result, "alpha", problem_space,
|
293 |
+
library::lexical_cast(alpha, operation_desc.element_epilogue));
|
294 |
+
|
295 |
+
set_argument(result, "beta", problem_space,
|
296 |
+
library::lexical_cast(beta, operation_desc.element_epilogue));
|
297 |
+
}
|
298 |
+
|
299 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
300 |
+
|
301 |
+
/// Extracts the problem dimensions
|
302 |
+
Status RankKOperationProfiler::initialize_configuration(
|
303 |
+
Options const &options,
|
304 |
+
PerformanceReport &report,
|
305 |
+
DeviceContext &device_context,
|
306 |
+
library::Operation const *operation,
|
307 |
+
ProblemSpace const &problem_space,
|
308 |
+
ProblemSpace::Problem const &problem) {
|
309 |
+
|
310 |
+
library::RankKDescription const &operation_desc =
|
311 |
+
static_cast<library::RankKDescription const &>(operation->description());
|
312 |
+
|
313 |
+
if (operation_desc.rank_k_kind != library::RankKKind::kUniversal) {
|
314 |
+
return Status::kErrorInvalidProblem;
|
315 |
+
}
|
316 |
+
|
317 |
+
Status status = problem_.parse(operation_desc, problem_space, problem);
|
318 |
+
|
319 |
+
if (status != Status::kSuccess) {
|
320 |
+
return status;
|
321 |
+
}
|
322 |
+
|
323 |
+
rank_k_workspace_.configuration.problem_size.m() = int(problem_.n);
|
324 |
+
rank_k_workspace_.configuration.problem_size.n() = int(problem_.n);
|
325 |
+
rank_k_workspace_.configuration.problem_size.k() = int(problem_.k);
|
326 |
+
rank_k_workspace_.configuration.lda = problem_.lda;
|
327 |
+
rank_k_workspace_.configuration.ldc = problem_.ldc;
|
328 |
+
rank_k_workspace_.configuration.ldd = problem_.ldc;
|
329 |
+
//rank_k_workspace_.configuration.split_k_slices = int(problem_.split_k_slices);
|
330 |
+
rank_k_workspace_.configuration.batch_count = int(problem_.split_k_slices);
|
331 |
+
|
332 |
+
rank_k_workspace_.arguments.A = nullptr;
|
333 |
+
rank_k_workspace_.arguments.C = nullptr;
|
334 |
+
rank_k_workspace_.arguments.D = nullptr;
|
335 |
+
rank_k_workspace_.arguments.alpha = problem_.alpha.data();
|
336 |
+
rank_k_workspace_.arguments.beta = problem_.beta.data();
|
337 |
+
rank_k_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
338 |
+
|
339 |
+
initialize_result_(this->model_result_, options, operation_desc, problem_space);
|
340 |
+
|
341 |
+
return operation->can_implement(&rank_k_workspace_.configuration, &rank_k_workspace_.arguments);
|
342 |
+
}
|
343 |
+
|
344 |
+
/// Initializes the performance result
|
345 |
+
void RankKOperationProfiler::initialize_result_(
|
346 |
+
PerformanceResult &result,
|
347 |
+
Options const &options,
|
348 |
+
library::RankKDescription const &operation_desc,
|
349 |
+
ProblemSpace const &problem_space) {
|
350 |
+
|
351 |
+
result.provider = library::Provider::kCUTLASS;
|
352 |
+
result.disposition = Disposition::kNotRun;
|
353 |
+
result.status = Status::kSuccess;
|
354 |
+
result.operation_name = operation_desc.name;
|
355 |
+
|
356 |
+
problem_.initialize_result(result, operation_desc, problem_space);
|
357 |
+
|
358 |
+
OperationProfiler::initialize_result_(result, operation_desc, problem_space);
|
359 |
+
|
360 |
+
|
361 |
+
result.bytes = problem_.bytes(operation_desc);
|
362 |
+
result.flops = problem_.flops(operation_desc);
|
363 |
+
|
364 |
+
result.runtime = 0;
|
365 |
+
|
366 |
+
// complex-valued support
|
367 |
+
switch (operation_desc.tile_description.math_instruction.math_operation) {
|
368 |
+
case library::MathOperationID::kMultiplyAddComplex:
|
369 |
+
result.flops *= 4;
|
370 |
+
break;
|
371 |
+
|
372 |
+
case library::MathOperationID::kMultiplyAddComplexFastF32:
|
373 |
+
result.flops *= 4;
|
374 |
+
break;
|
375 |
+
|
376 |
+
default: break;
|
377 |
+
}
|
378 |
+
|
379 |
+
}
|
380 |
+
|
381 |
+
/// Initializes workspace
|
382 |
+
Status RankKOperationProfiler::initialize_workspace(
|
383 |
+
Options const &options,
|
384 |
+
PerformanceReport &report,
|
385 |
+
DeviceContext &device_context,
|
386 |
+
library::Operation const *operation,
|
387 |
+
ProblemSpace const &problem_space,
|
388 |
+
ProblemSpace::Problem const &problem) {
|
389 |
+
|
390 |
+
if (options.device.devices.size() != 1) {
|
391 |
+
throw std::runtime_error("This operation profiler only supports a single "
|
392 |
+
"device.");
|
393 |
+
}
|
394 |
+
|
395 |
+
cudaError_t result;
|
396 |
+
result = cudaSetDevice(options.device.device_id(0));
|
397 |
+
if (result != cudaSuccess) {
|
398 |
+
throw std::runtime_error("cudaSetDevice() failed.");
|
399 |
+
}
|
400 |
+
|
401 |
+
library::RankKDescription const &operation_desc =
|
402 |
+
static_cast<library::RankKDescription const &>(operation->description());
|
403 |
+
|
404 |
+
if (options.execution_mode != ExecutionMode::kDryRun) {
|
405 |
+
int seed_shift = 0;
|
406 |
+
rank_k_workspace_.A = device_context.allocate_and_initialize_tensor(
|
407 |
+
options,
|
408 |
+
"A",
|
409 |
+
operation_desc.A.element,
|
410 |
+
operation_desc.A.layout,
|
411 |
+
{int(problem_.n), int(problem_.k)},
|
412 |
+
{int(problem_.lda)},
|
413 |
+
1, // batch_count
|
414 |
+
seed_shift++,
|
415 |
+
0 // device_index
|
416 |
+
);
|
417 |
+
|
418 |
+
rank_k_workspace_.C = device_context.allocate_and_initialize_tensor(
|
419 |
+
options,
|
420 |
+
"C",
|
421 |
+
operation_desc.C.element,
|
422 |
+
operation_desc.C.layout,
|
423 |
+
{int(problem_.n), int(problem_.n)},
|
424 |
+
{int(problem_.ldc)},
|
425 |
+
1, // batch_count
|
426 |
+
seed_shift++,
|
427 |
+
0 // device_index
|
428 |
+
);
|
429 |
+
|
430 |
+
rank_k_workspace_.Computed = device_context.allocate_tensor(
|
431 |
+
options,
|
432 |
+
"D",
|
433 |
+
operation_desc.C.element,
|
434 |
+
operation_desc.C.layout,
|
435 |
+
{int(problem_.n), int(problem_.n)},
|
436 |
+
{int(problem_.ldc)},
|
437 |
+
1, //batch_count
|
438 |
+
0 // device_index
|
439 |
+
);
|
440 |
+
|
441 |
+
rank_k_workspace_.Reference = device_context.allocate_tensor(
|
442 |
+
options,
|
443 |
+
"Reference",
|
444 |
+
operation_desc.C.element,
|
445 |
+
operation_desc.C.layout,
|
446 |
+
{int(problem_.n), int(problem_.n)},
|
447 |
+
{int(problem_.ldc)},
|
448 |
+
1, //batch_count
|
449 |
+
0 // device_index
|
450 |
+
);
|
451 |
+
|
452 |
+
rank_k_workspace_.Computed->copy_from_device(rank_k_workspace_.C->data());
|
453 |
+
rank_k_workspace_.Reference->copy_from_device(rank_k_workspace_.C->data());
|
454 |
+
}
|
455 |
+
|
456 |
+
|
457 |
+
//
|
458 |
+
// Initialize the CUTLASS operation
|
459 |
+
//
|
460 |
+
Status status = Status::kSuccess;
|
461 |
+
|
462 |
+
if (options.profiling.provider_enabled(library::Provider::kCUTLASS)) {
|
463 |
+
|
464 |
+
if (options.execution_mode != ExecutionMode::kDryRun) {
|
465 |
+
|
466 |
+
uint64_t workspace_size = operation->get_host_workspace_size(&rank_k_workspace_.configuration);
|
467 |
+
rank_k_workspace_.host_workspace.resize(workspace_size, 0);
|
468 |
+
|
469 |
+
workspace_size = operation->get_device_workspace_size(&rank_k_workspace_.configuration);
|
470 |
+
rank_k_workspace_.device_workspace.reset(library::NumericTypeID::kU8, workspace_size);
|
471 |
+
|
472 |
+
status = operation->initialize(
|
473 |
+
&rank_k_workspace_.configuration,
|
474 |
+
rank_k_workspace_.host_workspace.data(),
|
475 |
+
rank_k_workspace_.device_workspace.data());
|
476 |
+
}
|
477 |
+
|
478 |
+
//
|
479 |
+
// If CUTLASS is enabled, generate a result for it
|
480 |
+
//
|
481 |
+
results_.push_back(model_result_);
|
482 |
+
results_.back().provider = library::Provider::kCUTLASS;
|
483 |
+
results_.back().op_kind = library::OperationKind::kRankK;
|
484 |
+
results_.back().disposition = Disposition::kNotRun;
|
485 |
+
|
486 |
+
for(auto provider : verification_providers_) {
|
487 |
+
results_.back().verification_map[provider] = Disposition::kNotRun;
|
488 |
+
}
|
489 |
+
}
|
490 |
+
|
491 |
+
return status;
|
492 |
+
}
|
493 |
+
|
494 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
495 |
+
|
496 |
+
/// Verifies CUTLASS against references
|
497 |
+
bool RankKOperationProfiler::verify_cutlass(
|
498 |
+
Options const &options,
|
499 |
+
PerformanceReport &report,
|
500 |
+
DeviceContext &device_context,
|
501 |
+
library::Operation const *operation,
|
502 |
+
ProblemSpace const &problem_space,
|
503 |
+
ProblemSpace::Problem const &problem) {
|
504 |
+
|
505 |
+
if (!options.profiling.provider_enabled(library::Provider::kCUTLASS)) {
|
506 |
+
return true;
|
507 |
+
}
|
508 |
+
|
509 |
+
if (options.execution_mode == ExecutionMode::kDryRun) {
|
510 |
+
return true;
|
511 |
+
}
|
512 |
+
|
513 |
+
// Initialize structure containing RankK arguments
|
514 |
+
rank_k_workspace_.arguments.A = rank_k_workspace_.A->data();
|
515 |
+
rank_k_workspace_.arguments.C = rank_k_workspace_.C->data();
|
516 |
+
rank_k_workspace_.arguments.D = rank_k_workspace_.Computed->data();
|
517 |
+
rank_k_workspace_.arguments.alpha = problem_.alpha.data();
|
518 |
+
rank_k_workspace_.arguments.beta = problem_.beta.data();
|
519 |
+
rank_k_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
520 |
+
|
521 |
+
//
|
522 |
+
// Run the CUTLASS operation
|
523 |
+
//
|
524 |
+
|
525 |
+
results_.back().status = operation->run(
|
526 |
+
&rank_k_workspace_.arguments,
|
527 |
+
rank_k_workspace_.host_workspace.data(),
|
528 |
+
rank_k_workspace_.device_workspace.data());
|
529 |
+
|
530 |
+
if (results_.back().status != Status::kSuccess) {
|
531 |
+
results_.back().disposition = Disposition::kFailed;
|
532 |
+
return false;
|
533 |
+
}
|
534 |
+
|
535 |
+
cudaError_t result = cudaDeviceSynchronize();
|
536 |
+
if (result != cudaSuccess) {
|
537 |
+
results_.back().disposition = Disposition::kFailed;
|
538 |
+
return false;
|
539 |
+
}
|
540 |
+
|
541 |
+
// CUTLASS op ran the but not yet verified against any verification provider
|
542 |
+
results_.back().disposition = Disposition::kNotVerified;
|
543 |
+
|
544 |
+
//
|
545 |
+
// Run verification providers
|
546 |
+
//
|
547 |
+
|
548 |
+
if (options.verification.enabled) {
|
549 |
+
|
550 |
+
#if CUTLASS_ENABLE_CUBLAS
|
551 |
+
if (options.verification.provider_enabled(library::Provider::kCUBLAS)) {
|
552 |
+
|
553 |
+
// Guard against unsupported cases
|
554 |
+
auto const & rank_k_desc = static_cast<library::RankKDescription const &>(operation->description());
|
555 |
+
|
556 |
+
if (cublas_satisfies(rank_k_desc) == Status::kSuccess) {
|
557 |
+
|
558 |
+
// call cublas verification if supported
|
559 |
+
verify_with_cublas_(
|
560 |
+
options,
|
561 |
+
report,
|
562 |
+
device_context,
|
563 |
+
operation,
|
564 |
+
problem_space,
|
565 |
+
problem);
|
566 |
+
}
|
567 |
+
|
568 |
+
else {
|
569 |
+
// set verification map for cublas to not supported
|
570 |
+
results_.back().verification_map[library::Provider::kCUBLAS] = Disposition::kNotSupported;
|
571 |
+
}
|
572 |
+
}
|
573 |
+
#endif // #if CUTLASS_ENABLE_CUBLAS
|
574 |
+
|
575 |
+
// Update disposition to worst case verification outcome among all
|
576 |
+
// verification providers which are supported
|
577 |
+
bool is_any_verification_run_passed = false;
|
578 |
+
for(auto &m : results_.back().verification_map) {
|
579 |
+
if(m.second == Disposition::kFailed || m.second == Disposition::kIncorrect) {
|
580 |
+
results_.back().disposition = m.second;
|
581 |
+
return true;
|
582 |
+
}
|
583 |
+
if(!is_any_verification_run_passed && m.second == Disposition::kPassed) {
|
584 |
+
is_any_verification_run_passed = true;
|
585 |
+
}
|
586 |
+
}
|
587 |
+
|
588 |
+
if(is_any_verification_run_passed) {
|
589 |
+
results_.back().disposition = Disposition::kPassed;
|
590 |
+
}
|
591 |
+
}
|
592 |
+
|
593 |
+
// Return true means continue profiling
|
594 |
+
return true;
|
595 |
+
}
|
596 |
+
|
597 |
+
///////////////////////////////////////////////////////////////////////////////////////////////////
|
598 |
+
|
599 |
+
/// Verifies CUTLASS against references
|
600 |
+
bool RankKOperationProfiler::verify_with_cublas_(
|
601 |
+
Options const &options,
|
602 |
+
PerformanceReport &report,
|
603 |
+
DeviceContext &device_context,
|
604 |
+
library::Operation const *operation,
|
605 |
+
ProblemSpace const &problem_space,
|
606 |
+
ProblemSpace::Problem const &problem) {
|
607 |
+
|
608 |
+
|
609 |
+
#if CUTLASS_ENABLE_CUBLAS
|
610 |
+
|
611 |
+
library::RankKDescription const &rank_k_desc =
|
612 |
+
static_cast<library::RankKDescription const &>(operation->description());
|
613 |
+
|
614 |
+
//
|
615 |
+
// Construct cuBLAS operators
|
616 |
+
//
|
617 |
+
|
618 |
+
CublasCreate handle;
|
619 |
+
cublasStatus_t status = handle.get_cublas_create_status();
|
620 |
+
|
621 |
+
if (status != CUBLAS_STATUS_SUCCESS) {
|
622 |
+
|
623 |
+
results_.back().verification_map[library::Provider::kCUBLAS] = Disposition::kFailed;
|
624 |
+
return true;
|
625 |
+
}
|
626 |
+
|
627 |
+
//
|
628 |
+
// Initialize state
|
629 |
+
//
|
630 |
+
|
631 |
+
try {
|
632 |
+
|
633 |
+
//
|
634 |
+
// Construct dispatcher to cublas<t>Syrk()
|
635 |
+
//
|
636 |
+
|
637 |
+
// Initialize structure containing RankK arguments
|
638 |
+
rank_k_workspace_.arguments.A = rank_k_workspace_.A->data();
|
639 |
+
rank_k_workspace_.arguments.C = rank_k_workspace_.Reference->data();
|
640 |
+
rank_k_workspace_.arguments.D = rank_k_workspace_.Reference->data();
|
641 |
+
rank_k_workspace_.arguments.alpha = problem_.alpha.data();
|
642 |
+
rank_k_workspace_.arguments.beta = problem_.beta.data();
|
643 |
+
rank_k_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
644 |
+
|
645 |
+
detail::cublasRankKDispatcher rank_k_op(
|
646 |
+
rank_k_desc,
|
647 |
+
rank_k_workspace_.configuration,
|
648 |
+
rank_k_workspace_.arguments
|
649 |
+
);
|
650 |
+
|
651 |
+
if (rank_k_op.status != Status::kSuccess) {
|
652 |
+
results_.back().verification_map[library::Provider::kCUBLAS] = Disposition::kNotRun;
|
653 |
+
return true;
|
654 |
+
}
|
655 |
+
|
656 |
+
results_.back().status = Status::kSuccess;
|
657 |
+
|
658 |
+
status = rank_k_op(handle);
|
659 |
+
|
660 |
+
// Handle errors
|
661 |
+
if (status != CUBLAS_STATUS_SUCCESS) {
|
662 |
+
|
663 |
+
results_.back().verification_map[library::Provider::kCUBLAS] = Disposition::kFailed;
|
664 |
+
return true;
|
665 |
+
}
|
666 |
+
|
667 |
+
//
|
668 |
+
// Verify results
|
669 |
+
//
|
670 |
+
|
671 |
+
results_.back().verification_map[library::Provider::kCUBLAS] = compare_tensors(
|
672 |
+
options,
|
673 |
+
*rank_k_workspace_.Computed,
|
674 |
+
*rank_k_workspace_.Reference
|
675 |
+
);
|
676 |
+
|
677 |
+
// Save workspace if incorrect
|
678 |
+
if (options.verification.save_workspace == SaveWorkspace::kIncorrect &&
|
679 |
+
results_.back().verification_map[library::Provider::kCUBLAS] == Disposition::kIncorrect) {
|
680 |
+
|
681 |
+
save_workspace(
|
682 |
+
device_context,
|
683 |
+
options,
|
684 |
+
rank_k_desc,
|
685 |
+
library::Provider::kCUTLASS,
|
686 |
+
library::Provider::kCUBLAS);
|
687 |
+
}
|
688 |
+
}
|
689 |
+
catch (...) {
|
690 |
+
results_.back().verification_map[library::Provider::kCUBLAS] = Disposition::kFailed;
|
691 |
+
}
|
692 |
+
|
693 |
+
#endif
|
694 |
+
|
695 |
+
// Return true means continue profiling
|
696 |
+
return true;
|
697 |
+
}
|
698 |
+
|
699 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
700 |
+
|
701 |
+
/// Measures performance results
|
702 |
+
bool RankKOperationProfiler::profile(
|
703 |
+
Options const &options,
|
704 |
+
PerformanceReport &report,
|
705 |
+
DeviceContext &device_context,
|
706 |
+
library::Operation const *operation,
|
707 |
+
ProblemSpace const &problem_space,
|
708 |
+
ProblemSpace::Problem const &problem) {
|
709 |
+
|
710 |
+
if (options.profiling.provider_enabled(library::Provider::kCUTLASS)) {
|
711 |
+
|
712 |
+
// Initialize structure containing RankK arguments
|
713 |
+
rank_k_workspace_.arguments.A = rank_k_workspace_.A->data();
|
714 |
+
rank_k_workspace_.arguments.C = rank_k_workspace_.C->data();
|
715 |
+
rank_k_workspace_.arguments.D = rank_k_workspace_.Computed->data();
|
716 |
+
rank_k_workspace_.arguments.alpha = problem_.alpha.data();
|
717 |
+
rank_k_workspace_.arguments.beta = problem_.beta.data();
|
718 |
+
rank_k_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
719 |
+
|
720 |
+
results_.back().status = profile_cutlass_(
|
721 |
+
results_.back().runtime,
|
722 |
+
options,
|
723 |
+
operation,
|
724 |
+
&rank_k_workspace_.arguments,
|
725 |
+
rank_k_workspace_.host_workspace.data(),
|
726 |
+
rank_k_workspace_.device_workspace.data()
|
727 |
+
);
|
728 |
+
}
|
729 |
+
return true;
|
730 |
+
}
|
731 |
+
|
732 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
733 |
+
|
734 |
+
} // namespace profiler
|
735 |
+
} // namespace cutlass
|
736 |
+
|
737 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/sparse_gemm_operation_profiler.cu
ADDED
@@ -0,0 +1,598 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief Execution environment
|
33 |
+
|
34 |
+
*/
|
35 |
+
|
36 |
+
#include <iostream>
|
37 |
+
#include <stdexcept>
|
38 |
+
#include <iomanip>
|
39 |
+
#include <ios>
|
