test-repo / src /indicies /ivf_flat.py
andylizf's picture
Add files using upload-large-folder tool
d45fdef verified
import os
import json
import random
import logging
import pickle
import time
import glob
from tqdm import tqdm
import pdb
from typing import List, Tuple, Any
from abc import ABC, abstractmethod
from omegaconf import ListConfig
import subprocess
import re
import faiss
import numpy as np
import torch
from transformers import GPTNeoXTokenizerFast
import contriever.src.contriever
import contriever.src.utils
import contriever.src.slurm
from contriever.src.evaluation import calculate_matches
import contriever.src.normalize_text
from src.indicies.index_utils import convert_pkl_to_jsonl, get_passage_pos_ids
os.environ["TOKENIZERS_PARALLELISM"] = "true"
device = "cuda" if torch.cuda.is_available() else "cpu"
class IVFFlatIndexer(object):
def __init__(
self,
embed_paths,
index_path,
meta_file,
trained_index_path,
passage_dir=None,
pos_map_save_path=None,
sample_train_size=1000000,
prev_index_path=None,
dimension=768,
dtype=np.float16,
ncentroids=4096,
probe=2048,
num_keys_to_add_at_a_time=1000000,
DSTORE_SIZE_BATCH=51200000,
):
self.embed_paths = (
embed_paths # list of paths where saved the embedding of all shards
)
self.index_path = index_path # path to store the final index
self.meta_file = meta_file # path to save the index id to db id map
self.prev_index_path = (
prev_index_path # add new data to it instead of training new clusters
)
self.trained_index_path = trained_index_path # path to save the trained index
self.passage_dir = passage_dir
self.pos_map_save_path = pos_map_save_path
self.cuda = False
self.sample_size = sample_train_size
self.dimension = dimension
self.ncentroids = ncentroids
self.probe = probe
self.num_keys_to_add_at_a_time = num_keys_to_add_at_a_time
if os.path.exists(index_path) and os.path.exists(self.meta_file):
print("Loading index...")
self.index = faiss.read_index(index_path)
self.index_id_to_db_id = self.load_index_id_to_db_id()
self.index.nprobe = self.probe
# assert self.index.nprobe==self.index.nlist, f"nlist and nprobe are different {self.index.nprobe},{self.index.nlist}"
else:
self.index_id_to_db_id = []
if not os.path.exists(self.trained_index_path):
print("Training index...")
self._sample_and_train_index()
print("Building index...")
self.index = self._add_keys(
self.index_path,
self.prev_index_path
if self.prev_index_path is not None
else self.trained_index_path,
)
if self.pos_map_save_path is not None:
self.psg_pos_id_map = self.load_psg_pos_id_map()
def load_index_id_to_db_id(
self,
):
with open(self.meta_file, "rb") as reader:
index_id_to_db_id = pickle.load(reader)
return index_id_to_db_id
def load_embeds(self, shard_id=None):
all_ids, all_embeds = [], []
offset = 0
for embed_path in self.embed_paths:
loaded_shard_id = int(re.search(r"_(\d+).pkl$", embed_path).group(1))
if shard_id is not None and loaded_shard_id != shard_id:
continue
print(f"Loading pickle embedding from {embed_path}...")
with open(embed_path, "rb") as fin:
ids, embeddings = pickle.load(fin)
all_ids.extend([i + offset for i in ids])
all_embeds.extend(embeddings)
offset += len(ids)
all_embeds = np.stack(all_embeds).astype(np.float32)
datastore_size = len(all_ids)
return all_embeds
def get_embs(self, indices=None, shard_id=None):
if indices is not None:
embs = self.embs[indices]
elif shard_id is not None:
embs = self.load_embeds(shard_id)
return embs
def get_knn_scores(self, query_emb, indices):
assert self.embeds is not None
embs = self.get_embs(indices) # [batch_size, k, dimension]
scores = -np.sqrt(
np.sum((np.expand_dims(query_emb