40 |
+
|
41 |
+
#include "cutlass/profiler/cublas_helpers.h"
|
42 |
+
#include "cutlass/profiler/sparse_gemm_operation_profiler.h"
|
43 |
+
#include "cutlass/profiler/gpu_timer.h"
|
44 |
+
|
45 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
46 |
+
|
47 |
+
namespace cutlass {
|
48 |
+
namespace profiler {
|
49 |
+
|
50 |
+
|
51 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
52 |
+
|
53 |
+
/// Ctor
|
54 |
+
SparseGemmOperationProfiler::SparseGemmOperationProfiler(Options const &options):
|
55 |
+
OperationProfiler(
|
56 |
+
options,
|
57 |
+
library::OperationKind::kSparseGemm,
|
58 |
+
{
|
59 |
+
{ArgumentTypeID::kEnumerated, {"gemm_kind"}, "Variant of GEMM (e.g. sparse, ...)"},
|
60 |
+
{ArgumentTypeID::kInteger, {"m", "problem-size::m"}, "M dimension of the GEMM problem space"},
|
61 |
+
{ArgumentTypeID::kInteger, {"n", "problem-size::n"}, "N dimension of the GEMM problem space"},
|
62 |
+
{ArgumentTypeID::kInteger, {"k", "problem-size::k"}, "K dimension of the GEMM problem space"},
|
63 |
+
{ArgumentTypeID::kTensor, {"A"}, "Tensor storing the A operand"},
|
64 |
+
{ArgumentTypeID::kTensor, {"B"}, "Tensor storing the B operand"},
|
65 |
+
{ArgumentTypeID::kTensor, {"C"}, "Tensor storing the C operand"},
|
66 |
+
{ArgumentTypeID::kTensor, {"E"}, "Tensor storing the E operand"},
|
67 |
+
{ArgumentTypeID::kScalar, {"alpha", "epilogue::alpha"}, "Epilogue scalar alpha"},
|
68 |
+
{ArgumentTypeID::kScalar, {"beta", "epilogue::beta"}, "Epilogue scalar beta"},
|
69 |
+
{ArgumentTypeID::kInteger, {"split_k_slices"}, "Number of partitions of K dimension"},
|
70 |
+
{ArgumentTypeID::kInteger, {"batch_count"}, "Number of GEMMs computed in one batch"},
|
71 |
+
}
|
72 |
+
) {
|
73 |
+
|
74 |
+
description_ = " Structured sparse GEMM. D = alpha * A*B + beta * C";
|
75 |
+
}
|
76 |
+
|
77 |
+
/// Destructor
|
78 |
+
SparseGemmOperationProfiler::~SparseGemmOperationProfiler() {
|
79 |
+
|
80 |
+
}
|
81 |
+
|
82 |
+
/// Prints usage statement for the math function
|
83 |
+
void SparseGemmOperationProfiler::print_usage(std::ostream &out) const {
|
84 |
+
out << "Sparse GEMM" << "\n\n";
|
85 |
+
|
86 |
+
OperationProfiler::print_usage(out);
|
87 |
+
}
|
88 |
+
|
89 |
+
/// Prints examples
|
90 |
+
void SparseGemmOperationProfiler::print_examples(std::ostream &out) const {
|
91 |
+
|
92 |
+
out << "\nExamples:\n\n"
|
93 |
+
<< "Profile a particular problem size:\n"
|
94 |
+
<< " $ cutlass_profiler --operation=SparseGemm --m=1024 --n=1024 --k=128\n\n"
|
95 |
+
|
96 |
+
<< "Schmoo over problem size and beta:\n"
|
97 |
+
<< " $ cutlass_profiler --operation=SparseGemm --m=1024:4096:256 --n=1024:4096:256 --k=128:8192:128 --beta=0,1,2.5\n\n"
|
98 |
+
|
99 |
+
<< "Schmoo over accumulator types:\n"
|
100 |
+
<< " $ cutlass_profiler --operation=SparseGemm --accumulator-type=f16,f32\n\n"
|
101 |
+
|
102 |
+
<< "Run when A is f16 with column-major and B is any datatype with row-major (For column major, use column, col, or n. For row major use, row or t):\n"
|
103 |
+
<< " $ cutlass_profiler --operation=SparseGemm --A=f16:column --B=*:row\n\n"
|
104 |
+
|
105 |
+
<< "Using various input value distribution:\n"
|
106 |
+
<< " $ cutlass_profiler --operation=SparseGemm --dist=uniform,min:0,max:3\n"
|
107 |
+
<< " $ cutlass_profiler --operation=SparseGemm --dist=gaussian,mean:0,stddev:3\n"
|
108 |
+
<< " $ cutlass_profiler --operation=SparseGemm --dist=sequential,start:0,delta:1\n\n"
|
109 |
+
|
110 |
+
<< "Run a kernel with cta tile size of 256x128x32 and save workspace if results are incorrect (note that --cta-tile::k=32 is default cta-tile size):\n"
|
111 |
+
<< " $ cutlass_profiler --operation=SparseGemm --cta_m=256 --cta_n=128 --cta_k=32 --save-workspace=incorrect\n\n"
|
112 |
+
|
113 |
+
<< "Test your changes to gemm kernels with a quick functional test and save results in functional-test.csv:\n"
|
114 |
+
<< " $ cutlass_profiler --operation=SparseGemm \\ \n"
|
115 |
+
<< " --m=8,56,120,136,256,264,512,520,1024,1032,4096,8192,16384 \\ \n"
|
116 |
+
<< " --n=8,56,120,136,256,264,512,520,1024,1032,4096,8192,16384 \\ \n"
|
117 |
+
<< " --k=8,16,32,64,128,256,288,384,504,512,520 \\ \n"
|
118 |
+
<< " --beta=0,1,2 --profiling-iterations=1 \\ \n"
|
119 |
+
<< " --providers=cutlass --output=functional-test.csv\n\n";
|
120 |
+
}
|
121 |
+
|
122 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
123 |
+
|
124 |
+
Status SparseGemmOperationProfiler::SparseGemmProblem::parse(
|
125 |
+
library::SparseGemmDescription const &operation_desc,
|
126 |
+
ProblemSpace const &problem_space,
|
127 |
+
ProblemSpace::Problem const &problem) {
|
128 |
+
|
129 |
+
if (!arg_as_int(this->m, "m", problem_space, problem)) {
|
130 |
+
// default value
|
131 |
+
this->m = 1024;
|
132 |
+
}
|
133 |
+
|
134 |
+
if (!arg_as_int(this->n, "n", problem_space, problem)) {
|
135 |
+
// default value
|
136 |
+
this->n = 1024;
|
137 |
+
}
|
138 |
+
|
139 |
+
if (!arg_as_int(this->k, "k", problem_space, problem)) {
|
140 |
+
// default value
|
141 |
+
this->k = 1024;
|
142 |
+
}
|
143 |
+
|
144 |
+
if (!arg_as_int(this->split_k_slices, "split_k_slices", problem_space, problem)) {
|
145 |
+
// default value
|
146 |
+
this->split_k_slices = 1;
|
147 |
+
}
|
148 |
+
|
149 |
+
if (!arg_as_int(this->batch_count, "batch_count", problem_space, problem)) {
|
150 |
+
// default value
|
151 |
+
this->batch_count = 1;
|
152 |
+
}
|
153 |
+
|
154 |
+
if (!tensor_description_satisfies(operation_desc.A, "A", problem_space, problem)) {
|
155 |
+
return Status::kErrorInvalidProblem;
|
156 |
+
}
|
157 |
+
|
158 |
+
if (!tensor_description_satisfies(operation_desc.B, "B", problem_space, problem)) {
|
159 |
+
return Status::kErrorInvalidProblem;
|
160 |
+
}
|
161 |
+
|
162 |
+
if (!tensor_description_satisfies(operation_desc.C, "C", problem_space, problem)) {
|
163 |
+
return Status::kErrorInvalidProblem;
|
164 |
+
}
|
165 |
+
|
166 |
+
if (!tensor_description_satisfies(operation_desc.E, "E", problem_space, problem)) {
|
167 |
+
return Status::kErrorInvalidProblem;
|
168 |
+
}
|
169 |
+
|
170 |
+
if (!arg_as_scalar(
|
171 |
+
this->alpha,
|
172 |
+
operation_desc.element_epilogue,
|
173 |
+
"alpha",
|
174 |
+
problem_space,
|
175 |
+
problem)) {
|
176 |
+
|
177 |
+
if (!cast_from_double(this->alpha, operation_desc.element_epilogue, 1)) {
|
178 |
+
return Status::kErrorInternal;
|
179 |
+
}
|
180 |
+
}
|
181 |
+
|
182 |
+
if (!arg_as_scalar(
|
183 |
+
this->beta,
|
184 |
+
operation_desc.element_epilogue,
|
185 |
+
"beta",
|
186 |
+
problem_space,
|
187 |
+
problem)) {
|
188 |
+
|
189 |
+
if (!cast_from_double(this->beta, operation_desc.element_epilogue, 0)) {
|
190 |
+
return Status::kErrorInternal;
|
191 |
+
}
|
192 |
+
}
|
193 |
+
|
194 |
+
this->elements_per_128b =
|
195 |
+
128 / library::sizeof_bits(operation_desc.A.element);
|
196 |
+
|
197 |
+
this->lda = DeviceAllocation::get_packed_layout(
|
198 |
+
operation_desc.A.layout,
|
199 |
+
{int(this->m), int(this->k) / int(this->sparse)})
|
200 |
+
.front();
|
201 |
+
|
202 |
+
this->ldb = DeviceAllocation::get_packed_layout(
|
203 |
+
operation_desc.B.layout, {int(this->k), int(this->n)}).front();
|
204 |
+
|
205 |
+
this->ldc = DeviceAllocation::get_packed_layout(
|
206 |
+
operation_desc.C.layout, {int(this->m), int(this->n)}).front();
|
207 |
+
|
208 |
+
this->lde =
|
209 |
+
DeviceAllocation::get_packed_layout(
|
210 |
+
operation_desc.E.layout,
|
211 |
+
{int(this->m), int(this->k / this->sparse / this->elements_per_128b)})
|
212 |
+
.front();
|
213 |
+
|
214 |
+
return Status::kSuccess;
|
215 |
+
}
|
216 |
+
|
217 |
+
/// Initializes a performance result
|
218 |
+
void SparseGemmOperationProfiler::SparseGemmProblem::initialize_result(
|
219 |
+
PerformanceResult &result,
|
220 |
+
library::SparseGemmDescription const &operation_desc,
|
221 |
+
ProblemSpace const &problem_space) {
|
222 |
+
|
223 |
+
result.arguments.resize(problem_space.rank());
|
224 |
+
|
225 |
+
set_argument(result, "gemm_kind", problem_space, library::to_string(operation_desc.gemm_kind));
|
226 |
+
|
227 |
+
set_argument(result, "A", problem_space,
|
228 |
+
std::string(library::to_string(operation_desc.A.element)) + ":" + library::to_string(operation_desc.A.layout));
|
229 |
+
|
230 |
+
set_argument(result, "B", problem_space,
|
231 |
+
std::string(library::to_string(operation_desc.B.element)) + ":" + library::to_string(operation_desc.B.layout));
|
232 |
+
|
233 |
+
set_argument(result, "C", problem_space,
|
234 |
+
std::string(library::to_string(operation_desc.C.element)) + ":" + library::to_string(operation_desc.C.layout));
|
235 |
+
|
236 |
+
set_argument(result, "E", problem_space,
|
237 |
+
std::string(library::to_string(operation_desc.E.element)) + ":" + library::to_string(operation_desc.E.layout));
|
238 |
+
|
239 |
+
set_argument(result, "m", problem_space, m);
|
240 |
+
set_argument(result, "n", problem_space, n);
|
241 |
+
set_argument(result, "k", problem_space, k);
|
242 |
+
|
243 |
+
set_argument(result, "split_k_slices", problem_space, split_k_slices);
|
244 |
+
set_argument(result, "batch_count", problem_space, batch_count);
|
245 |
+
|
246 |
+
set_argument(result, "alpha", problem_space,
|
247 |
+
library::lexical_cast(alpha, operation_desc.element_epilogue));
|
248 |
+
|
249 |
+
set_argument(result, "beta", problem_space,
|
250 |
+
library::lexical_cast(beta, operation_desc.element_epilogue));
|
251 |
+
}
|
252 |
+
|
253 |
+
/// Extracts the problem dimensions
|
254 |
+
Status SparseGemmOperationProfiler::initialize_configuration(
|
255 |
+
Options const &options,
|
256 |
+
PerformanceReport &report,
|
257 |
+
DeviceContext &device_context,
|
258 |
+
library::Operation const *operation,
|
259 |
+
ProblemSpace const &problem_space,
|
260 |
+
ProblemSpace::Problem const &problem) {
|
261 |
+
|
262 |
+
library::SparseGemmDescription const &operation_desc =
|
263 |
+
static_cast<library::SparseGemmDescription const &>(operation->description());
|
264 |
+
|
265 |
+
if (operation_desc.gemm_kind != library::GemmKind::kSparse) {
|
266 |
+
return Status::kErrorInvalidProblem;
|
267 |
+
}
|
268 |
+
|
269 |
+
Status status = problem_.parse(operation_desc, problem_space, problem);
|
270 |
+
|
271 |
+
if (status != Status::kSuccess) {
|
272 |
+
return status;
|
273 |
+
}
|
274 |
+
|
275 |
+
gemm_workspace_.configuration.problem_size.m() = int(problem_.m);
|
276 |
+
gemm_workspace_.configuration.problem_size.n() = int(problem_.n);
|
277 |
+
gemm_workspace_.configuration.problem_size.k() = int(problem_.k);
|
278 |
+
gemm_workspace_.configuration.lda = problem_.lda;
|
279 |
+
gemm_workspace_.configuration.ldb = problem_.ldb;
|
280 |
+
gemm_workspace_.configuration.ldc = problem_.ldc;
|
281 |
+
gemm_workspace_.configuration.ldd = problem_.ldc;
|
282 |
+
gemm_workspace_.configuration.lde = problem_.lde;
|
283 |
+
|
284 |
+
gemm_workspace_.arguments.A = nullptr;
|
285 |
+
gemm_workspace_.arguments.B = nullptr;
|
286 |
+
gemm_workspace_.arguments.C = nullptr;
|
287 |
+
gemm_workspace_.arguments.D = nullptr;
|
288 |
+
gemm_workspace_.arguments.E = nullptr;
|
289 |
+
gemm_workspace_.arguments.alpha = problem_.alpha.data();
|
290 |
+
gemm_workspace_.arguments.beta = problem_.beta.data();
|
291 |
+
gemm_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
292 |
+
|
293 |
+
initialize_result_(this->model_result_, options, operation_desc, problem_space);
|
294 |
+
|
295 |
+
return operation->can_implement(&gemm_workspace_.configuration, &gemm_workspace_.arguments);
|
296 |
+
}
|
297 |
+
|
298 |
+
/// Initializes the performance result
|
299 |
+
void SparseGemmOperationProfiler::initialize_result_(
|
300 |
+
PerformanceResult &result,
|
301 |
+
Options const &options,
|
302 |
+
library::SparseGemmDescription const &operation_desc,
|
303 |
+
ProblemSpace const &problem_space) {
|
304 |
+
|
305 |
+
result.provider = library::Provider::kCUTLASS;
|
306 |
+
result.disposition = Disposition::kNotRun;
|
307 |
+
result.status = Status::kSuccess;
|
308 |
+
result.operation_name = operation_desc.name;
|
309 |
+
|
310 |
+
problem_.initialize_result(result, operation_desc, problem_space);
|
311 |
+
|
312 |
+
OperationProfiler::initialize_result_(result, operation_desc, problem_space);
|
313 |
+
|
314 |
+
// Input bytes read and Output bytes written for the gemm problem
|
315 |
+
result.bytes =
|
316 |
+
int64_t(library::sizeof_bits(operation_desc.A.element) * problem_.m / 8) *
|
317 |
+
problem_.k / problem_.sparse +
|
318 |
+
int64_t(library::sizeof_bits(operation_desc.B.element) * problem_.n / 8) *
|
319 |
+
problem_.k +
|
320 |
+
int64_t(library::sizeof_bits(operation_desc.C.element) * problem_.m / 8) *
|
321 |
+
problem_.n +
|
322 |
+
int64_t(library::sizeof_bits(operation_desc.E.element) * problem_.m / 8) *
|
323 |
+
problem_.k / problem_.sparse / problem_.elements_per_128b;
|
324 |
+
|
325 |
+
// Set is_beta_zero true if beta is zero
|
326 |
+
bool is_beta_zero = std::all_of(problem_.beta.begin(), problem_.beta.end(), [](uint8_t i) { return i==0; });
|
327 |
+
|
328 |
+
// Output bytes read for the gemm problem for non-zero beta values
|
329 |
+
if (!is_beta_zero) {
|
330 |
+
result.bytes += int64_t(library::sizeof_bits(operation_desc.C.element) * problem_.m / 8) * problem_.n;
|
331 |
+
}
|
332 |
+
|
333 |
+
result.flops = 2 * (problem_.m * problem_.n * problem_.k + problem_.m * problem_.n);
|
334 |
+
result.runtime = 0;
|
335 |
+
|
336 |
+
}
|
337 |
+
|
338 |
+
/// Initializes workspace
|
339 |
+
Status SparseGemmOperationProfiler::initialize_workspace(
|
340 |
+
Options const &options,
|
341 |
+
PerformanceReport &report,
|
342 |
+
DeviceContext &device_context,
|
343 |
+
library::Operation const *operation,
|
344 |
+
ProblemSpace const &problem_space,
|
345 |
+
ProblemSpace::Problem const &problem) {
|
346 |
+
|
347 |
+
if (options.device.devices.size() != 1) {
|
348 |
+
throw std::runtime_error("This operation profiler only supports a single "
|
349 |
+
"device.");
|
350 |
+
}
|
351 |
+
|
352 |
+
cudaError_t result;
|
353 |
+
result = cudaSetDevice(options.device.device_id(0));
|
354 |
+
if (result != cudaSuccess) {
|
355 |
+
throw std::runtime_error("cudaSetDevice() failed.");
|
356 |
+
}
|
357 |
+
|
358 |
+
library::SparseGemmDescription const &operation_desc =
|
359 |
+
static_cast<library::SparseGemmDescription const &>(operation->description());
|
360 |
+
|
361 |
+
if (options.execution_mode != ExecutionMode::kDryRun) {
|
362 |
+
int seed_shift = 0;
|
363 |
+
gemm_workspace_.A = device_context.allocate_and_initialize_tensor(
|
364 |
+
options,
|
365 |
+
"A",
|
366 |
+
operation_desc.A.element,
|
367 |
+
operation_desc.A.layout,
|
368 |
+
{int(problem_.m), int(problem_.k) / int(problem_.sparse)},
|
369 |
+
{int(problem_.lda)},
|
370 |
+
1, // batch_count
|
371 |
+
seed_shift++,
|
372 |
+
0 // device_index
|
373 |
+
);
|
374 |
+
|
375 |
+
gemm_workspace_.B = device_context.allocate_and_initialize_tensor(
|
376 |
+
options,
|
377 |
+
"B",
|
378 |
+
operation_desc.B.element,
|
379 |
+
operation_desc.B.layout,
|
380 |
+
{int(problem_.k), int(problem_.n)},
|
381 |
+
{int(problem_.ldb)},
|
382 |
+
1, // batch_count
|
383 |
+
seed_shift++,
|
384 |
+
0 // device_index
|
385 |
+
);
|
386 |
+
|
387 |
+
gemm_workspace_.C = device_context.allocate_and_initialize_tensor(
|
388 |
+
options,
|
389 |
+
"C",
|
390 |
+
operation_desc.C.element,
|
391 |
+
operation_desc.C.layout,
|
392 |
+
{int(problem_.m), int(problem_.n)},
|
393 |
+
{int(problem_.ldc)},
|
394 |
+
1, // batch_count
|
395 |
+
seed_shift++,
|
396 |
+
0 // device_index
|
397 |
+
);
|
398 |
+
|
399 |
+
gemm_workspace_.Computed = device_context.allocate_tensor(
|
400 |
+
options,
|
401 |
+
"D",
|
402 |
+
operation_desc.C.element,
|
403 |
+
operation_desc.C.layout,
|
404 |
+
{int(problem_.m), int(problem_.n)},
|
405 |
+
{int(problem_.ldc)},
|
406 |
+
1, // batch_count
|
407 |
+
0 // device_index
|
408 |
+
);
|
409 |
+
|
410 |
+
gemm_workspace_.E = device_context.allocate_and_initialize_sparsemeta_tensor(
|
411 |
+
options,
|
412 |
+
"E",
|
413 |
+
operation_desc.E.element,
|
414 |
+
operation_desc.E.layout,
|
415 |
+
operation_desc.A.element,
|
416 |
+
{int(problem_.m), int(problem_.k) / int(problem_.sparse) / int(problem_.elements_per_128b)},
|
417 |
+
{int(problem_.lde)},
|
418 |
+
1, // batch_count
|
419 |
+
seed_shift++,
|
420 |
+
0 // device_index
|
421 |
+
);
|
422 |
+
|
423 |
+
gemm_workspace_.Reference = device_context.allocate_tensor(
|
424 |
+
options,
|
425 |
+
"Reference",
|
426 |
+
operation_desc.C.element,
|
427 |
+
operation_desc.C.layout,
|
428 |
+
{int(problem_.m), int(problem_.n)},
|
429 |
+
{int(problem_.ldc)},
|
430 |
+
1, // batch_count
|
431 |
+
0 // device_index
|
432 |
+
);
|
433 |
+
|
434 |
+
gemm_workspace_.Reference->copy_from_device(gemm_workspace_.C->data());
|
435 |
+
}
|
436 |
+
|
437 |
+
//
|
438 |
+
// Initialize the CUTLASS operation
|
439 |
+
//
|
440 |
+
|
441 |
+
Status status = Status::kSuccess;
|
442 |
+
|
443 |
+
if (options.profiling.provider_enabled(library::Provider::kCUTLASS)) {
|
444 |
+
|
445 |
+
if (options.execution_mode != ExecutionMode::kDryRun) {
|
446 |
+
|
447 |
+
uint64_t workspace_size = operation->get_host_workspace_size(&gemm_workspace_.configuration);
|
448 |
+
gemm_workspace_.host_workspace.resize(workspace_size, 0);
|
449 |
+
|
450 |
+
workspace_size = operation->get_device_workspace_size(&gemm_workspace_.configuration);
|
451 |
+
gemm_workspace_.device_workspace.reset(library::NumericTypeID::kU8, workspace_size);
|
452 |
+
|
453 |
+
status = operation->initialize(
|
454 |
+
&gemm_workspace_.configuration,
|
455 |
+
gemm_workspace_.host_workspace.data(),
|
456 |
+
gemm_workspace_.device_workspace.data());
|
457 |
+
}
|
458 |
+
|
459 |
+
//
|
460 |
+
// If CUTLASS is enabled, generate a result for it
|
461 |
+
//
|
462 |
+
|
463 |
+
results_.push_back(model_result_);
|
464 |
+
results_.back().provider = library::Provider::kCUTLASS;
|
465 |
+
results_.back().op_kind = library::OperationKind::kSparseGemm;
|
466 |
+
results_.back().disposition = Disposition::kNotRun;
|
467 |
+
|
468 |
+
for(auto &verification_provider : options.verification.providers) {
|
469 |
+
results_.back().verification_map[verification_provider] = Disposition::kNotRun;
|
470 |
+
}
|
471 |
+
}
|
472 |
+
|
473 |
+
return status;
|
474 |
+
}
|
475 |
+
|
476 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
477 |
+
|
478 |
+
/// Verifies CUTLASS against references
|
479 |
+
bool SparseGemmOperationProfiler::verify_cutlass(
|
480 |
+
Options const &options,
|
481 |
+
PerformanceReport &report,
|
482 |
+
DeviceContext &device_context,
|
483 |
+
library::Operation const *operation,
|
484 |
+
ProblemSpace const &problem_space,
|
485 |
+
ProblemSpace::Problem const &problem) {
|
486 |
+
|
487 |
+
if (!options.profiling.provider_enabled(library::Provider::kCUTLASS)) {
|
488 |
+
return true;
|
489 |
+
}
|
490 |
+
|
491 |
+
if (options.execution_mode == ExecutionMode::kDryRun) {
|
492 |
+
return true;
|
493 |
+
}
|
494 |
+
|
495 |
+
// Initialize structure containing GEMM arguments
|
496 |
+
gemm_workspace_.arguments.A = gemm_workspace_.A->data();
|
497 |
+
gemm_workspace_.arguments.B = gemm_workspace_.B->data();
|
498 |
+
gemm_workspace_.arguments.C = gemm_workspace_.C->data();
|
499 |
+
gemm_workspace_.arguments.D = gemm_workspace_.Computed->data();
|
500 |
+
gemm_workspace_.arguments.E = gemm_workspace_.E->data();
|
501 |
+
gemm_workspace_.arguments.alpha = problem_.alpha.data();
|
502 |
+
gemm_workspace_.arguments.beta = problem_.beta.data();
|
503 |
+
gemm_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
504 |
+
|
505 |
+
//
|
506 |
+
// Run the CUTLASS operation
|
507 |
+
//
|
508 |
+
|
509 |
+
results_.back().status = operation->run(
|
510 |
+
&gemm_workspace_.arguments,
|
511 |
+
gemm_workspace_.host_workspace.data(),
|
512 |
+
gemm_workspace_.device_workspace.data());
|
513 |
+
|
514 |
+
if (results_.back().status != Status::kSuccess) {
|
515 |
+
results_.back().disposition = Disposition::kFailed;
|
516 |
+
return false;
|
517 |
+
}
|
518 |
+
|
519 |
+
cudaError_t result = cudaDeviceSynchronize();
|
520 |
+
if (result != cudaSuccess) {
|
521 |
+
results_.back().disposition = Disposition::kFailed;
|
522 |
+
return false;
|
523 |
+
}
|
524 |
+
|
525 |
+
// CUTLASS op ran the but not yet verified against any verification provider
|
526 |
+
results_.back().disposition = Disposition::kNotVerified;
|
527 |
+
|
528 |
+
//
|
529 |
+
// Run verification providers
|
530 |
+
//
|
531 |
+
|
532 |
+
if (options.verification.enabled) {
|
533 |
+
|
534 |
+
// Update disposition to worst case verification outcome among all
|
535 |
+
// verification providers which are supported
|
536 |
+
bool is_any_verification_run_passed = false;
|
537 |
+
|
538 |
+
for(auto &m : results_.back().verification_map) {
|
539 |
+
if(m.second == Disposition::kFailed || m.second == Disposition::kIncorrect) {
|
540 |
+
results_.back().disposition = m.second;
|
541 |
+
return true;
|
542 |
+
}
|
543 |
+
if(!is_any_verification_run_passed && m.second == Disposition::kPassed) {
|
544 |
+
is_any_verification_run_passed = true;
|
545 |
+
}
|
546 |
+
}
|
547 |
+
|
548 |
+
if(is_any_verification_run_passed) {
|
549 |
+
results_.back().disposition = Disposition::kPassed;
|
550 |
+
}
|
551 |
+
}
|
552 |
+
|
553 |
+
// Return true means continue profiling
|
554 |
+
return true;
|
555 |
+
}
|
556 |
+
|
557 |
+
///////////////////////////////////////////////////////////////////////////////////////////////////
|
558 |
+
|
559 |
+
/// Measures performance results
|
560 |
+
bool SparseGemmOperationProfiler::profile(
|
561 |
+
Options const &options,
|
562 |
+
PerformanceReport &report,
|
563 |
+
DeviceContext &device_context,
|
564 |
+
library::Operation const *operation,
|
565 |
+
ProblemSpace const &problem_space,
|
566 |
+
ProblemSpace::Problem const &problem) {
|
567 |
+
|
568 |
+
if (options.profiling.provider_enabled(library::Provider::kCUTLASS)) {
|
569 |
+
|
570 |
+
// Initialize structure containing GEMM arguments
|
571 |
+
gemm_workspace_.arguments.A = gemm_workspace_.A->data();
|
572 |
+
gemm_workspace_.arguments.B = gemm_workspace_.B->data();
|
573 |
+
gemm_workspace_.arguments.C = gemm_workspace_.C->data();
|
574 |
+
gemm_workspace_.arguments.D = gemm_workspace_.Computed->data();
|
575 |
+
gemm_workspace_.arguments.E = gemm_workspace_.E->data();
|
576 |
+
gemm_workspace_.arguments.alpha = problem_.alpha.data();
|
577 |
+
gemm_workspace_.arguments.beta = problem_.beta.data();
|
578 |
+
gemm_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
579 |
+
|
580 |
+
results_.back().status = profile_cutlass_(
|
581 |
+
results_.back().runtime,
|
582 |
+
options,
|
583 |
+
operation,
|
584 |
+
&gemm_workspace_.arguments,
|
585 |
+
gemm_workspace_.host_workspace.data(),
|
586 |
+
gemm_workspace_.device_workspace.data()
|
587 |
+
);
|
588 |
+
}
|
589 |
+
|
590 |
+
return true;
|
591 |
+
}
|
592 |
+
|
593 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
594 |
+
|
595 |
+
} // namespace profiler
|
596 |
+
} // namespace cutlass
|
597 |
+
|
598 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/symm_operation_profiler.cu
ADDED
@@ -0,0 +1,790 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief Execution environment
|
33 |
+
|
34 |
+
|
35 |
+
*/
|
36 |
+
|
37 |
+
#include <iostream>
|
38 |
+
#include <stdexcept>
|
39 |
+
#include <iomanip>
|
40 |
+
#include <ios>
|
41 |
+
|
42 |
+
#include "cutlass/core_io.h"
|
43 |
+
|
44 |
+
#include "cutlass/profiler/cublas_helpers.h"
|
45 |
+
#include "cutlass/profiler/symm_operation_profiler.h"
|
46 |
+
#include "cutlass/profiler/gpu_timer.h"
|
47 |
+
|
48 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
49 |
+
|
50 |
+
namespace cutlass {
|
51 |
+
namespace profiler {
|
52 |
+
|
53 |
+
|
54 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
55 |
+
|
56 |
+
/// Ctor
|
57 |
+
SymmOperationProfiler::SymmOperationProfiler(Options const &options):
|
58 |
+
OperationProfiler(
|
59 |
+
options,
|
60 |
+
library::OperationKind::kSymm,
|
61 |
+
{
|
62 |
+
{ArgumentTypeID::kEnumerated, {"symm_kind"}, "Variant of Symm (universal)"},
|
63 |
+
{ArgumentTypeID::kInteger, {"m", "problem-size::m"}, "M dimension of the Symm problem space"},
|
64 |
+
{ArgumentTypeID::kInteger, {"n", "problem-size::n"}, "N dimension of the Symm problem space"},
|
65 |
+
{ArgumentTypeID::kTensor, {"A"}, "Tensor storing the A operand"},
|
66 |
+
{ArgumentTypeID::kTensor, {"B"}, "Tensor storing the B operand"},
|
67 |
+
{ArgumentTypeID::kTensor, {"C"}, "Tensor storing the C operand"},
|
68 |
+
{ArgumentTypeID::kEnumerated, {"side_mode"}, "Side Mode for Symm kernel (left or right)"},
|
69 |
+
{ArgumentTypeID::kEnumerated, {"fill_mode"}, "Fill Mode for Symm kernel (lower or upper)"},
|
70 |
+
{ArgumentTypeID::kEnumerated, {"blas_mode"}, "Blas Mode for Symm kernel (symmetric or hermitian)"},
|
71 |
+
{ArgumentTypeID::kScalar, {"alpha", "epilogue::alpha"}, "Epilogue scalar alpha"},
|
72 |
+
{ArgumentTypeID::kScalar, {"beta", "epilogue::beta"}, "Epilogue scalar beta"},
|
73 |
+
{ArgumentTypeID::kInteger, {"split_k_slices", "split-k-slices"}, "Number of partitions of K dimension"},
|
74 |
+
{ArgumentTypeID::kInteger, {"batch_count", "batch-count"}, "Number of Symm computed in one batch"},
|
75 |
+
},
|
76 |
+
{ library::Provider::kCUBLAS }
|
77 |
+
) {
|
78 |
+
description_ = " Symmetric Matrix-Matrix Multiplication. D = alpha * A * B OR alpha * B * A + beta * C (where A is symmetric/hermitian)";
|
79 |
+
}
|
80 |
+
|
81 |
+
/// Destructor
|
82 |
+
SymmOperationProfiler::~SymmOperationProfiler() {
|
83 |
+
|
84 |
+
}
|
85 |
+
|
86 |
+
/// Prints usage statement for the math function
|
87 |
+
void SymmOperationProfiler::print_usage(std::ostream &out) const {
|
88 |
+
out << "Symm" << "\n\n";
|
89 |
+
|
90 |
+
OperationProfiler::print_usage(out);
|
91 |
+
}
|
92 |
+
|
93 |
+
/// Prints examples
|
94 |
+
void SymmOperationProfiler::print_examples(std::ostream &out) const {
|
95 |
+
|
96 |
+
out << "\nExamples:\n\n"
|
97 |
+
<< "Profile a particular problem size SYMM kernel:\n"
|
98 |
+
<< " $ cutlass_profiler --operation=Symm --blas_mode=symmetric --m=1024 --n=128\n\n"
|
99 |
+
|
100 |
+
<< "Profile a particular problem size HEMM kernel:\n"
|
101 |
+
<< " $ cutlass_profiler --operation=Symm --blas_mode=hermitian --m=1024 --n=128\n\n"
|
102 |
+
|
103 |
+
<< "Schmoo over problem size and beta:\n"
|
104 |
+
<< " $ cutlass_profiler --operation=Symm --m=1024:4096:256 --n=128:8192:128 --beta=0,1,2.5\n\n"
|
105 |
+
|
106 |
+
<< "Schmoo over accumulator types:\n"
|
107 |
+
<< " $ cutlass_profiler --operation=Symm --accumulator-type=f16,f32\n\n"
|
108 |
+
|
109 |
+
<< "Schmoo over side modees:\n"
|
110 |
+
<< " $ cutlass_profiler --operation=Symm --side_mode=left/right\n\n"
|
111 |
+
|
112 |
+
<< "Schmoo over fill modees:\n"
|
113 |
+
<< " $ cutlass_profiler --operation=Symm --fill_mode=lower/upper\n\n"
|
114 |
+
|
115 |
+
<< "Run when A is f16 with column-major or A is any datatype with row-major (For column major, use column, col, or n. For row major use, row or t):\n"
|
116 |
+
<< " $ cutlass_profiler --operation=Symm --A=f16:column or --A=*:row\n\n"
|
117 |
+
|
118 |
+
<< "Using various input value distribution:\n"
|
119 |
+
<< " $ cutlass_profiler --operation=Symm --dist=uniform,min:0,max:3\n"
|
120 |
+
<< " $ cutlass_profiler --operation=Symm --dist=gaussian,mean:0,stddev:3\n"
|
121 |
+
<< " $ cutlass_profiler --operation=Symm --dist=sequential,start:0,delta:1\n\n"
|
122 |
+
|
123 |
+
<< "Run a kernel with cta tile size of 256x128x32 and save workspace if results are incorrect (note that --cta-tile::k=32 is default cta-tile size):\n"
|
124 |
+
<< " $ cutlass_profiler --operation=Symm --cta_m=256 --cta_n=128 --cta_k=32 --save-workspace=incorrect\n\n"
|
125 |
+
|
126 |
+
<< "Test your changes to symm kernels with a quick functional test and save results in functional-test.csv:\n"
|
127 |
+
<< " $ cutlass_profiler --operation=Symm \\ \n"
|
128 |
+
<< " --m=8,56,120,136,256,264,512,520,1024,1032,4096,8192,16384 \\ \n"
|
129 |
+
<< " --n=8,16,32,64,128,256,288,384,504,512,520 \\ \n"
|
130 |
+
<< " --beta=0,1,2 --profiling-iterations=1 \\ \n"
|
131 |
+
<< " --providers=cutlass --output=functional-test.csv\n\n";
|
132 |
+
}
|
133 |
+
|
134 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
135 |
+
|
136 |
+
#if 0
|
137 |
+
// used this for debugging
|
138 |
+
static std::string byte_string(std::vector<uint8_t> const &bytes) {
|
139 |
+
std::stringstream ss;
|
140 |
+
|
141 |
+
ss << "0x";
|
142 |
+
|
143 |
+
for (size_t idx = bytes.size(); idx > 0; --idx) {
|
144 |
+
ss << std::hex << std::setw(2) << std::setfill('0') << uint32_t(bytes.at(idx - 1));
|
145 |
+
}
|
146 |
+
|
147 |
+
return ss.str();
|
148 |
+
}
|
149 |
+
#endif
|
150 |
+
|
151 |
+
Status SymmOperationProfiler::SymmProblem::parse(
|
152 |
+
library::SymmDescription const &operation_desc,
|
153 |
+
ProblemSpace const &problem_space,
|
154 |
+
ProblemSpace::Problem const &problem) {
|
155 |
+
|
156 |
+
if (!arg_as_int(this->m, "m", problem_space, problem)) {
|
157 |
+
// default value
|
158 |
+
this->m = 1024;
|
159 |
+
}
|
160 |
+
|
161 |
+
if (!arg_as_int(this->n, "n", problem_space, problem)) {
|
162 |
+
// default value
|
163 |
+
this->n = 1024;
|
164 |
+
}
|
165 |
+
|
166 |
+
if (!arg_as_int(this->split_k_slices, "split_k_slices", problem_space, problem)) {
|
167 |
+
// default value
|
168 |
+
this->split_k_slices = 1;
|
169 |
+
}
|
170 |
+
|
171 |
+
if (!arg_as_int(this->batch_count, "batch_count", problem_space, problem)) {
|
172 |
+
// default value
|
173 |
+
this->batch_count = 1;
|
174 |
+
}
|
175 |
+
|
176 |
+
if (this->split_k_slices > 1 && this->batch_count > 1) {
|
177 |
+
// At least one of these must be one
|
178 |
+
return Status::kErrorInvalidProblem;
|
179 |
+
}
|
180 |
+
|
181 |
+
if (!tensor_description_satisfies(operation_desc.A, "A", problem_space, problem)) {
|
182 |
+
return Status::kErrorInvalidProblem;
|
183 |
+
}
|
184 |
+
|
185 |
+
if (!tensor_description_satisfies(operation_desc.B, "B", problem_space, problem)) {
|
186 |
+
return Status::kErrorInvalidProblem;
|
187 |
+
}
|
188 |
+
|
189 |
+
if (!tensor_description_satisfies(operation_desc.C, "C", problem_space, problem)) {
|
190 |
+
return Status::kErrorInvalidProblem;
|
191 |
+
}
|
192 |
+
|
193 |
+
if (!arg_as_scalar(
|
194 |
+
this->alpha,
|
195 |
+
operation_desc.element_epilogue,
|
196 |
+
"alpha",
|
197 |
+
problem_space,
|
198 |
+
problem)) {
|
199 |
+
|
200 |
+
if (!cast_from_double(this->alpha, operation_desc.element_epilogue, 1)) {
|
201 |
+
return Status::kErrorInternal;
|
202 |
+
}
|
203 |
+
}
|
204 |
+
|
205 |
+
if (!arg_as_scalar(
|
206 |
+
this->beta,
|
207 |
+
operation_desc.element_epilogue,
|
208 |
+
"beta",
|
209 |
+
problem_space,
|
210 |
+
problem)) {
|
211 |
+
|
212 |
+
if (!cast_from_double(this->beta, operation_desc.element_epilogue, 0)) {
|
213 |
+
return Status::kErrorInternal;
|
214 |
+
}
|
215 |
+
}
|
216 |
+
|
217 |
+
if (operation_desc.side_mode == SideMode::kLeft) {
|
218 |
+
this->lda = DeviceAllocation::get_packed_layout(
|
219 |
+
operation_desc.A.layout, {int(this->m), int(this->m)}).front();
|
220 |
+
}
|
221 |
+
else if (operation_desc.side_mode == SideMode::kRight) {
|
222 |
+
this->lda = DeviceAllocation::get_packed_layout(
|
223 |
+
operation_desc.A.layout, {int(this->n), int(this->n)}).front();
|
224 |
+
}
|
225 |
+
|
226 |
+
this->ldb = DeviceAllocation::get_packed_layout(
|
227 |
+
operation_desc.B.layout, {int(this->m), int(this->n)}).front();
|
228 |
+
|
229 |
+
this->ldc = DeviceAllocation::get_packed_layout(
|
230 |
+
operation_desc.C.layout, {int(this->m), int(this->n)}).front();
|
231 |
+
|
232 |
+
return Status::kSuccess;
|
233 |
+
}
|
234 |
+
|
235 |
+
/// Total number of bytes loaded
|
236 |
+
int64_t SymmOperationProfiler::SymmProblem::bytes(library::SymmDescription const &operation_desc) const {
|
237 |
+
int64_t bytes = 0;
|
238 |
+
// Input bytes read and Output bytes written for the gemm problem
|
239 |
+
// Half matrix including the diagonal will have (X*(X+1))/2 elements
|
240 |
+
if (operation_desc.side_mode == SideMode::kLeft) {
|
241 |
+
bytes =
|
242 |
+
int64_t(library::sizeof_bits(operation_desc.A.element) * m / 8) * (m + 1) / 2 +
|
243 |
+
int64_t(library::sizeof_bits(operation_desc.B.element) * m / 8) * n +
|
244 |
+
int64_t(library::sizeof_bits(operation_desc.C.element) * m / 8) * n;
|
245 |
+
} else if (operation_desc.side_mode == SideMode::kRight) {
|
246 |
+
bytes =
|
247 |
+
int64_t(library::sizeof_bits(operation_desc.A.element) * n / 8) * (n + 1) / 2 +
|
248 |
+
int64_t(library::sizeof_bits(operation_desc.B.element) * m / 8) * n +
|
249 |
+
int64_t(library::sizeof_bits(operation_desc.C.element) * m / 8) * n;
|
250 |
+
}
|
251 |
+
// Set is_beta_zero true if beta is zero
|
252 |
+
bool is_beta_zero = std::all_of(beta.begin(), beta.end(), [](uint8_t i) { return i==0; });
|
253 |
+
|
254 |
+
// Output bytes read for the gemm problem for non-zero beta values
|
255 |
+
if (!is_beta_zero) {
|
256 |
+
bytes += int64_t(library::sizeof_bits(operation_desc.C.element) * m / 8) * n;
|
257 |
+
}
|
258 |
+
|
259 |
+
bytes *= batch_count;
|
260 |
+
|
261 |
+
return bytes;
|
262 |
+
}
|
263 |
+
|
264 |
+
/// Total number of flops computed
|
265 |
+
int64_t SymmOperationProfiler::SymmProblem::flops(library::SymmDescription const &operation_desc) const {
|
266 |
+
|
267 |
+
// FLOPs for first TRMM kernel (with diagonal) = 2 * [ ( M * (M+1)/2 * N ) ] // Beta is zero
|
268 |
+
// FLOPs for second TRMM kernel (with diagonal) = 2 * [ ( M * (M-1)/2 * N ) ] // Beta is zero
|
269 |
+
// FLOPs = m*(m+1)*n [mma1] + m*(m-1)*n [mma2] + 2*m*n [epilogue]
|
270 |
+
// FLOPs = 2*m*n(m+1) for left side mode
|
271 |
+
// FLOPs can also be calculated to be same as GEMM with correct value for 'k' as below.
|
272 |
+
int64_t k = (operation_desc.side_mode == SideMode::kLeft) ? int64_t(m) : int64_t(n);
|
273 |
+
int64_t flops_ = (int64_t(m) * n * k + m * n) * 2;
|
274 |
+
|
275 |
+
// complex-valued support
|
276 |
+
switch (operation_desc.tile_description.math_instruction.math_operation) {
|
277 |
+
case library::MathOperationID::kMultiplyAddComplex:
|
278 |
+
flops_ *= 4;
|
279 |
+
break;
|
280 |
+
|
281 |
+
case library::MathOperationID::kMultiplyAddComplexFastF32:
|
282 |
+
flops_ *= 4;
|
283 |
+
break;
|
284 |
+
|
285 |
+
case library::MathOperationID::kMultiplyAddGaussianComplex:
|
286 |
+
flops_ *= 3;
|
287 |
+
break;
|
288 |
+
|
289 |
+
default: break;
|
290 |
+
}
|
291 |
+
|
292 |
+
return flops_;
|
293 |
+
}
|
294 |
+
|
295 |
+
/// Initializes a performance result
|
296 |
+
void SymmOperationProfiler::SymmProblem::initialize_result(
|
297 |
+
PerformanceResult &result,
|
298 |
+
library::SymmDescription const &operation_desc,
|
299 |
+
ProblemSpace const &problem_space) {
|
300 |
+
|
301 |
+
result.arguments.resize(problem_space.rank());
|
302 |
+
|
303 |
+
set_argument(result, "symm_kind", problem_space, library::to_string(operation_desc.symm_kind));
|
304 |
+
|
305 |
+
set_argument(result, "A", problem_space,
|
306 |
+
std::string(library::to_string(operation_desc.A.element)) + ":" + library::to_string(operation_desc.A.layout));
|
307 |
+
|
308 |
+
set_argument(result, "B", problem_space,
|
309 |
+
std::string(library::to_string(operation_desc.B.element)) + ":" + library::to_string(operation_desc.B.layout));
|
310 |
+
|
311 |
+
set_argument(result, "C", problem_space,
|
312 |
+
std::string(library::to_string(operation_desc.C.element)) + ":" + library::to_string(operation_desc.C.layout));
|
313 |
+
|
314 |
+
set_argument(result, "side_mode", problem_space, library::to_string(operation_desc.side_mode));
|
315 |
+
|
316 |
+
set_argument(result, "fill_mode", problem_space, library::to_string(operation_desc.fill_mode));
|
317 |
+
|
318 |
+
set_argument(result, "blas_mode", problem_space, library::to_string(operation_desc.blas_mode));
|
319 |
+
|
320 |
+
set_argument(result, "m", problem_space, m);
|
321 |
+
set_argument(result, "n", problem_space, n);
|
322 |
+
|
323 |
+
set_argument(result, "split_k_slices", problem_space, split_k_slices);
|
324 |
+
set_argument(result, "batch_count", problem_space, batch_count);
|
325 |
+
|
326 |
+
set_argument(result, "alpha", problem_space,
|
327 |
+
library::lexical_cast(alpha, operation_desc.element_epilogue));
|
328 |
+
|
329 |
+
set_argument(result, "beta", problem_space,
|
330 |
+
library::lexical_cast(beta, operation_desc.element_epilogue));
|
331 |
+
}
|
332 |
+
|
333 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
334 |
+
|
335 |
+
/// Extracts the problem dimensions
|
336 |
+
Status SymmOperationProfiler::initialize_configuration(
|
337 |
+
Options const &options,
|
338 |
+
PerformanceReport &report,
|
339 |
+
DeviceContext &device_context,
|
340 |
+
library::Operation const *operation,
|
341 |
+
ProblemSpace const &problem_space,
|
342 |
+
ProblemSpace::Problem const &problem) {
|
343 |
+
|
344 |
+
library::SymmDescription const &operation_desc =
|
345 |
+
static_cast<library::SymmDescription const &>(operation->description());
|
346 |
+
|
347 |
+
if (operation_desc.symm_kind != library::SymmKind::kUniversal) {
|
348 |
+
return Status::kErrorInvalidProblem;
|
349 |
+
}
|
350 |
+
|
351 |
+
Status status = problem_.parse(operation_desc, problem_space, problem);
|
352 |
+
|
353 |
+
if (status != Status::kSuccess) {
|
354 |
+
return status;
|
355 |
+
}
|
356 |
+
|
357 |
+
symm_workspace_.configuration.problem_size.m() = int(problem_.m);
|
358 |
+
symm_workspace_.configuration.problem_size.n() = int(problem_.n);
|
359 |
+
symm_workspace_.configuration.problem_size.k() = (operation_desc.side_mode == SideMode::kLeft)
|
360 |
+
? int(problem_.m) : int(problem_.n);
|
361 |
+
symm_workspace_.configuration.lda = problem_.lda;
|
362 |
+
symm_workspace_.configuration.ldb = problem_.ldb;
|
363 |
+
symm_workspace_.configuration.ldc = problem_.ldc;
|
364 |
+
symm_workspace_.configuration.ldd = problem_.ldc;
|
365 |
+
//symm_workspace_.configuration.split_k_slices = int(problem_.split_k_slices);
|
366 |
+
symm_workspace_.configuration.batch_count = int(problem_.split_k_slices);
|
367 |
+
|
368 |
+
symm_workspace_.arguments.A = nullptr;
|
369 |
+
symm_workspace_.arguments.B = nullptr;
|
370 |
+
symm_workspace_.arguments.C = nullptr;
|
371 |
+
symm_workspace_.arguments.D = nullptr;
|
372 |
+
symm_workspace_.arguments.alpha = problem_.alpha.data();
|
373 |
+
symm_workspace_.arguments.beta = problem_.beta.data();
|
374 |
+
symm_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
375 |
+
|
376 |
+
initialize_result_(this->model_result_, options, operation_desc, problem_space);
|
377 |
+
|
378 |
+
return operation->can_implement(&symm_workspace_.configuration, &symm_workspace_.arguments);
|
379 |
+
}
|
380 |
+
|
381 |
+
/// Initializes the performance result
|
382 |
+
void SymmOperationProfiler::initialize_result_(
|
383 |
+
PerformanceResult &result,
|
384 |
+
Options const &options,
|
385 |
+
library::SymmDescription const &operation_desc,
|
386 |
+
ProblemSpace const &problem_space) {
|
387 |
+
|
388 |
+
result.provider = library::Provider::kCUTLASS;
|
389 |
+
result.disposition = Disposition::kNotRun;
|
390 |
+
result.status = Status::kSuccess;
|
391 |
+
result.operation_name = operation_desc.name;
|
392 |
+
|
393 |
+
problem_.initialize_result(result, operation_desc, problem_space);
|
394 |
+
|
395 |
+
OperationProfiler::initialize_result_(result, operation_desc, problem_space);
|
396 |
+
|
397 |
+
|
398 |
+
result.bytes = problem_.bytes(operation_desc);
|
399 |
+
result.flops = problem_.flops(operation_desc);
|
400 |
+
result.runtime = 0;
|
401 |
+
|
402 |
+
|
403 |
+
}
|
404 |
+
|
405 |
+
/// Initializes workspace
|
406 |
+
Status SymmOperationProfiler::initialize_workspace(
|
407 |
+
Options const &options,
|
408 |
+
PerformanceReport &report,
|
409 |
+
DeviceContext &device_context,
|
410 |
+
library::Operation const *operation,
|
411 |
+
ProblemSpace const &problem_space,
|
412 |
+
ProblemSpace::Problem const &problem) {
|
413 |
+
|
414 |
+
if (options.device.devices.size() != 1) {
|
415 |
+
throw std::runtime_error("This operation profiler only supports a single "
|
416 |
+
"device.");
|
417 |
+
}
|
418 |
+
|
419 |
+
cudaError_t result;
|
420 |
+
result = cudaSetDevice(options.device.device_id(0));
|
421 |
+
if (result != cudaSuccess) {
|
422 |
+
throw std::runtime_error("cudaSetDevice() failed.");
|
423 |
+
}
|
424 |
+
|
425 |
+
library::SymmDescription const &operation_desc =
|
426 |
+
static_cast<library::SymmDescription const &>(operation->description());
|
427 |
+
|
428 |
+
if (options.execution_mode != ExecutionMode::kDryRun) {
|
429 |
+
int seed_shift = 0;
|
430 |
+
if (operation_desc.side_mode == SideMode::kLeft) {
|
431 |
+
symm_workspace_.A = device_context.allocate_and_initialize_tensor(
|
432 |
+
options,
|
433 |
+
"A",
|
434 |
+
operation_desc.A.element,
|
435 |
+
operation_desc.A.layout,
|
436 |
+
{int(problem_.m), int(problem_.m)},
|
437 |
+
{int(problem_.lda)},
|
438 |
+
1, // batch_count
|
439 |
+
seed_shift++,
|
440 |
+
0 // device_index
|
441 |
+
);
|
442 |
+
} else if (operation_desc.side_mode == SideMode::kRight) {
|
443 |
+
symm_workspace_.A = device_context.allocate_and_initialize_tensor(
|
444 |
+
options,
|
445 |
+
"A",
|
446 |
+
operation_desc.A.element,
|
447 |
+
operation_desc.A.layout,
|
448 |
+
{int(problem_.n), int(problem_.n)},
|
449 |
+
{int(problem_.lda)},
|
450 |
+
1, // batch_count
|
451 |
+
seed_shift++,
|
452 |
+
0 // device_index
|
453 |
+
);
|
454 |
+
}
|
455 |
+
|
456 |
+
symm_workspace_.B = device_context.allocate_and_initialize_tensor(
|
457 |
+
options,
|
458 |
+
"B",
|
459 |
+
operation_desc.B.element,
|
460 |
+
operation_desc.B.layout,
|
461 |
+
{int(problem_.m), int(problem_.n)},
|
462 |
+
{int(problem_.ldb)},
|
463 |
+
1, // batch_count
|
464 |
+
seed_shift++,
|
465 |
+
0 // device_index
|
466 |
+
);
|
467 |
+
|
468 |
+
symm_workspace_.C = device_context.allocate_and_initialize_tensor(
|
469 |
+
options,
|
470 |
+
"C",
|
471 |
+
operation_desc.C.element,
|
472 |
+
operation_desc.C.layout,
|
473 |
+
{int(problem_.m), int(problem_.n)},
|
474 |
+
{int(problem_.ldc)},
|
475 |
+
1, // batch_count
|
476 |
+
seed_shift++,
|
477 |
+
0 // device_index
|
478 |
+
);
|
479 |
+
|
480 |
+
symm_workspace_.Computed = device_context.allocate_tensor(
|
481 |
+
options,
|
482 |
+
"D",
|
483 |
+
operation_desc.C.element,
|
484 |
+
operation_desc.C.layout,
|
485 |
+
{int(problem_.m), int(problem_.n)},
|
486 |
+
{int(problem_.ldc)},
|
487 |
+
1, // batch_count
|
488 |
+
0 // device_index
|
489 |
+
);
|
490 |
+
|
491 |
+
symm_workspace_.Reference = device_context.allocate_tensor(
|
492 |
+
options,
|
493 |
+
"Reference",
|
494 |
+
operation_desc.C.element,
|
495 |
+
operation_desc.C.layout,
|
496 |
+
{int(problem_.m), int(problem_.n)},
|
497 |
+
{int(problem_.ldc)},
|
498 |
+
1, // batch_count
|
499 |
+
0 // device_index
|
500 |
+
);
|
501 |
+
|
502 |
+
symm_workspace_.Computed->copy_from_device(symm_workspace_.C->data());
|
503 |
+
symm_workspace_.Reference->copy_from_device(symm_workspace_.C->data());
|
504 |
+
}
|
505 |
+
|
506 |
+
|
507 |
+
//
|
508 |
+
// Initialize the CUTLASS operation
|
509 |
+
//
|
510 |
+
Status status = Status::kSuccess;
|
511 |
+
|
512 |
+
if (options.profiling.provider_enabled(library::Provider::kCUTLASS)) {
|
513 |
+
|
514 |
+
if (options.execution_mode != ExecutionMode::kDryRun) {
|
515 |
+
|
516 |
+
uint64_t workspace_size = operation->get_host_workspace_size(&symm_workspace_.configuration);
|
517 |
+
symm_workspace_.host_workspace.resize(workspace_size, 0);
|
518 |
+
|
519 |
+
workspace_size = operation->get_device_workspace_size(&symm_workspace_.configuration);
|
520 |
+
symm_workspace_.device_workspace.reset(library::NumericTypeID::kU8, workspace_size);
|
521 |
+
|
522 |
+
status = operation->initialize(
|
523 |
+
&symm_workspace_.configuration,
|
524 |
+
symm_workspace_.host_workspace.data(),
|
525 |
+
symm_workspace_.device_workspace.data());
|
526 |
+
}
|
527 |
+
|
528 |
+
//
|
529 |
+
// If CUTLASS is enabled, generate a result for it
|
530 |
+
//
|
531 |
+
results_.push_back(model_result_);
|
532 |
+
results_.back().provider = library::Provider::kCUTLASS;
|
533 |
+
results_.back().op_kind = library::OperationKind::kSymm;
|
534 |
+
results_.back().disposition = Disposition::kNotRun;
|
535 |
+
|
536 |
+
for(auto provider : verification_providers_) {
|
537 |
+
results_.back().verification_map[provider] = Disposition::kNotRun;
|
538 |
+
}
|
539 |
+
}
|
540 |
+
|
541 |
+
return status;
|
542 |
+
}
|
543 |
+
|
544 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
545 |
+
|
546 |
+
/// Verifies CUTLASS against references
|
547 |
+
bool SymmOperationProfiler::verify_cutlass(
|
548 |
+
Options const &options,
|
549 |
+
PerformanceReport &report,
|
550 |
+
DeviceContext &device_context,
|
551 |
+
library::Operation const *operation,
|
552 |
+
ProblemSpace const &problem_space,
|
553 |
+
ProblemSpace::Problem const &problem) {
|
554 |
+
|
555 |
+
if (!options.profiling.provider_enabled(library::Provider::kCUTLASS)) {
|
556 |
+
return true;
|
557 |
+
}
|
558 |
+
|
559 |
+
if (options.execution_mode == ExecutionMode::kDryRun) {
|
560 |
+
return true;
|
561 |
+
}
|
562 |
+
|
563 |
+
// Initialize structure containing Symm arguments
|
564 |
+
symm_workspace_.arguments.A = symm_workspace_.A->data();
|
565 |
+
symm_workspace_.arguments.B = symm_workspace_.B->data();
|
566 |
+
symm_workspace_.arguments.C = symm_workspace_.C->data();
|
567 |
+
symm_workspace_.arguments.D = symm_workspace_.Computed->data();
|
568 |
+
symm_workspace_.arguments.alpha = problem_.alpha.data();
|
569 |
+
symm_workspace_.arguments.beta = problem_.beta.data();
|
570 |
+
symm_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
571 |
+
|
572 |
+
//
|
573 |
+
// Run the CUTLASS operation
|
574 |
+
//
|
575 |
+
|
576 |
+
results_.back().status = operation->run(
|
577 |
+
&symm_workspace_.arguments,
|
578 |
+
symm_workspace_.host_workspace.data(),
|
579 |
+
symm_workspace_.device_workspace.data());
|
580 |
+
|
581 |
+
if (results_.back().status != Status::kSuccess) {
|
582 |
+
results_.back().disposition = Disposition::kFailed;
|
583 |
+
return false;
|
584 |
+
}
|
585 |
+
|
586 |
+
cudaError_t result = cudaDeviceSynchronize();
|
587 |
+
if (result != cudaSuccess) {
|
588 |
+
results_.back().disposition = Disposition::kFailed;
|
589 |
+
return false;
|
590 |
+
}
|
591 |
+
|
592 |
+
// CUTLASS op ran the but not yet verified against any verification provider
|
593 |
+
results_.back().disposition = Disposition::kNotVerified;
|
594 |
+
|
595 |
+
//
|
596 |
+
// Run verification providers
|
597 |
+
//
|
598 |
+
|
599 |
+
if (options.verification.enabled) {
|
600 |
+
|
601 |
+
#if CUTLASS_ENABLE_CUBLAS
|
602 |
+
if (options.verification.provider_enabled(library::Provider::kCUBLAS)) {
|
603 |
+
|
604 |
+
// Guard against unsupported cases
|
605 |
+
auto const & symm_desc = static_cast<library::SymmDescription const &>(operation->description());
|
606 |
+
|
607 |
+
if (cublas_satisfies(symm_desc) == Status::kSuccess) {
|
608 |
+
|
609 |
+
// call cublas verification if supported
|
610 |
+
verify_with_cublas_(
|
611 |
+
options,
|
612 |
+
report,
|
613 |
+
device_context,
|
614 |
+
operation,
|
615 |
+
problem_space,
|
616 |
+
problem);
|
617 |
+
}
|
618 |
+
|
619 |
+
else {
|
620 |
+
// set verification map for cublas to not supported
|
621 |
+
results_.back().verification_map[library::Provider::kCUBLAS] = Disposition::kNotSupported;
|
622 |
+
}
|
623 |
+
}
|
624 |
+
#endif // #if CUTLASS_ENABLE_CUBLAS
|
625 |
+
|
626 |
+
// Update disposition to worst case verification outcome among all
|
627 |
+
// verification providers which are supported
|
628 |
+
bool is_any_verification_run_passed = false;
|
629 |
+
for(auto &m : results_.back().verification_map) {
|
630 |
+
if(m.second == Disposition::kFailed || m.second == Disposition::kIncorrect) {
|
631 |
+
results_.back().disposition = m.second;
|
632 |
+
return true;
|
633 |
+
}
|
634 |
+
if(!is_any_verification_run_passed && m.second == Disposition::kPassed) {
|
635 |
+
is_any_verification_run_passed = true;
|
636 |
+
}
|
637 |
+
}
|
638 |
+
|
639 |
+
if(is_any_verification_run_passed) {
|
640 |
+
results_.back().disposition = Disposition::kPassed;
|
641 |
+
}
|
642 |
+
}
|
643 |
+
|
644 |
+
// Return true means continue profiling
|
645 |
+
return true;
|
646 |
+
}
|
647 |
+
|
648 |
+
///////////////////////////////////////////////////////////////////////////////////////////////////
|
649 |
+
|
650 |
+
/// Verifies CUTLASS against references
|
651 |
+
bool SymmOperationProfiler::verify_with_cublas_(
|
652 |
+
Options const &options,
|
653 |
+
PerformanceReport &report,
|
654 |
+
DeviceContext &device_context,
|
655 |
+
library::Operation const *operation,
|
656 |
+
ProblemSpace const &problem_space,
|
657 |
+
ProblemSpace::Problem const &problem) {
|
658 |
+
|
659 |
+
|
660 |
+
#if CUTLASS_ENABLE_CUBLAS
|
661 |
+
|
662 |
+
library::SymmDescription const &symm_desc =
|
663 |
+
static_cast<library::SymmDescription const &>(operation->description());
|
664 |
+
|
665 |
+
//
|
666 |
+
// Construct cuBLAS operators
|
667 |
+
//
|
668 |
+
|
669 |
+
CublasCreate handle;
|
670 |
+
cublasStatus_t status = handle.get_cublas_create_status();
|
671 |
+
|
672 |
+
if (status != CUBLAS_STATUS_SUCCESS) {
|
673 |
+
|
674 |
+
results_.back().verification_map[library::Provider::kCUBLAS] = Disposition::kFailed;
|
675 |
+
return true;
|
676 |
+
}
|
677 |
+
|
678 |
+
//
|
679 |
+
// Initialize state
|
680 |
+
//
|
681 |
+
|
682 |
+
try {
|
683 |
+
|
684 |
+
//
|
685 |
+
// Construct dispatcher to cublas<t>Symm()
|
686 |
+
//
|
687 |
+
|
688 |
+
// Initialize structure containing Symm arguments
|
689 |
+
symm_workspace_.arguments.A = symm_workspace_.A->data();
|
690 |
+
symm_workspace_.arguments.B = symm_workspace_.B->data();
|
691 |
+
symm_workspace_.arguments.C = symm_workspace_.Reference->data();
|
692 |
+
symm_workspace_.arguments.D = symm_workspace_.Reference->data();
|
693 |
+
symm_workspace_.arguments.alpha = problem_.alpha.data();
|
694 |
+
symm_workspace_.arguments.beta = problem_.beta.data();
|
695 |
+
symm_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
696 |
+
|
697 |
+
detail::cublasSymmDispatcher symm_op(
|
698 |
+
symm_desc,
|
699 |
+
symm_workspace_.configuration,
|
700 |
+
symm_workspace_.arguments
|
701 |
+
);
|
702 |
+
|
703 |
+
if (symm_op.status != Status::kSuccess) {
|
704 |
+
results_.back().verification_map[library::Provider::kCUBLAS] = Disposition::kNotRun;
|
705 |
+
return true;
|
706 |
+
}
|
707 |
+
|
708 |
+
results_.back().status = Status::kSuccess;
|
709 |
+
|
710 |
+
status = symm_op(handle);
|
711 |
+
|
712 |
+
// Handle errors
|
713 |
+
if (status != CUBLAS_STATUS_SUCCESS) {
|
714 |
+
|
715 |
+
results_.back().verification_map[library::Provider::kCUBLAS] = Disposition::kFailed;
|
716 |
+
return true;
|
717 |
+
}
|
718 |
+
|
719 |
+
//
|
720 |
+
// Verify results
|
721 |
+
//
|
722 |
+
|
723 |
+
results_.back().verification_map[library::Provider::kCUBLAS] = compare_tensors(
|
724 |
+
options,
|
725 |
+
*symm_workspace_.Computed,
|
726 |
+
*symm_workspace_.Reference
|
727 |
+
);
|
728 |
+
|
729 |
+
// Save workspace if incorrect
|
730 |
+
if (options.verification.save_workspace == SaveWorkspace::kIncorrect &&
|
731 |
+
results_.back().verification_map[library::Provider::kCUBLAS] == Disposition::kIncorrect) {
|
732 |
+
|
733 |
+
save_workspace(
|
734 |
+
device_context,
|
735 |
+
options,
|
736 |
+
symm_desc,
|
737 |
+
library::Provider::kCUTLASS,
|
738 |
+
library::Provider::kCUBLAS);
|
739 |
+
}
|
740 |
+
}
|
741 |
+
catch (...) {
|
742 |
+
results_.back().verification_map[library::Provider::kCUBLAS] = Disposition::kFailed;
|
743 |
+
}
|
744 |
+
|
745 |
+
#endif
|
746 |
+
|
747 |
+
// Return true means continue profiling
|
748 |
+
return true;
|
749 |
+
}
|
750 |
+
|
751 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
752 |
+
|
753 |
+
/// Measures performance results
|
754 |
+
bool SymmOperationProfiler::profile(
|
755 |
+
Options const &options,
|
756 |
+
PerformanceReport &report,
|
757 |
+
DeviceContext &device_context,
|
758 |
+
library::Operation const *operation,
|
759 |
+
ProblemSpace const &problem_space,
|
760 |
+
ProblemSpace::Problem const &problem) {
|
761 |
+
|
762 |
+
if (options.profiling.provider_enabled(library::Provider::kCUTLASS)) {
|
763 |
+
|
764 |
+
// Initialize structure containing Symm arguments
|
765 |
+
symm_workspace_.arguments.A = symm_workspace_.A->data();
|
766 |
+
symm_workspace_.arguments.B = symm_workspace_.B->data();
|
767 |
+
symm_workspace_.arguments.C = symm_workspace_.C->data();
|
768 |
+
symm_workspace_.arguments.D = symm_workspace_.Computed->data();
|
769 |
+
symm_workspace_.arguments.alpha = problem_.alpha.data();
|
770 |
+
symm_workspace_.arguments.beta = problem_.beta.data();
|
771 |
+
symm_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
772 |
+
|
773 |
+
results_.back().status = profile_cutlass_(
|
774 |
+
results_.back().runtime,
|
775 |
+
options,
|
776 |
+
operation,
|
777 |
+
&symm_workspace_.arguments,
|
778 |
+
symm_workspace_.host_workspace.data(),
|
779 |
+
symm_workspace_.device_workspace.data()
|
780 |
+
);
|
781 |
+
}
|
782 |
+
return true;
|
783 |
+
}
|
784 |
+
|
785 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
786 |
+
|
787 |
+
} // namespace profiler
|
788 |
+
} // namespace cutlass
|
789 |
+
|
790 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/profiler/src/trmm_operation_profiler.cu
ADDED
@@ -0,0 +1,728 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
/* \file
|
32 |
+
\brief Execution environment
|
33 |
+
|
34 |
+
|
35 |
+
*/
|
36 |
+
|
37 |
+
#include <iostream>
|
38 |
+
#include <stdexcept>
|
39 |
+
#include <iomanip>
|
40 |
+
#include <ios>
|
41 |
+
|
42 |
+
#include "cutlass/core_io.h"
|
43 |
+
|
44 |
+
#include "cutlass/profiler/cublas_helpers.h"
|
45 |
+
#include "cutlass/profiler/trmm_operation_profiler.h"
|
46 |
+
#include "cutlass/profiler/gpu_timer.h"
|
47 |
+
|
48 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
49 |
+
|
50 |
+
namespace cutlass {
|
51 |
+
namespace profiler {
|
52 |
+
|
53 |
+
|
54 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
55 |
+
|
56 |
+
/// Ctor
|
57 |
+
TrmmOperationProfiler::TrmmOperationProfiler(Options const &options):
|
58 |
+
OperationProfiler(
|
59 |
+
options,
|
60 |
+
library::OperationKind::kTrmm,
|
61 |
+
{
|
62 |
+
{ArgumentTypeID::kEnumerated, {"trmm_kind"}, "Variant of TRMM (universal)"},
|
63 |
+
{ArgumentTypeID::kInteger, {"m", "problem-size::m"}, "M dimension of the TRMM problem space"},
|
64 |
+
{ArgumentTypeID::kInteger, {"n", "problem-size::n"}, "N dimension of the TRMM problem space"},
|
65 |
+
{ArgumentTypeID::kTensor, {"A"}, "Tensor storing the A operand"},
|
66 |
+
{ArgumentTypeID::kEnumerated, {"side_mode"}, "Side Mode for TRMM (left, right)"},
|
67 |
+
{ArgumentTypeID::kEnumerated, {"fill_mode"}, "Fill Mode for TRMM (lower, upper)"},
|
68 |
+
{ArgumentTypeID::kEnumerated, {"diag_type"}, "Diag Type for TRMM (nonunit, unit)"},
|
69 |
+
{ArgumentTypeID::kTensor, {"B"}, "Tensor storing the B operand"},
|
70 |
+
{ArgumentTypeID::kTensor, {"D"}, "Tensor storing the D operand"},
|
71 |
+
{ArgumentTypeID::kScalar, {"alpha", "epilogue::alpha"}, "Epilogue scalar alpha"},
|
72 |
+
{ArgumentTypeID::kScalar, {"beta", "epilogue::beta"}, "Epilogue scalar beta"},
|
73 |
+
{ArgumentTypeID::kInteger, {"split_k_slices", "split-k-slices"}, "Number of partitions of K dimension"},
|
74 |
+
{ArgumentTypeID::kInteger, {"batch_count", "batch-count"}, "Number of TRMMs computed in one batch"},
|
75 |
+
},
|
76 |
+
{ library::Provider::kCUBLAS}
|
77 |
+
) {
|
78 |
+
description_ = " Triangular Matrix-Multiplication. D = alpha * A * B or alpha * B * A";
|
79 |
+
}
|
80 |
+
|
81 |
+
/// Destructor
|
82 |
+
TrmmOperationProfiler::~TrmmOperationProfiler() {
|
83 |
+
|
84 |
+
}
|
85 |
+
|
86 |
+
/// Prints usage statement for the math function
|
87 |
+
void TrmmOperationProfiler::print_usage(std::ostream &out) const {
|
88 |
+
out << "TRMM" << "\n\n";
|
89 |
+
|
90 |
+
OperationProfiler::print_usage(out);
|
91 |
+
}
|
92 |
+
|
93 |
+
/// Prints examples
|
94 |
+
void TrmmOperationProfiler::print_examples(std::ostream &out) const {
|
95 |
+
|
96 |
+
out << "\nExamples:\n\n"
|
97 |
+
<< "Profile a particular problem size:\n"
|
98 |
+
<< " $ cutlass_profiler --operation=Trmm --n=1024 --m=128\n\n"
|
99 |
+
|
100 |
+
<< "Schmoo over problem size and beta:\n"
|
101 |
+
<< " $ cutlass_profiler --operation=Trmm --n=1024:4096:256 --m=128:8192:128 --beta=0,1,2.5\n\n"
|
102 |
+
|
103 |
+
<< "Schmoo over accumulator types:\n"
|
104 |
+
<< " $ cutlass_profiler --operation=Trmm --accumulator-type=f16,f32\n\n"
|
105 |
+
|
106 |
+
<< "Run when A is f16 with column-major or A is any datatype with row-major (For column major, use column, col, or n. For row major use, row or t):\n"
|
107 |
+
<< " $ cutlass_profiler --operation=Trmm --A=f16:column or --A=*:row\n\n"
|
108 |
+
|
109 |
+
<< "Using various input value distribution:\n"
|
110 |
+
<< " $ cutlass_profiler --operation=Trmm --dist=uniform,min:0,max:3\n"
|
111 |
+
<< " $ cutlass_profiler --operation=Trmm --dist=gaussian,mean:0,stddev:3\n"
|
112 |
+
<< " $ cutlass_profiler --operation=Trmm --dist=sequential,start:0,delta:1\n\n"
|
113 |
+
|
114 |
+
<< "Run a kernel with cta tile size of 256x128x32 and save workspace if results are incorrect (note that --cta-tile::k=32 is default cta-tile size):\n"
|
115 |
+
<< " $ cutlass_profiler --operation=Trmm --cta_m=256 --cta_n=128 --cta_k=32 --save-workspace=incorrect\n\n"
|
116 |
+
|
117 |
+
<< "Test your changes to trmm kernels with a quick functional test and save results in functional-test.csv:\n"
|
118 |
+
<< " $ cutlass_profiler --operation=Trmm \\ \n"
|
119 |
+
<< " --n=8,56,120,136,256,264,512,520,1024,1032,4096,8192,16384 \\ \n"
|
120 |
+
<< " --k=8,16,32,64,128,256,288,384,504,512,520 \\ \n"
|
121 |
+
<< " --beta=0,1,2 --profiling-iterations=1 \\ \n"
|
122 |
+
<< " --providers=cutlass --output=functional-test.csv\n\n";
|
123 |
+
}
|
124 |
+
|
125 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
126 |
+
|
127 |
+
#if 0
|
128 |
+
// used this for debugging
|
129 |
+
static std::string byte_string(std::vector<uint8_t> const &bytes) {
|
130 |
+
std::stringstream ss;
|
131 |
+
|
132 |
+
ss << "0x";
|
133 |
+
|
134 |
+
for (size_t idx = bytes.size(); idx > 0; --idx) {
|
135 |
+
ss << std::hex << std::setw(2) << std::setfill('0') << uint32_t(bytes.at(idx - 1));
|
136 |
+
}
|
137 |
+
|
138 |
+
return ss.str();
|
139 |
+
}
|
140 |
+
#endif
|
141 |
+
|
142 |
+
Status TrmmOperationProfiler::TrmmProblem::parse(
|
143 |
+
library::TrmmDescription const &operation_desc,
|
144 |
+
ProblemSpace const &problem_space,
|
145 |
+
ProblemSpace::Problem const &problem) {
|
146 |
+
|
147 |
+
if (!arg_as_int(this->m, "m", problem_space, problem)) {
|
148 |
+
// default value
|
149 |
+
this->m = 1024;
|
150 |
+
}
|
151 |
+
|
152 |
+
if (!arg_as_int(this->n, "n", problem_space, problem)) {
|
153 |
+
// default value
|
154 |
+
this->n = 1024;
|
155 |
+
}
|
156 |
+
|
157 |
+
if (!arg_as_int(this->split_k_slices, "split_k_slices", problem_space, problem)) {
|
158 |
+
// default value
|
159 |
+
this->split_k_slices = 1;
|
160 |
+
}
|
161 |
+
|
162 |
+
if (!arg_as_int(this->batch_count, "batch_count", problem_space, problem)) {
|
163 |
+
// default value
|
164 |
+
this->batch_count = 1;
|
165 |
+
}
|
166 |
+
|
167 |
+
if (this->split_k_slices > 1 && this->batch_count > 1) {
|
168 |
+
// At least one of these must be one
|
169 |
+
return Status::kErrorInvalidProblem;
|
170 |
+
}
|
171 |
+
|
172 |
+
if (!tensor_description_satisfies(operation_desc.A, "A", problem_space, problem)) {
|
173 |
+
return Status::kErrorInvalidProblem;
|
174 |
+
}
|
175 |
+
|
176 |
+
if (!tensor_description_satisfies(operation_desc.B, "B", problem_space, problem)) {
|
177 |
+
return Status::kErrorInvalidProblem;
|
178 |
+
}
|
179 |
+
|
180 |
+
if (!tensor_description_satisfies(operation_desc.D, "D", problem_space, problem)) {
|
181 |
+
return Status::kErrorInvalidProblem;
|
182 |
+
}
|
183 |
+
|
184 |
+
if (!arg_as_scalar(
|
185 |
+
this->alpha,
|
186 |
+
operation_desc.element_epilogue,
|
187 |
+
"alpha",
|
188 |
+
problem_space,
|
189 |
+
problem)) {
|
190 |
+
|
191 |
+
if (!cast_from_double(this->alpha, operation_desc.element_epilogue, 1)) {
|
192 |
+
return Status::kErrorInternal;
|
193 |
+
}
|
194 |
+
}
|
195 |
+
|
196 |
+
if (!arg_as_scalar(
|
197 |
+
this->beta,
|
198 |
+
operation_desc.element_epilogue,
|
199 |
+
"beta",
|
200 |
+
problem_space,
|
201 |
+
problem)) {
|
202 |
+
|
203 |
+
if (!cast_from_double(this->beta, operation_desc.element_epilogue, 0)) {
|
204 |
+
return Status::kErrorInternal;
|
205 |
+
}
|
206 |
+
}
|
207 |
+
|
208 |
+
if (operation_desc.side_mode == SideMode::kLeft) {
|
209 |
+
this->lda = DeviceAllocation::get_packed_layout(
|
210 |
+
operation_desc.A.layout, {int(this->m), int(this->m)}).front();
|
211 |
+
}
|
212 |
+
else if (operation_desc.side_mode == SideMode::kRight) {
|
213 |
+
this->lda = DeviceAllocation::get_packed_layout(
|
214 |
+
operation_desc.A.layout, {int(this->n), int(this->n)}).front();
|
215 |
+
}
|
216 |
+
|
217 |
+
this->ldb = DeviceAllocation::get_packed_layout(
|
218 |
+
operation_desc.B.layout, {int(this->m), int(this->n)}).front();
|
219 |
+
|
220 |
+
this->ldd = DeviceAllocation::get_packed_layout(
|
221 |
+
operation_desc.D.layout, {int(this->m), int(this->n)}).front();
|
222 |
+
|
223 |
+
return Status::kSuccess;
|
224 |
+
}
|
225 |
+
|
226 |
+
/// Initializes a performance result
|
227 |
+
void TrmmOperationProfiler::TrmmProblem::initialize_result(
|
228 |
+
PerformanceResult &result,
|
229 |
+
library::TrmmDescription const &operation_desc,
|
230 |
+
ProblemSpace const &problem_space) {
|
231 |
+
|
232 |
+
result.arguments.resize(problem_space.rank());
|
233 |
+
|
234 |
+
set_argument(result, "trmm_kind", problem_space, library::to_string(operation_desc.trmm_kind));
|
235 |
+
|
236 |
+
set_argument(result, "A", problem_space,
|
237 |
+
std::string(library::to_string(operation_desc.A.element)) + ":" + library::to_string(operation_desc.A.layout));
|
238 |
+
|
239 |
+
set_argument(result, "side_mode", problem_space, library::to_string(operation_desc.side_mode));
|
240 |
+
|
241 |
+
set_argument(result, "fill_mode", problem_space, library::to_string(operation_desc.fill_mode));
|
242 |
+
|
243 |
+
set_argument(result, "diag_type", problem_space, library::to_string(operation_desc.diag_type));
|
244 |
+
|
245 |
+
set_argument(result, "B", problem_space,
|
246 |
+
std::string(library::to_string(operation_desc.B.element)) + ":" + library::to_string(operation_desc.B.layout));
|
247 |
+
|
248 |
+
set_argument(result, "D", problem_space,
|
249 |
+
std::string(library::to_string(operation_desc.D.element)) + ":" + library::to_string(operation_desc.D.layout));
|
250 |
+
|
251 |
+
set_argument(result, "m", problem_space, m);
|
252 |
+
set_argument(result, "n", problem_space, n);
|
253 |
+
|
254 |
+
set_argument(result, "split_k_slices", problem_space, split_k_slices);
|
255 |
+
set_argument(result, "batch_count", problem_space, batch_count);
|
256 |
+
|
257 |
+
set_argument(result, "alpha", problem_space,
|
258 |
+
library::lexical_cast(alpha, operation_desc.element_epilogue));
|
259 |
+
|
260 |
+
set_argument(result, "beta", problem_space,
|
261 |
+
library::lexical_cast(beta, operation_desc.element_epilogue));
|
262 |
+
}
|
263 |
+
|
264 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
265 |
+
|
266 |
+
/// Extracts the problem dimensions
|
267 |
+
Status TrmmOperationProfiler::initialize_configuration(
|
268 |
+
Options const &options,
|
269 |
+
PerformanceReport &report,
|
270 |
+
DeviceContext &device_context,
|
271 |
+
library::Operation const *operation,
|
272 |
+
ProblemSpace const &problem_space,
|
273 |
+
ProblemSpace::Problem const &problem) {
|
274 |
+
|
275 |
+
library::TrmmDescription const &operation_desc =
|
276 |
+
static_cast<library::TrmmDescription const &>(operation->description());
|
277 |
+
|
278 |
+
if (operation_desc.trmm_kind != library::TrmmKind::kUniversal) {
|
279 |
+
return Status::kErrorInvalidProblem;
|
280 |
+
}
|
281 |
+
|
282 |
+
Status status = problem_.parse(operation_desc, problem_space, problem);
|
283 |
+
|
284 |
+
if (status != Status::kSuccess) {
|
285 |
+
return status;
|
286 |
+
}
|
287 |
+
|
288 |
+
trmm_workspace_.configuration.problem_size.m() = int(problem_.m);
|
289 |
+
trmm_workspace_.configuration.problem_size.n() = int(problem_.n);
|
290 |
+
trmm_workspace_.configuration.problem_size.k() = (operation_desc.side_mode == SideMode::kLeft)
|
291 |
+
? int(problem_.m) : int(problem_.n);
|
292 |
+
trmm_workspace_.configuration.lda = problem_.lda;
|
293 |
+
trmm_workspace_.configuration.ldb = problem_.ldb;
|
294 |
+
trmm_workspace_.configuration.ldd = problem_.ldd;
|
295 |
+
//trmm_workspace_.configuration.split_k_slices = int(problem_.split_k_slices);
|
296 |
+
trmm_workspace_.configuration.batch_count = int(problem_.split_k_slices);
|
297 |
+
|
298 |
+
trmm_workspace_.arguments.A = nullptr;
|
299 |
+
trmm_workspace_.arguments.B = nullptr;
|
300 |
+
trmm_workspace_.arguments.D = nullptr;
|
301 |
+
trmm_workspace_.arguments.alpha = problem_.alpha.data();
|
302 |
+
trmm_workspace_.arguments.beta = problem_.beta.data();
|
303 |
+
trmm_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
304 |
+
|
305 |
+
initialize_result_(this->model_result_, options, operation_desc, problem_space);
|
306 |
+
|
307 |
+
return operation->can_implement(&trmm_workspace_.configuration, &trmm_workspace_.arguments);
|
308 |
+
}
|
309 |
+
|
310 |
+
/// Initializes the performance result
|
311 |
+
void TrmmOperationProfiler::initialize_result_(
|
312 |
+
PerformanceResult &result,
|
313 |
+
Options const &options,
|
314 |
+
library::TrmmDescription const &operation_desc,
|
315 |
+
ProblemSpace const &problem_space) {
|
316 |
+
|
317 |
+
result.provider = library::Provider::kCUTLASS;
|
318 |
+
result.disposition = Disposition::kNotRun;
|
319 |
+
result.status = Status::kSuccess;
|
320 |
+
result.operation_name = operation_desc.name;
|
321 |
+
|
322 |
+
problem_.initialize_result(result, operation_desc, problem_space);
|
323 |
+
|
324 |
+
OperationProfiler::initialize_result_(result, operation_desc, problem_space);
|
325 |
+
|
326 |
+
if (operation_desc.side_mode == SideMode::kLeft) {
|
327 |
+
// Input bytes read and Output bytes written for the trmm problem
|
328 |
+
result.bytes =
|
329 |
+
// Half matrix including the diagonal will have (M*(M+1))/2 elements
|
330 |
+
int64_t(library::sizeof_bits(operation_desc.A.element) * problem_.m / 8) * (problem_.m + 1) / 2 +
|
331 |
+
int64_t(library::sizeof_bits(operation_desc.B.element) * problem_.m / 8) * problem_.n +
|
332 |
+
int64_t(library::sizeof_bits(operation_desc.D.element) * problem_.m / 8) * problem_.n;
|
333 |
+
} else if (operation_desc.side_mode == SideMode::kRight) {
|
334 |
+
// Input bytes read and Output bytes written for the trmm problem
|
335 |
+
result.bytes =
|
336 |
+
// Half matrix including the diagonal will have (N*(N+1))/2 elements
|
337 |
+
int64_t(library::sizeof_bits(operation_desc.A.element) * problem_.n / 8) * (problem_.n + 1) / 2 +
|
338 |
+
int64_t(library::sizeof_bits(operation_desc.B.element) * problem_.m / 8) * problem_.n +
|
339 |
+
int64_t(library::sizeof_bits(operation_desc.D.element) * problem_.m / 8) * problem_.n;
|
340 |
+
}
|
341 |
+
|
342 |
+
// FLOPs = 2 * [ ( M * (M+1)/2 * N ) ] // Beta is zero
|
343 |
+
result.flops = problem_.m * (problem_.m + 1) * problem_.n;
|
344 |
+
|
345 |
+
result.runtime = 0;
|
346 |
+
|
347 |
+
// complex-valued support
|
348 |
+
switch (operation_desc.tile_description.math_instruction.math_operation) {
|
349 |
+
case library::MathOperationID::kMultiplyAddComplex:
|
350 |
+
result.flops *= 4;
|
351 |
+
break;
|
352 |
+
|
353 |
+
case library::MathOperationID::kMultiplyAddComplexFastF32:
|
354 |
+
result.flops *= 4;
|
355 |
+
break;
|
356 |
+
|
357 |
+
default: break;
|
358 |
+
}
|
359 |
+
|
360 |
+
}
|
361 |
+
|
362 |
+
/// Initializes workspace
|
363 |
+
Status TrmmOperationProfiler::initialize_workspace(
|
364 |
+
Options const &options,
|
365 |
+
PerformanceReport &report,
|
366 |
+
DeviceContext &device_context,
|
367 |
+
library::Operation const *operation,
|
368 |
+
ProblemSpace const &problem_space,
|
369 |
+
ProblemSpace::Problem const &problem) {
|
370 |
+
|
371 |
+
if (options.device.devices.size() != 1) {
|
372 |
+
throw std::runtime_error("This operation profiler only supports a single "
|
373 |
+
"device.");
|
374 |
+
}
|
375 |
+
|
376 |
+
cudaError_t result;
|
377 |
+
result = cudaSetDevice(options.device.device_id(0));
|
378 |
+
if (result != cudaSuccess) {
|
379 |
+
throw std::runtime_error("cudaSetDevice() failed.");
|
380 |
+
}
|
381 |
+
|
382 |
+
library::TrmmDescription const &operation_desc =
|
383 |
+
static_cast<library::TrmmDescription const &>(operation->description());
|
384 |
+
|
385 |
+
if (options.execution_mode != ExecutionMode::kDryRun) {
|
386 |
+
int seed_shift = 0;
|
387 |
+
if (operation_desc.side_mode == SideMode::kLeft) {
|
388 |
+
trmm_workspace_.A = device_context.allocate_and_initialize_tensor(
|
389 |
+
options,
|
390 |
+
"A",
|
391 |
+
operation_desc.A.element,
|
392 |
+
operation_desc.A.layout,
|
393 |
+
{int(problem_.m), int(problem_.m)},
|
394 |
+
{int(problem_.lda)},
|
395 |
+
1, // batch_count
|
396 |
+
seed_shift++,
|
397 |
+
0 // device_index
|
398 |
+
);
|
399 |
+
} else if (operation_desc.side_mode == SideMode::kRight) {
|
400 |
+
trmm_workspace_.A = device_context.allocate_and_initialize_tensor(
|
401 |
+
options,
|
402 |
+
"A",
|
403 |
+
operation_desc.A.element,
|
404 |
+
operation_desc.A.layout,
|
405 |
+
{int(problem_.n), int(problem_.n)},
|
406 |
+
{int(problem_.lda)},
|
407 |
+
1, // batch_count
|
408 |
+
seed_shift++,
|
409 |
+
0 // device_index
|
410 |
+
);
|
411 |
+
}
|
412 |
+
|
413 |
+
trmm_workspace_.B = device_context.allocate_and_initialize_tensor(
|
414 |
+
options,
|
415 |
+
"B",
|
416 |
+
operation_desc.B.element,
|
417 |
+
operation_desc.B.layout,
|
418 |
+
{int(problem_.m), int(problem_.n)},
|
419 |
+
{int(problem_.ldb)},
|
420 |
+
1, // batch_count
|
421 |
+
seed_shift++,
|
422 |
+
0 // device_index
|
423 |
+
);
|
424 |
+
|
425 |
+
trmm_workspace_.Computed = device_context.allocate_tensor(
|
426 |
+
options,
|
427 |
+
"D",
|
428 |
+
operation_desc.D.element,
|
429 |
+
operation_desc.D.layout,
|
430 |
+
{int(problem_.m), int(problem_.n)},
|
431 |
+
{int(problem_.ldd)},
|
432 |
+
1, // batch_count
|
433 |
+
0 // device_index
|
434 |
+
);
|
435 |
+
|
436 |
+
trmm_workspace_.Reference = device_context.allocate_tensor(
|
437 |
+
options,
|
438 |
+
"Reference",
|
439 |
+
operation_desc.D.element,
|
440 |
+
operation_desc.D.layout,
|
441 |
+
{int(problem_.m), int(problem_.n)},
|
442 |
+
{int(problem_.ldd)},
|
443 |
+
1, // batch_count
|
444 |
+
0 // device_index
|
445 |
+
);
|
446 |
+
|
447 |
+
}
|
448 |
+
|
449 |
+
//
|
450 |
+
// Initialize the CUTLASS operation
|
451 |
+
//
|
452 |
+
Status status = Status::kSuccess;
|
453 |
+
|
454 |
+
if (options.profiling.provider_enabled(library::Provider::kCUTLASS)) {
|
455 |
+
|
456 |
+
if (options.execution_mode != ExecutionMode::kDryRun) {
|
457 |
+
|
458 |
+
uint64_t workspace_size = operation->get_host_workspace_size(&trmm_workspace_.configuration);
|
459 |
+
trmm_workspace_.host_workspace.resize(workspace_size, 0);
|
460 |
+
|
461 |
+
workspace_size = operation->get_device_workspace_size(&trmm_workspace_.configuration);
|
462 |
+
trmm_workspace_.device_workspace.reset(library::NumericTypeID::kU8, workspace_size);
|
463 |
+
|
464 |
+
status = operation->initialize(
|
465 |
+
&trmm_workspace_.configuration,
|
466 |
+
trmm_workspace_.host_workspace.data(),
|
467 |
+
trmm_workspace_.device_workspace.data());
|
468 |
+
}
|
469 |
+
|
470 |
+
//
|
471 |
+
// If CUTLASS is enabled, generate a result for it
|
472 |
+
//
|
473 |
+
results_.push_back(model_result_);
|
474 |
+
results_.back().provider = library::Provider::kCUTLASS;
|
475 |
+
results_.back().op_kind = library::OperationKind::kTrmm;
|
476 |
+
results_.back().disposition = Disposition::kNotRun;
|
477 |
+
|
478 |
+
for(auto provider : verification_providers_) {
|
479 |
+
results_.back().verification_map[provider] = Disposition::kNotRun;
|
480 |
+
}
|
481 |
+
}
|
482 |
+
|
483 |
+
return status;
|
484 |
+
}
|
485 |
+
|
486 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
487 |
+
|
488 |
+
/// Verifies CUTLASS against references
|
489 |
+
bool TrmmOperationProfiler::verify_cutlass(
|
490 |
+
Options const &options,
|
491 |
+
PerformanceReport &report,
|
492 |
+
DeviceContext &device_context,
|
493 |
+
library::Operation const *operation,
|
494 |
+
ProblemSpace const &problem_space,
|
495 |
+
ProblemSpace::Problem const &problem) {
|
496 |
+
|
497 |
+
if (!options.profiling.provider_enabled(library::Provider::kCUTLASS)) {
|
498 |
+
return true;
|
499 |
+
}
|
500 |
+
|
501 |
+
if (options.execution_mode == ExecutionMode::kDryRun) {
|
502 |
+
return true;
|
503 |
+
}
|
504 |
+
|
505 |
+
// Initialize structure containing TRMM arguments
|
506 |
+
trmm_workspace_.arguments.A = trmm_workspace_.A->data();
|
507 |
+
trmm_workspace_.arguments.B = trmm_workspace_.B->data();
|
508 |
+
trmm_workspace_.arguments.D = trmm_workspace_.Computed->data();
|
509 |
+
trmm_workspace_.arguments.alpha = problem_.alpha.data();
|
510 |
+
trmm_workspace_.arguments.beta = problem_.beta.data();
|
511 |
+
trmm_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
512 |
+
|
513 |
+
//
|
514 |
+
// Run the CUTLASS operation
|
515 |
+
//
|
516 |
+
|
517 |
+
results_.back().status = operation->run(
|
518 |
+
&trmm_workspace_.arguments,
|
519 |
+
trmm_workspace_.host_workspace.data(),
|
520 |
+
trmm_workspace_.device_workspace.data());
|
521 |
+
|
522 |
+
if (results_.back().status != Status::kSuccess) {
|
523 |
+
results_.back().disposition = Disposition::kFailed;
|
524 |
+
return false;
|
525 |
+
}
|
526 |
+
|
527 |
+
cudaError_t result = cudaDeviceSynchronize();
|
528 |
+
if (result != cudaSuccess) {
|
529 |
+
results_.back().disposition = Disposition::kFailed;
|
530 |
+
return false;
|
531 |
+
}
|
532 |
+
|
533 |
+
// CUTLASS op ran the but not yet verified against any verification provider
|
534 |
+
results_.back().disposition = Disposition::kNotVerified;
|
535 |
+
|
536 |
+
//
|
537 |
+
// Run verification providers
|
538 |
+
//
|
539 |
+
|
540 |
+
if (options.verification.enabled) {
|
541 |
+
|
542 |
+
#if CUTLASS_ENABLE_CUBLAS
|
543 |
+
if (options.verification.provider_enabled(library::Provider::kCUBLAS)) {
|
544 |
+
|
545 |
+
// Guard against unsupported cases
|
546 |
+
auto const & trmm_desc = static_cast<library::TrmmDescription const &>(operation->description());
|
547 |
+
|
548 |
+
if (cublas_satisfies(trmm_desc) == Status::kSuccess) {
|
549 |
+
|
550 |
+
// call cublas verification if supported
|
551 |
+
verify_with_cublas_(
|
552 |
+
options,
|
553 |
+
report,
|
554 |
+
device_context,
|
555 |
+
operation,
|
556 |
+
problem_space,
|
557 |
+
problem);
|
558 |
+
}
|
559 |
+
|
560 |
+
else {
|
561 |
+
// set verification map for cublas to not supported
|
562 |
+
results_.back().verification_map[library::Provider::kCUBLAS] = Disposition::kNotSupported;
|
563 |
+
}
|
564 |
+
}
|
565 |
+
#endif // #if CUTLASS_ENABLE_CUBLAS
|
566 |
+
|
567 |
+
// Update disposition to worst case verification outcome among all
|
568 |
+
// verification providers which are supported
|
569 |
+
bool is_any_verification_run_passed = false;
|
570 |
+
for(auto &m : results_.back().verification_map) {
|
571 |
+
if(m.second == Disposition::kFailed || m.second == Disposition::kIncorrect) {
|
572 |
+
results_.back().disposition = m.second;
|
573 |
+
return true;
|
574 |
+
}
|
575 |
+
if(!is_any_verification_run_passed && m.second == Disposition::kPassed) {
|
576 |
+
is_any_verification_run_passed = true;
|
577 |
+
}
|
578 |
+
}
|
579 |
+
|
580 |
+
if(is_any_verification_run_passed) {
|
581 |
+
results_.back().disposition = Disposition::kPassed;
|
582 |
+
}
|
583 |
+
}
|
584 |
+
|
585 |
+
// Return true means continue profiling
|
586 |
+
return true;
|
587 |
+
}
|
588 |
+
|
589 |
+
///////////////////////////////////////////////////////////////////////////////////////////////////
|
590 |
+
|
591 |
+
/// Verifies CUTLASS against references
|
592 |
+
bool TrmmOperationProfiler::verify_with_cublas_(
|
593 |
+
Options const &options,
|
594 |
+
PerformanceReport &report,
|
595 |
+
DeviceContext &device_context,
|
596 |
+
library::Operation const *operation,
|
597 |
+
ProblemSpace const &problem_space,
|
598 |
+
ProblemSpace::Problem const &problem) {
|
599 |
+
|
600 |
+
|
601 |
+
#if CUTLASS_ENABLE_CUBLAS
|
602 |
+
|
603 |
+
library::TrmmDescription const &trmm_desc =
|
604 |
+
static_cast<library::TrmmDescription const &>(operation->description());
|
605 |
+
|
606 |
+
//
|
607 |
+
// Construct cuBLAS operators
|
608 |
+
//
|
609 |
+
|
610 |
+
CublasCreate handle;
|
611 |
+
cublasStatus_t status = handle.get_cublas_create_status();
|
612 |
+
|
613 |
+
if (status != CUBLAS_STATUS_SUCCESS) {
|
614 |
+
|
615 |
+
results_.back().verification_map[library::Provider::kCUBLAS] = Disposition::kFailed;
|
616 |
+
return true;
|
617 |
+
}
|
618 |
+
|
619 |
+
//
|
620 |
+
// Initialize state
|
621 |
+
//
|
622 |
+
|
623 |
+
try {
|
624 |
+
|
625 |
+
//
|
626 |
+
// Construct dispatcher to cublas<t>Trmm()
|
627 |
+
//
|
628 |
+
|
629 |
+
// Initialize structure containing TRMM arguments
|
630 |
+
trmm_workspace_.arguments.A = trmm_workspace_.A->data();
|
631 |
+
trmm_workspace_.arguments.B = trmm_workspace_.B->data();
|
632 |
+
trmm_workspace_.arguments.D = trmm_workspace_.Reference->data();
|
633 |
+
trmm_workspace_.arguments.alpha = problem_.alpha.data();
|
634 |
+
trmm_workspace_.arguments.beta = problem_.beta.data();
|
635 |
+
trmm_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
636 |
+
|
637 |
+
detail::cublasTrmmDispatcher trmm_op(
|
638 |
+
trmm_desc,
|
639 |
+
trmm_workspace_.configuration,
|
640 |
+
trmm_workspace_.arguments
|
641 |
+
);
|
642 |
+
|
643 |
+
if (trmm_op.status != Status::kSuccess) {
|
644 |
+
results_.back().verification_map[library::Provider::kCUBLAS] = Disposition::kNotRun;
|
645 |
+
return true;
|
646 |
+
}
|
647 |
+
|
648 |
+
results_.back().status = Status::kSuccess;
|
649 |
+
|
650 |
+
status = trmm_op(handle);
|
651 |
+
|
652 |
+
// Handle errors
|
653 |
+
if (status != CUBLAS_STATUS_SUCCESS) {
|
654 |
+
|
655 |
+
results_.back().verification_map[library::Provider::kCUBLAS] = Disposition::kFailed;
|
656 |
+
return true;
|
657 |
+
}
|
658 |
+
|
659 |
+
//
|
660 |
+
// Verify results
|
661 |
+
//
|
662 |
+
results_.back().verification_map[library::Provider::kCUBLAS] = compare_tensors(
|
663 |
+
options,
|
664 |
+
*trmm_workspace_.Computed,
|
665 |
+
*trmm_workspace_.Reference
|
666 |
+
);
|
667 |
+
|
668 |
+
// Save workspace if incorrect
|
669 |
+
if (options.verification.save_workspace == SaveWorkspace::kIncorrect &&
|
670 |
+
results_.back().verification_map[library::Provider::kCUBLAS] == Disposition::kIncorrect) {
|
671 |
+
|
672 |
+
save_workspace(
|
673 |
+
device_context,
|
674 |
+
options,
|
675 |
+
trmm_desc,
|
676 |
+
library::Provider::kCUTLASS,
|
677 |
+
library::Provider::kCUBLAS);
|
678 |
+
}
|
679 |
+
}
|
680 |
+
catch (...) {
|
681 |
+
results_.back().verification_map[library::Provider::kCUBLAS] = Disposition::kFailed;
|
682 |
+
}
|
683 |
+
|
684 |
+
#endif
|
685 |
+
|
686 |
+
// Return true means continue profiling
|
687 |
+
return true;
|
688 |
+
}
|
689 |
+
|
690 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
691 |
+
|
692 |
+
/// Measures performance results
|
693 |
+
bool TrmmOperationProfiler::profile(
|
694 |
+
Options const &options,
|
695 |
+
PerformanceReport &report,
|
696 |
+
DeviceContext &device_context,
|
697 |
+
library::Operation const *operation,
|
698 |
+
ProblemSpace const &problem_space,
|
699 |
+
ProblemSpace::Problem const &problem) {
|
700 |
+
|
701 |
+
if (options.profiling.provider_enabled(library::Provider::kCUTLASS)) {
|
702 |
+
|
703 |
+
// Initialize structure containing TRMM arguments
|
704 |
+
trmm_workspace_.arguments.A = trmm_workspace_.A->data();
|
705 |
+
trmm_workspace_.arguments.B = trmm_workspace_.B->data();
|
706 |
+
trmm_workspace_.arguments.D = trmm_workspace_.Computed->data();
|
707 |
+
trmm_workspace_.arguments.alpha = problem_.alpha.data();
|
708 |
+
trmm_workspace_.arguments.beta = problem_.beta.data();
|
709 |
+
trmm_workspace_.arguments.pointer_mode = library::ScalarPointerMode::kHost;
|
710 |
+
|
711 |
+
results_.back().status = profile_cutlass_(
|
712 |
+
results_.back().runtime,
|
713 |
+
options,
|
714 |
+
operation,
|
715 |
+
&trmm_workspace_.arguments,
|
716 |
+
trmm_workspace_.host_workspace.data(),
|
717 |
+
trmm_workspace_.device_workspace.data()
|
718 |
+
);
|
719 |
+
}
|
720 |
+
return true;
|
721 |
+
}
|
722 |
+
|
723 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
724 |
+
|
725 |
+
} // namespace profiler
|
726 |
+
} // namespace cutlass
|
727 |
+
|
728 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/util/include/cutlass/util/GPU_Clock.hpp
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
|
32 |
+
#pragma once
|
33 |
+
|
34 |
+
#include <cuda_runtime.h>
|
35 |
+
|
36 |
+
struct GPU_Clock
|
37 |
+
{
|
38 |
+
GPU_Clock() {
|
39 |
+
cudaEventCreate(&start_);
|
40 |
+
cudaEventCreate(&stop_);
|
41 |
+
cudaEventRecord(start_);
|
42 |
+
}
|
43 |
+
|
44 |
+
~GPU_Clock() {
|
45 |
+
cudaEventDestroy(start_);
|
46 |
+
cudaEventDestroy(stop_);
|
47 |
+
}
|
48 |
+
|
49 |
+
void start() {
|
50 |
+
cudaEventRecord(start_);
|
51 |
+
}
|
52 |
+
|
53 |
+
float milliseconds() {
|
54 |
+
cudaEventRecord(stop_);
|
55 |
+
cudaEventSynchronize(stop_);
|
56 |
+
float time;
|
57 |
+
cudaEventElapsedTime(&time, start_, stop_);
|
58 |
+
return time;
|
59 |
+
}
|
60 |
+
|
61 |
+
float seconds() {
|
62 |
+
return milliseconds() * float(1e-3);
|
63 |
+
}
|
64 |
+
|
65 |
+
private:
|
66 |
+
cudaEvent_t start_, stop_;
|
67 |
+
};
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/util/include/cutlass/util/command_line.h
ADDED
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/******************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
******************************************************************************/
|
31 |
+
|
32 |
+
#pragma once
|
33 |
+
|
34 |
+
/**
|
35 |
+
* \file
|
36 |
+
* Utility for parsing command line arguments
|
37 |
+
*/
|
38 |
+
|
39 |
+
#include <iostream>
|
40 |
+
#include <limits>
|
41 |
+
#include <sstream>
|
42 |
+
#include <string>
|
43 |
+
#include <vector>
|
44 |
+
|
45 |
+
#include <cuda_runtime.h>
|
46 |
+
|
47 |
+
#include "cutlass/cutlass.h"
|
48 |
+
|
49 |
+
namespace cutlass {
|
50 |
+
|
51 |
+
/******************************************************************************
|
52 |
+
* command_line
|
53 |
+
******************************************************************************/
|
54 |
+
|
55 |
+
/**
|
56 |
+
* Utility for parsing command line arguments
|
57 |
+
*/
|
58 |
+
struct CommandLine {
|
59 |
+
std::vector<std::string> keys;
|
60 |
+
std::vector<std::string> values;
|
61 |
+
std::vector<std::string> args;
|
62 |
+
|
63 |
+
/**
|
64 |
+
* Constructor
|
65 |
+
*/
|
66 |
+
CommandLine(int argc, const char** argv) {
|
67 |
+
using namespace std;
|
68 |
+
|
69 |
+
for (int i = 1; i < argc; i++) {
|
70 |
+
string arg = argv[i];
|
71 |
+
|
72 |
+
if ((arg[0] != '-') || (arg[1] != '-')) {
|
73 |
+
args.push_back(arg);
|
74 |
+
continue;
|
75 |
+
}
|
76 |
+
|
77 |
+
string::size_type pos;
|
78 |
+
string key, val;
|
79 |
+
if ((pos = arg.find('=')) == string::npos) {
|
80 |
+
key = string(arg, 2, arg.length() - 2);
|
81 |
+
val = "";
|
82 |
+
} else {
|
83 |
+
key = string(arg, 2, pos - 2);
|
84 |
+
val = string(arg, pos + 1, arg.length() - 1);
|
85 |
+
}
|
86 |
+
|
87 |
+
keys.push_back(key);
|
88 |
+
values.push_back(val);
|
89 |
+
}
|
90 |
+
}
|
91 |
+
|
92 |
+
/**
|
93 |
+
* Checks whether a flag "--<flag>" is present in the commandline
|
94 |
+
*/
|
95 |
+
bool check_cmd_line_flag(const char* arg_name) const {
|
96 |
+
using namespace std;
|
97 |
+
|
98 |
+
for (int i = 0; i < int(keys.size()); ++i) {
|
99 |
+
if (keys[i] == string(arg_name)) return true;
|
100 |
+
}
|
101 |
+
return false;
|
102 |
+
}
|
103 |
+
|
104 |
+
/**
|
105 |
+
* Returns number of naked (non-flag and non-key-value) commandline parameters
|
106 |
+
*/
|
107 |
+
size_t num_naked_args() const {
|
108 |
+
return args.size();
|
109 |
+
}
|
110 |
+
|
111 |
+
/**
|
112 |
+
* Print naked (non-flag and non-key-value) commandline parameters
|
113 |
+
*/
|
114 |
+
void print_naked_args(std::ostream &out) const {
|
115 |
+
for (auto arg : args) {
|
116 |
+
out << " " << arg <<"\n";
|
117 |
+
}
|
118 |
+
}
|
119 |
+
|
120 |
+
/**
|
121 |
+
* Returns the commandline parameter for a given index (not including flags)
|
122 |
+
*/
|
123 |
+
template <typename value_t>
|
124 |
+
void get_cmd_line_argument(size_t index, value_t& val) const {
|
125 |
+
using namespace std;
|
126 |
+
if (index < args.size()) {
|
127 |
+
istringstream str_stream(args[index]);
|
128 |
+
str_stream >> val;
|
129 |
+
}
|
130 |
+
}
|
131 |
+
|
132 |
+
/**
|
133 |
+
* Obtains the boolean value specified for a given commandline parameter --<flag>=<bool>
|
134 |
+
*/
|
135 |
+
void get_cmd_line_argument(const char* arg_name, bool& val, bool _default) const {
|
136 |
+
val = _default;
|
137 |
+
if (check_cmd_line_flag(arg_name)) {
|
138 |
+
std::string value;
|
139 |
+
get_cmd_line_argument(arg_name, value);
|
140 |
+
|
141 |
+
val = !(value == "0" || value == "false");
|
142 |
+
}
|
143 |
+
}
|
144 |
+
|
145 |
+
/**
|
146 |
+
* Obtains the value specified for a given commandline parameter --<flag>=<value>
|
147 |
+
*/
|
148 |
+
template <typename value_t>
|
149 |
+
void get_cmd_line_argument(const char* arg_name,
|
150 |
+
value_t& val) const {
|
151 |
+
|
152 |
+
get_cmd_line_argument(arg_name, val, val);
|
153 |
+
}
|
154 |
+
|
155 |
+
/**
|
156 |
+
* Obtains the value specified for a given commandline parameter --<flag>=<value>
|
157 |
+
*/
|
158 |
+
template <typename value_t>
|
159 |
+
void get_cmd_line_argument(const char* arg_name,
|
160 |
+
value_t& val,
|
161 |
+
value_t const& _default) const {
|
162 |
+
using namespace std;
|
163 |
+
|
164 |
+
val = _default;
|
165 |
+
|
166 |
+
for (int i = 0; i < int(keys.size()); ++i) {
|
167 |
+
if (keys[i] == string(arg_name)) {
|
168 |
+
istringstream str_stream(values[i]);
|
169 |
+
str_stream >> val;
|
170 |
+
}
|
171 |
+
}
|
172 |
+
}
|
173 |
+
|
174 |
+
/**
|
175 |
+
* Returns the values specified for a given commandline parameter --<flag>=<value>,<value>*
|
176 |
+
*/
|
177 |
+
template <typename value_t>
|
178 |
+
void get_cmd_line_arguments(const char* arg_name,
|
179 |
+
std::vector<value_t>& vals,
|
180 |
+
char sep = ',') const {
|
181 |
+
using namespace std;
|
182 |
+
|
183 |
+
if (check_cmd_line_flag(arg_name)) {
|
184 |
+
// Clear any default values
|
185 |
+
vals.clear();
|
186 |
+
|
187 |
+
// Recover from multi-value string
|
188 |
+
for (size_t i = 0; i < keys.size(); ++i) {
|
189 |
+
if (keys[i] == string(arg_name)) {
|
190 |
+
string val_string(values[i]);
|
191 |
+
separate_string(val_string, vals, sep);
|
192 |
+
}
|
193 |
+
}
|
194 |
+
}
|
195 |
+
}
|
196 |
+
|
197 |
+
/**
|
198 |
+
* Returns the values specified for a given commandline parameter
|
199 |
+
* --<flag>=<value>,<value_start:value_end>*
|
200 |
+
*/
|
201 |
+
void get_cmd_line_argument_pairs(const char* arg_name,
|
202 |
+
std::vector<std::pair<std::string, std::string> >& tokens,
|
203 |
+
char delim = ',',
|
204 |
+
char sep = ':') const {
|
205 |
+
if (check_cmd_line_flag(arg_name)) {
|
206 |
+
std::string value;
|
207 |
+
get_cmd_line_argument(arg_name, value);
|
208 |
+
|
209 |
+
tokenize(tokens, value, delim, sep);
|
210 |
+
}
|
211 |
+
}
|
212 |
+
|
213 |
+
/**
|
214 |
+
* Returns a list of ranges specified for a given commandline parameter
|
215 |
+
* --<flag>=<key:value>,<key:value>*
|
216 |
+
*/
|
217 |
+
void get_cmd_line_argument_ranges(const char* arg_name,
|
218 |
+
std::vector<std::vector<std::string> >& vals,
|
219 |
+
char delim = ',',
|
220 |
+
char sep = ':') const {
|
221 |
+
std::vector<std::string> ranges;
|
222 |
+
get_cmd_line_arguments(arg_name, ranges, delim);
|
223 |
+
|
224 |
+
for (std::vector<std::string>::const_iterator range = ranges.begin();
|
225 |
+
range != ranges.end(); ++range) {
|
226 |
+
|
227 |
+
std::vector<std::string> range_vals;
|
228 |
+
separate_string(*range, range_vals, sep);
|
229 |
+
vals.push_back(range_vals);
|
230 |
+
}
|
231 |
+
}
|
232 |
+
|
233 |
+
/**
|
234 |
+
* The number of pairs parsed
|
235 |
+
*/
|
236 |
+
int parsed_argc() const { return (int)keys.size(); }
|
237 |
+
|
238 |
+
//-------------------------------------------------------------------------
|
239 |
+
// Utility functions
|
240 |
+
//-------------------------------------------------------------------------
|
241 |
+
|
242 |
+
/// Tokenizes a comma-delimited list of string pairs delimited by ':'
|
243 |
+
static void tokenize(std::vector<std::pair<std::string, std::string> >& tokens,
|
244 |
+
std::string const& str,
|
245 |
+
char delim = ',',
|
246 |
+
char sep = ':') {
|
247 |
+
// Home-built to avoid Boost dependency
|
248 |
+
size_t s_idx = 0;
|
249 |
+
size_t d_idx = std::string::npos;
|
250 |
+
while (s_idx < str.size()) {
|
251 |
+
d_idx = str.find_first_of(delim, s_idx);
|
252 |
+
|
253 |
+
size_t end_idx = (d_idx != std::string::npos ? d_idx : str.size());
|
254 |
+
size_t sep_idx = str.find_first_of(sep, s_idx);
|
255 |
+
size_t offset = 1;
|
256 |
+
if (sep_idx == std::string::npos || sep_idx >= end_idx) {
|
257 |
+
sep_idx = end_idx;
|
258 |
+
offset = 0;
|
259 |
+
}
|
260 |
+
|
261 |
+
std::pair<std::string, std::string> item(
|
262 |
+
str.substr(s_idx, sep_idx - s_idx),
|
263 |
+
str.substr(sep_idx + offset, end_idx - sep_idx - offset));
|
264 |
+
|
265 |
+
tokens.push_back(item);
|
266 |
+
s_idx = end_idx + 1;
|
267 |
+
}
|
268 |
+
}
|
269 |
+
|
270 |
+
/// Tokenizes a comma-delimited list of string pairs delimited by ':'
|
271 |
+
static void tokenize(std::vector<std::string>& tokens,
|
272 |
+
std::string const& str,
|
273 |
+
char delim = ',',
|
274 |
+
char sep = ':') {
|
275 |
+
typedef std::vector<std::pair<std::string, std::string> > TokenVector;
|
276 |
+
typedef TokenVector::const_iterator token_iterator;
|
277 |
+
|
278 |
+
std::vector<std::pair<std::string, std::string> > token_pairs;
|
279 |
+
tokenize(token_pairs, str, delim, sep);
|
280 |
+
for (token_iterator tok = token_pairs.begin(); tok != token_pairs.end(); ++tok) {
|
281 |
+
tokens.push_back(tok->first);
|
282 |
+
}
|
283 |
+
}
|
284 |
+
|
285 |
+
template <typename value_t>
|
286 |
+
static void separate_string(std::string const& str,
|
287 |
+
std::vector<value_t>& vals,
|
288 |
+
char sep = ',') {
|
289 |
+
std::istringstream str_stream(str);
|
290 |
+
std::string::size_type old_pos = 0;
|
291 |
+
std::string::size_type new_pos = 0;
|
292 |
+
|
293 |
+
// Iterate <sep>-delimited values
|
294 |
+
value_t val;
|
295 |
+
while ((new_pos = str.find(sep, old_pos)) != std::string::npos) {
|
296 |
+
if (new_pos != old_pos) {
|
297 |
+
str_stream.width(new_pos - old_pos);
|
298 |
+
str_stream >> val;
|
299 |
+
vals.push_back(val);
|
300 |
+
}
|
301 |
+
|
302 |
+
// skip over delimiter
|
303 |
+
str_stream.ignore(1);
|
304 |
+
old_pos = new_pos + 1;
|
305 |
+
}
|
306 |
+
|
307 |
+
// Read last value
|
308 |
+
str_stream >> val;
|
309 |
+
vals.push_back(val);
|
310 |
+
}
|
311 |
+
};
|
312 |
+
|
313 |
+
} // namespace cutlass
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/util/include/cutlass/util/cublas_wrappers.hpp
ADDED
@@ -0,0 +1,526 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
|
32 |
+
#pragma once
|
33 |
+
|
34 |
+
#include <cuda_runtime.h>
|
35 |
+
#include <cublas_v2.h>
|
36 |
+
|
37 |
+
//-- BLAM_DEBUG_OUT ---------------------------------------------------------
|
38 |
+
#ifdef BLAM_DEBUG
|
39 |
+
# include <iostream>
|
40 |
+
# ifndef BLAM_DEBUG_OUT
|
41 |
+
# define BLAM_DEBUG_OUT(msg) std::cerr << "BLAM: " << msg << std::endl
|
42 |
+
# define BLAM_DEBUG_OUT_2(msg) std::cerr << msg << std::endl
|
43 |
+
# endif // BLAM_DEBUG_OUT
|
44 |
+
#else
|
45 |
+
# ifndef BLAM_DEBUG_OUT
|
46 |
+
# define BLAM_DEBUG_OUT(msg)
|
47 |
+
# define BLAM_DEBUG_OUT_2(msg)
|
48 |
+
# endif // BLAM_DEBUG_OUT
|
49 |
+
#endif // BLAM_DEBUG
|
50 |
+
|
51 |
+
// User could potentially define ComplexFloat/ComplexDouble instead of std::
|
52 |
+
#ifndef BLAM_COMPLEX_TYPES
|
53 |
+
#define BLAM_COMPLEX_TYPES 1
|
54 |
+
#include <cuda/std/complex>
|
55 |
+
namespace blam {
|
56 |
+
template <typename T>
|
57 |
+
using Complex = cuda::std::complex<T>;
|
58 |
+
using ComplexFloat = cuda::std::complex<float>;
|
59 |
+
using ComplexDouble = cuda::std::complex<double>;
|
60 |
+
}
|
61 |
+
#endif // BLAM_COMPLEX_TYPES
|
62 |
+
|
63 |
+
// User could potentially define Half instead of cute::
|
64 |
+
#ifndef BLAM_HALF_TYPE
|
65 |
+
#define BLAM_HALF_TYPE 1
|
66 |
+
#include <cute/numeric/numeric_types.hpp>
|
67 |
+
namespace blam {
|
68 |
+
using Half = cute::half_t;
|
69 |
+
}
|
70 |
+
#endif // BLAM_HALF_TYPE
|
71 |
+
|
72 |
+
namespace blam
|
73 |
+
{
|
74 |
+
namespace cublas
|
75 |
+
{
|
76 |
+
|
77 |
+
inline const char*
|
78 |
+
cublas_get_error(cublasStatus_t status)
|
79 |
+
{
|
80 |
+
switch (status) {
|
81 |
+
case CUBLAS_STATUS_SUCCESS:
|
82 |
+
return "CUBLAS_STATUS_SUCCESS";
|
83 |
+
case CUBLAS_STATUS_NOT_INITIALIZED:
|
84 |
+
return "CUBLAS_STATUS_NOT_INITIALIZED -- The cuBLAS library was not initialized.";
|
85 |
+
case CUBLAS_STATUS_ALLOC_FAILED:
|
86 |
+
return "CUBLAS_STATUS_ALLOC_FAILED -- Resource allocation failed inside the cuBLAS library.";
|
87 |
+
case CUBLAS_STATUS_INVALID_VALUE:
|
88 |
+
return "CUBLAS_STATUS_INVALID_VALUE -- An unsupported value or parameter was passed to the function.";
|
89 |
+
case CUBLAS_STATUS_ARCH_MISMATCH:
|
90 |
+
return "CUBLAS_STATUS_ARCH_MISMATCH -- The function requires a feature absent from the device architecture.";
|
91 |
+
case CUBLAS_STATUS_MAPPING_ERROR:
|
92 |
+
return "CUBLAS_STATUS_MAPPING_ERROR -- An access to GPU memory space failed.";
|
93 |
+
case CUBLAS_STATUS_EXECUTION_FAILED:
|
94 |
+
return "CUBLAS_STATUS_EXECUTION_FAILED -- The GPU program failed to execute.";
|
95 |
+
case CUBLAS_STATUS_INTERNAL_ERROR:
|
96 |
+
return "CUBLAS_STATUS_INTERNAL_ERROR -- An internal cuBLAS operation failed.";
|
97 |
+
case CUBLAS_STATUS_NOT_SUPPORTED:
|
98 |
+
return "CUBLAS_STATUS_NOT_SUPPORTED -- The functionality requested is not supported.";
|
99 |
+
case CUBLAS_STATUS_LICENSE_ERROR:
|
100 |
+
return "CUBLAS_STATUS_LICENSE_ERROR -- An error was detected when checking the current licensing.";
|
101 |
+
default:
|
102 |
+
return "CUBLAS_ERROR -- <unknown>";
|
103 |
+
}
|
104 |
+
}
|
105 |
+
|
106 |
+
inline bool
|
107 |
+
cublas_is_error(cublasStatus_t status)
|
108 |
+
{
|
109 |
+
return status != CUBLAS_STATUS_SUCCESS;
|
110 |
+
}
|
111 |
+
|
112 |
+
|
113 |
+
// hgemm
|
114 |
+
inline cublasStatus_t
|
115 |
+
gemm(cublasHandle_t handle,
|
116 |
+
cublasOperation_t transA, cublasOperation_t transB,
|
117 |
+
int m, int n, int k,
|
118 |
+
const Half* alpha,
|
119 |
+
const Half* A, int ldA,
|
120 |
+
const Half* B, int ldB,
|
121 |
+
const Half* beta,
|
122 |
+
Half* C, int ldC)
|
123 |
+
{
|
124 |
+
BLAM_DEBUG_OUT("cublasHgemm");
|
125 |
+
|
126 |
+
return cublasGemmEx(handle, transA, transB,
|
127 |
+
m, n, k,
|
128 |
+
reinterpret_cast<const __half*>(alpha),
|
129 |
+
reinterpret_cast<const __half*>(A), CUDA_R_16F, ldA,
|
130 |
+
reinterpret_cast<const __half*>(B), CUDA_R_16F, ldB,
|
131 |
+
reinterpret_cast<const __half*>(beta),
|
132 |
+
reinterpret_cast< __half*>(C), CUDA_R_16F, ldC,
|
133 |
+
CUDA_R_16F, CUBLAS_GEMM_DEFAULT_TENSOR_OP);
|
134 |
+
}
|
135 |
+
|
136 |
+
// mixed hf gemm
|
137 |
+
inline cublasStatus_t
|
138 |
+
gemm(cublasHandle_t handle,
|
139 |
+
cublasOperation_t transA, cublasOperation_t transB,
|
140 |
+
int m, int n, int k,
|
141 |
+
const float* alpha,
|
142 |
+
const Half* A, int ldA,
|
143 |
+
const Half* B, int ldB,
|
144 |
+
const float* beta,
|
145 |
+
float* C, int ldC)
|
146 |
+
{
|
147 |
+
BLAM_DEBUG_OUT("cublasGemmEx mixed half-float");
|
148 |
+
|
149 |
+
return cublasGemmEx(handle, transA, transB,
|
150 |
+
m, n, k,
|
151 |
+
alpha,
|
152 |
+
reinterpret_cast<const __half*>(A), CUDA_R_16F, ldA,
|
153 |
+
reinterpret_cast<const __half*>(B), CUDA_R_16F, ldB,
|
154 |
+
beta,
|
155 |
+
C, CUDA_R_32F, ldC,
|
156 |
+
CUDA_R_32F, CUBLAS_GEMM_DEFAULT_TENSOR_OP);
|
157 |
+
}
|
158 |
+
|
159 |
+
// igemm
|
160 |
+
inline cublasStatus_t
|
161 |
+
gemm(cublasHandle_t handle,
|
162 |
+
cublasOperation_t transA, cublasOperation_t transB,
|
163 |
+
int m, int n, int k,
|
164 |
+
const int32_t* alpha,
|
165 |
+
const int8_t* A, int ldA,
|
166 |
+
const int8_t* B, int ldB,
|
167 |
+
const int32_t* beta,
|
168 |
+
int32_t* C, int ldC)
|
169 |
+
{
|
170 |
+
BLAM_DEBUG_OUT("cublasIgemm");
|
171 |
+
|
172 |
+
return cublasGemmEx(handle, transA, transB,
|
173 |
+
m, n, k,
|
174 |
+
alpha,
|
175 |
+
A, CUDA_R_8I, ldA,
|
176 |
+
B, CUDA_R_8I, ldB,
|
177 |
+
beta,
|
178 |
+
C, CUDA_R_32I, ldC,
|
179 |
+
CUDA_R_32I, CUBLAS_GEMM_DEFAULT_TENSOR_OP);
|
180 |
+
}
|
181 |
+
|
182 |
+
// sgemm
|
183 |
+
inline cublasStatus_t
|
184 |
+
gemm(cublasHandle_t handle,
|
185 |
+
cublasOperation_t transA, cublasOperation_t transB,
|
186 |
+
int m, int n, int k,
|
187 |
+
const float* alpha,
|
188 |
+
const float* A, int ldA,
|
189 |
+
const float* B, int ldB,
|
190 |
+
const float* beta,
|
191 |
+
float* C, int ldC)
|
192 |
+
{
|
193 |
+
BLAM_DEBUG_OUT("cublasSgemm");
|
194 |
+
|
195 |
+
return cublasSgemm(handle, transA, transB,
|
196 |
+
m, n, k,
|
197 |
+
alpha,
|
198 |
+
A, ldA,
|
199 |
+
B, ldB,
|
200 |
+
beta,
|
201 |
+
C, ldC);
|
202 |
+
}
|
203 |
+
|
204 |
+
// dgemm
|
205 |
+
inline cublasStatus_t
|
206 |
+
gemm(cublasHandle_t handle,
|
207 |
+
cublasOperation_t transA, cublasOperation_t transB,
|
208 |
+
int m, int n, int k,
|
209 |
+
const double* alpha,
|
210 |
+
const double* A, int ldA,
|
211 |
+
const double* B, int ldB,
|
212 |
+
const double* beta,
|
213 |
+
double* C, int ldC)
|
214 |
+
{
|
215 |
+
BLAM_DEBUG_OUT("cublasDgemm");
|
216 |
+
|
217 |
+
return cublasDgemm(handle, transA, transB,
|
218 |
+
m, n, k,
|
219 |
+
alpha,
|
220 |
+
A, ldA,
|
221 |
+
B, ldB,
|
222 |
+
beta,
|
223 |
+
C, ldC);
|
224 |
+
}
|
225 |
+
|
226 |
+
// cgemm
|
227 |
+
inline cublasStatus_t
|
228 |
+
gemm(cublasHandle_t handle,
|
229 |
+
cublasOperation_t transA, cublasOperation_t transB,
|
230 |
+
int m, int n, int k,
|
231 |
+
const ComplexFloat* alpha,
|
232 |
+
const ComplexFloat* A, int ldA,
|
233 |
+
const ComplexFloat* B, int ldB,
|
234 |
+
const ComplexFloat* beta,
|
235 |
+
ComplexFloat* C, int ldC)
|
236 |
+
{
|
237 |
+
BLAM_DEBUG_OUT("cublasCgemm");
|
238 |
+
|
239 |
+
return cublasCgemm(handle, transA, transB,
|
240 |
+
m, n, k,
|
241 |
+
reinterpret_cast<const cuFloatComplex*>(alpha),
|
242 |
+
reinterpret_cast<const cuFloatComplex*>(A), ldA,
|
243 |
+
reinterpret_cast<const cuFloatComplex*>(B), ldB,
|
244 |
+
reinterpret_cast<const cuFloatComplex*>(beta),
|
245 |
+
reinterpret_cast<cuFloatComplex*>(C), ldC);
|
246 |
+
}
|
247 |
+
|
248 |
+
// zgemm
|
249 |
+
inline cublasStatus_t
|
250 |
+
gemm(cublasHandle_t handle,
|
251 |
+
cublasOperation_t transA, cublasOperation_t transB,
|
252 |
+
int m, int n, int k,
|
253 |
+
const ComplexDouble* alpha,
|
254 |
+
const ComplexDouble* A, int ldA,
|
255 |
+
const ComplexDouble* B, int ldB,
|
256 |
+
const ComplexDouble* beta,
|
257 |
+
ComplexDouble* C, int ldC)
|
258 |
+
{
|
259 |
+
BLAM_DEBUG_OUT("cublasZgemm");
|
260 |
+
|
261 |
+
return cublasZgemm(handle, transA, transB,
|
262 |
+
m, n, k,
|
263 |
+
reinterpret_cast<const cuDoubleComplex*>(alpha),
|
264 |
+
reinterpret_cast<const cuDoubleComplex*>(A), ldA,
|
265 |
+
reinterpret_cast<const cuDoubleComplex*>(B), ldB,
|
266 |
+
reinterpret_cast<const cuDoubleComplex*>(beta),
|
267 |
+
reinterpret_cast<cuDoubleComplex*>(C), ldC);
|
268 |
+
}
|
269 |
+
|
270 |
+
// hgemm
|
271 |
+
inline cublasStatus_t
|
272 |
+
gemm_batch(cublasHandle_t handle,
|
273 |
+
cublasOperation_t transA, cublasOperation_t transB,
|
274 |
+
int m, int n, int k,
|
275 |
+
const Half* alpha,
|
276 |
+
const Half* A, int ldA, int loA,
|
277 |
+
const Half* B, int ldB, int loB,
|
278 |
+
const Half* beta,
|
279 |
+
Half* C, int ldC, int loC,
|
280 |
+
int batch_size)
|
281 |
+
{
|
282 |
+
BLAM_DEBUG_OUT("cublasHgemmStridedBatched");
|
283 |
+
|
284 |
+
return cublasHgemmStridedBatched(handle, transA, transB,
|
285 |
+
m, n, k,
|
286 |
+
reinterpret_cast<const __half*>(alpha),
|
287 |
+
reinterpret_cast<const __half*>(A), ldA, loA,
|
288 |
+
reinterpret_cast<const __half*>(B), ldB, loB,
|
289 |
+
reinterpret_cast<const __half*>(beta),
|
290 |
+
reinterpret_cast<__half*>(C), ldC, loC,
|
291 |
+
batch_size);
|
292 |
+
}
|
293 |
+
|
294 |
+
// sgemm
|
295 |
+
inline cublasStatus_t
|
296 |
+
gemm_batch(cublasHandle_t handle,
|
297 |
+
cublasOperation_t transA, cublasOperation_t transB,
|
298 |
+
int m, int n, int k,
|
299 |
+
const float* alpha,
|
300 |
+
const float* A, int ldA, int loA,
|
301 |
+
const float* B, int ldB, int loB,
|
302 |
+
const float* beta,
|
303 |
+
float* C, int ldC, int loC,
|
304 |
+
int batch_size)
|
305 |
+
{
|
306 |
+
BLAM_DEBUG_OUT("cublasSgemmStridedBatched");
|
307 |
+
|
308 |
+
return cublasSgemmStridedBatched(handle, transA, transB,
|
309 |
+
m, n, k,
|
310 |
+
alpha,
|
311 |
+
A, ldA, loA,
|
312 |
+
B, ldB, loB,
|
313 |
+
beta,
|
314 |
+
C, ldC, loC,
|
315 |
+
batch_size);
|
316 |
+
}
|
317 |
+
|
318 |
+
// dgemm
|
319 |
+
inline cublasStatus_t
|
320 |
+
gemm_batch(cublasHandle_t handle,
|
321 |
+
cublasOperation_t transA, cublasOperation_t transB,
|
322 |
+
int m, int n, int k,
|
323 |
+
const double* alpha,
|
324 |
+
const double* A, int ldA, int loA,
|
325 |
+
const double* B, int ldB, int loB,
|
326 |
+
const double* beta,
|
327 |
+
double* C, int ldC, int loC,
|
328 |
+
int batch_size)
|
329 |
+
{
|
330 |
+
BLAM_DEBUG_OUT("cublasDgemmStridedBatched");
|
331 |
+
|
332 |
+
return cublasDgemmStridedBatched(handle, transA, transB,
|
333 |
+
m, n, k,
|
334 |
+
alpha,
|
335 |
+
A, ldA, loA,
|
336 |
+
B, ldB, loB,
|
337 |
+
beta,
|
338 |
+
C, ldC, loC,
|
339 |
+
batch_size);
|
340 |
+
}
|
341 |
+
|
342 |
+
// cgemm
|
343 |
+
inline cublasStatus_t
|
344 |
+
gemm_batch(cublasHandle_t handle,
|
345 |
+
cublasOperation_t transA, cublasOperation_t transB,
|
346 |
+
int m, int n, int k,
|
347 |
+
const ComplexFloat* alpha,
|
348 |
+
const ComplexFloat* A, int ldA, int loA,
|
349 |
+
const ComplexFloat* B, int ldB, int loB,
|
350 |
+
const ComplexFloat* beta,
|
351 |
+
ComplexFloat* C, int ldC, int loC,
|
352 |
+
int batch_size)
|
353 |
+
{
|
354 |
+
BLAM_DEBUG_OUT("cublasCgemmStridedBatched");
|
355 |
+
|
356 |
+
return cublasCgemmStridedBatched(handle, transA, transB,
|
357 |
+
m, n, k,
|
358 |
+
reinterpret_cast<const cuFloatComplex*>(alpha),
|
359 |
+
reinterpret_cast<const cuFloatComplex*>(A), ldA, loA,
|
360 |
+
reinterpret_cast<const cuFloatComplex*>(B), ldB, loB,
|
361 |
+
reinterpret_cast<const cuFloatComplex*>(beta),
|
362 |
+
reinterpret_cast<cuFloatComplex*>(C), ldC, loC,
|
363 |
+
batch_size);
|
364 |
+
}
|
365 |
+
|
366 |
+
// zgemm
|
367 |
+
inline cublasStatus_t
|
368 |
+
gemm_batch(cublasHandle_t handle,
|
369 |
+
cublasOperation_t transA, cublasOperation_t transB,
|
370 |
+
int m, int n, int k,
|
371 |
+
const ComplexDouble* alpha,
|
372 |
+
const ComplexDouble* A, int ldA, int loA,
|
373 |
+
const ComplexDouble* B, int ldB, int loB,
|
374 |
+
const ComplexDouble* beta,
|
375 |
+
ComplexDouble* C, int ldC, int loC,
|
376 |
+
int batch_size)
|
377 |
+
{
|
378 |
+
BLAM_DEBUG_OUT("cublasZgemmStridedBatched");
|
379 |
+
|
380 |
+
return cublasZgemmStridedBatched(handle, transA, transB,
|
381 |
+
m, n, k,
|
382 |
+
reinterpret_cast<const cuDoubleComplex*>(alpha),
|
383 |
+
reinterpret_cast<const cuDoubleComplex*>(A), ldA, loA,
|
384 |
+
reinterpret_cast<const cuDoubleComplex*>(B), ldB, loB,
|
385 |
+
reinterpret_cast<const cuDoubleComplex*>(beta),
|
386 |
+
reinterpret_cast<cuDoubleComplex*>(C), ldC, loC,
|
387 |
+
batch_size);
|
388 |
+
}
|
389 |
+
|
390 |
+
// hgemm
|
391 |
+
inline cublasStatus_t
|
392 |
+
gemm_batch(cublasHandle_t handle,
|
393 |
+
cublasOperation_t transA, cublasOperation_t transB,
|
394 |
+
int m, int n, int k,
|
395 |
+
const Half* alpha,
|
396 |
+
const Half* const A[], int ldA,
|
397 |
+
const Half* const B[], int ldB,
|
398 |
+
const Half* beta,
|
399 |
+
Half* const C[], int ldC,
|
400 |
+
int batch_size)
|
401 |
+
{
|
402 |
+
BLAM_DEBUG_OUT("cublasHgemmBatched");
|
403 |
+
|
404 |
+
return cublasHgemmBatched(handle, transA, transB,
|
405 |
+
m, n, k,
|
406 |
+
reinterpret_cast<const __half*>(alpha),
|
407 |
+
reinterpret_cast<const __half**>(const_cast<const Half**>(A)), ldA,
|
408 |
+
// A, ldA, // cuBLAS 9.2
|
409 |
+
reinterpret_cast<const __half**>(const_cast<const Half**>(B)), ldB,
|
410 |
+
// B, ldB, // cuBLAS 9.2
|
411 |
+
reinterpret_cast<const __half*>(beta),
|
412 |
+
reinterpret_cast<__half**>(const_cast<Half**>(C)), ldC,
|
413 |
+
// C, ldC, // cuBLAS 9.2
|
414 |
+
batch_size);
|
415 |
+
}
|
416 |
+
|
417 |
+
// sgemm
|
418 |
+
inline cublasStatus_t
|
419 |
+
gemm_batch(cublasHandle_t handle,
|
420 |
+
cublasOperation_t transA, cublasOperation_t transB,
|
421 |
+
int m, int n, int k,
|
422 |
+
const float* alpha,
|
423 |
+
const float* const A[], int ldA,
|
424 |
+
const float* const B[], int ldB,
|
425 |
+
const float* beta,
|
426 |
+
float* const C[], int ldC,
|
427 |
+
int batch_size)
|
428 |
+
{
|
429 |
+
BLAM_DEBUG_OUT("cublasSgemmBatched");
|
430 |
+
|
431 |
+
return cublasSgemmBatched(handle, transA, transB,
|
432 |
+
m, n, k,
|
433 |
+
alpha,
|
434 |
+
const_cast<const float**>(A), ldA,
|
435 |
+
// A, ldA, // cuBLAS 9.2
|
436 |
+
const_cast<const float**>(B), ldB,
|
437 |
+
// B, ldB, // cuBLAS 9.2
|
438 |
+
beta,
|
439 |
+
const_cast<float**>(C), ldC,
|
440 |
+
// C, ldC, // cuBLAS 9.2
|
441 |
+
batch_size);
|
442 |
+
}
|
443 |
+
|
444 |
+
// dgemm
|
445 |
+
inline cublasStatus_t
|
446 |
+
gemm_batch(cublasHandle_t handle,
|
447 |
+
cublasOperation_t transA, cublasOperation_t transB,
|
448 |
+
int m, int n, int k,
|
449 |
+
const double* alpha,
|
450 |
+
const double* const A[], int ldA,
|
451 |
+
const double* const B[], int ldB,
|
452 |
+
const double* beta,
|
453 |
+
double* const C[], int ldC,
|
454 |
+
int batch_size)
|
455 |
+
{
|
456 |
+
BLAM_DEBUG_OUT("cublasDgemmBatched");
|
457 |
+
|
458 |
+
return cublasDgemmBatched(handle, transA, transB,
|
459 |
+
m, n, k,
|
460 |
+
alpha,
|
461 |
+
const_cast<const double**>(A), ldA,
|
462 |
+
// A, ldA, // cuBLAS 9.2
|
463 |
+
const_cast<const double**>(B), ldB,
|
464 |
+
// B, ldB, // cuBLAS 9.2
|
465 |
+
beta,
|
466 |
+
const_cast<double**>(C), ldC,
|
467 |
+
// C, ldC, // cuBLAS 9.2
|
468 |
+
batch_size);
|
469 |
+
}
|
470 |
+
|
471 |
+
// cgemm
|
472 |
+
inline cublasStatus_t
|
473 |
+
gemm_batch(cublasHandle_t handle,
|
474 |
+
cublasOperation_t transA, cublasOperation_t transB,
|
475 |
+
int m, int n, int k,
|
476 |
+
const ComplexFloat* alpha,
|
477 |
+
const ComplexFloat* const A[], int ldA,
|
478 |
+
const ComplexFloat* const B[], int ldB,
|
479 |
+
const ComplexFloat* beta,
|
480 |
+
ComplexFloat* const C[], int ldC,
|
481 |
+
int batch_size)
|
482 |
+
{
|
483 |
+
BLAM_DEBUG_OUT("cublasCgemmBatched");
|
484 |
+
|
485 |
+
return cublasCgemmBatched(handle, transA, transB,
|
486 |
+
m, n, k,
|
487 |
+
reinterpret_cast<const cuFloatComplex*>(alpha),
|
488 |
+
const_cast<const cuFloatComplex**>(reinterpret_cast<const cuFloatComplex* const *>(A)), ldA,
|
489 |
+
//reinterpret_cast<const cuFloatComplex* const *>(A), ldA, // cuBLAS 9.2
|
490 |
+
const_cast<const cuFloatComplex**>(reinterpret_cast<const cuFloatComplex* const *>(B)), ldB,
|
491 |
+
//reinterpret_cast<const cuFloatComplex* const *>(B), ldB, // cuBLAS 9.2
|
492 |
+
reinterpret_cast<const cuFloatComplex*>(beta),
|
493 |
+
const_cast<cuFloatComplex**>(reinterpret_cast<cuFloatComplex* const *>(C)), ldC,
|
494 |
+
//reinterpret_cast<cuFloatComplex* const *>(C), ldC, // cuBLAS 9.2
|
495 |
+
batch_size);
|
496 |
+
}
|
497 |
+
|
498 |
+
// zgemm
|
499 |
+
inline cublasStatus_t
|
500 |
+
gemm_batch(cublasHandle_t handle,
|
501 |
+
cublasOperation_t transA, cublasOperation_t transB,
|
502 |
+
int m, int n, int k,
|
503 |
+
const ComplexDouble* alpha,
|
504 |
+
const ComplexDouble* const A[], int ldA,
|
505 |
+
const ComplexDouble* const B[], int ldB,
|
506 |
+
const ComplexDouble* beta,
|
507 |
+
ComplexDouble* const C[], int ldC,
|
508 |
+
int batch_size)
|
509 |
+
{
|
510 |
+
BLAM_DEBUG_OUT("cublasZgemmBatched");
|
511 |
+
|
512 |
+
return cublasZgemmBatched(handle, transA, transB,
|
513 |
+
m, n, k,
|
514 |
+
reinterpret_cast<const cuDoubleComplex*>(alpha),
|
515 |
+
const_cast<const cuDoubleComplex**>(reinterpret_cast<const cuDoubleComplex* const *>(A)), ldA,
|
516 |
+
//reinterpret_cast<const cuDoubleComplex* const *>(A), ldA, // cuBLAS 9.2
|
517 |
+
const_cast<const cuDoubleComplex**>(reinterpret_cast<const cuDoubleComplex* const *>(B)), ldB,
|
518 |
+
//reinterpret_cast<const cuDoubleComplex* const *>(B), ldB, // cuBLAS 9.2
|
519 |
+
reinterpret_cast<const cuDoubleComplex*>(beta),
|
520 |
+
const_cast<cuDoubleComplex**>(reinterpret_cast<cuDoubleComplex* const *>(C)), ldC,
|
521 |
+
//reinterpret_cast<cuDoubleComplex* const *>(C), ldC, // cuBLAS 9.2
|
522 |
+
batch_size);
|
523 |
+
}
|
524 |
+
|
525 |
+
} // end namespace cublas
|
526 |
+
} // end namespace blam
|
sglang_repo/sgl-kernel/3rdparty/flashinfer/3rdparty/cutlass/tools/util/include/cutlass/util/debug.h
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/***************************************************************************************************
|
2 |
+
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
3 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
4 |
+
*
|
5 |
+
* Redistribution and use in source and binary forms, with or without
|
6 |
+
* modification, are permitted provided that the following conditions are met:
|
7 |
+
*
|
8 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
* list of conditions and the following disclaimer.
|
10 |
+
*
|
11 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
* this list of conditions and the following disclaimer in the documentation
|
13 |
+
* and/or other materials provided with the distribution.
|
14 |
+
*
|
15 |
+
* 3. Neither the name of the copyright holder nor the names of its
|
16 |
+
* contributors may be used to endorse or promote products derived from
|
17 |
+
* this software without specific prior written permission.
|
18 |
+
*
|
19 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
*
|
30 |
+
**************************************************************************************************/
|
31 |
+
|
32 |
+
/*! \file
|
33 |
+
\brief Contains code for debugging cutlass code
|
34 |
+
*/
|
35 |
+
|
36 |
+
#pragma once
|
37 |
+
|
38 |
+
#include "device_dump.h"
|
39 |
+
|
40 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
41 |
+
|
42 |
+
/******************************************************************************
|
43 |
+
* Debug and logging macros
|
44 |
+
******************************************************************************/
|
45 |
+
|
46 |
+
/**
|
47 |
+
* Formats and prints the given message to stdout
|
48 |
+
*/
|
49 |
+
#if !defined(CUDA_LOG)
|
50 |
+
#if !defined(__CUDA_ARCH__)
|
51 |
+
#define CUDA_LOG(format, ...) printf(format, __VA_ARGS__)
|
52 |
+
#else
|
53 |
+
#define CUDA_LOG(format, ...) \
|
54 |
+
printf("[block (%d,%d,%d), thread (%d,%d,%d)]: " format, \
|
55 |
+
blockIdx.x, \
|
56 |
+
blockIdx.y, \
|
57 |
+
blockIdx.z, \
|
58 |
+
threadIdx.x, \
|
59 |
+
threadIdx.y, \
|
60 |
+
threadIdx.z, \
|
61 |
+
__VA_ARGS__);
|
62 |
+
#endif
|
63 |
+
#endif
|
64 |
+
|
65 |
+
/**
|
66 |
+
* Formats and prints the given message to stdout only if DEBUG is defined
|
67 |
+
*/
|
68 |
+
#if !defined(CUDA_LOG_DEBUG)
|
69 |
+
#ifdef DEBUG
|
70 |
+
#define CUDA_LOG_DEBUG(format, ...) CUDA_LOG(format, __VA_ARGS__)
|
71 |
+
#else
|
72 |
+
#define CUDA_LOG_DEBUG(format, ...)
|
73 |
+
#endif
|
74 |
+
#endif
|
75 |
+
|
76 |
+
/**
|
77 |
+
* \brief The corresponding error message is printed to \p stderr (or \p stdout in device code)
|
78 |
+
* along with the supplied source context.
|
79 |
+
*
|
80 |
+
* \return The CUDA error.
|
81 |
+
*/
|
82 |
+
__host__ CUTLASS_DEVICE cudaError_t cuda_perror_impl(cudaError_t error,
|
83 |
+
const char* expression,
|
84 |
+
const char* filename,
|
85 |
+
int line) {
|
86 |
+
(void)filename;
|
87 |
+
(void)line;
|
88 |
+
if (error) {
|
89 |
+
#if !defined(__CUDA_ARCH__)
|
90 |
+
fprintf(
|
91 |
+
stderr, "CUDA error %d [%s, %d] in expression '%s': %s\n", error, filename, line, expression, cudaGetErrorString(error));
|
92 |
+
fflush(stderr);
|
93 |
+
#else
|
94 |
+
printf("CUDA error %d [%s, %d] in expression '%s'\n", error, filename, line, expression);
|
95 |
+
#endif
|
96 |
+
}
|
97 |
+
return error;
|
98 |
+
}
|
99 |
+
|
100 |
+
/**
|
101 |
+
* \brief Perror macro
|
102 |
+
*/
|
103 |
+
#ifndef CUDA_PERROR
|
104 |
+
#define CUDA_PERROR(e) cuda_perror_impl((cudaError_t)(e), #e, __FILE__, __LINE__)
|
105 |
+
#endif
|
106 |
+
|
107 |
+
/**
|
108 |
+
* \brief Perror macro with exit
|
109 |
+
*/
|
110 |
+
#ifndef CUDA_PERROR_EXIT
|
111 |
+
#define CUDA_PERROR_EXIT(e) \
|
112 |
+
do { if (cuda_perror_impl((cudaError_t)(e), #e, __FILE__, __LINE__)) { \
|
113 |
+
exit(1); \
|
114 |
+
} } while (0)
|
115 |
+
#endif
|
116 |
+
|
117 |
+
/**
|
118 |
+
* \brief Perror macro only if DEBUG is defined
|
119 |
+
*/
|
120 |
+
#ifndef CUDA_PERROR_DEBUG
|
121 |
+
#ifdef DEBUG
|
122 |
+
#define CUDA_PERROR_DEBUG(e) CUDA_PERROR(e)
|
123 |
+
#else
|
124 |
+
#define CUDA_PERROR_DEBUG(e) (e)
|
125 |
+
#endif
|
126 |
+
#endif
|
127 |
+
|
128 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
129 |
+
|
130 |
+
// A small helper class to dump a type at compile time
|
131 |
+
// Usage:: DumpType<Class>::Class
|
132 |
+
template <typename T>
|
133 |
+
struct DebugType {};
|
134 |
+
|
135 |
+
template <typename T>
|
136 |
+
void DebugTypeFunc(T const& t) {
|
137 |
+
T::t;
|
138 |
+
}
|
139 |
+
|
140 |
+
// A small helper class to dump a compile time constant at compile time
|
141 |
+
// Usage: DumpValue<Class::kConstant>::kConstant
|
142 |
+
template <int Value>
|
143 |
+
struct DebugValue {};
|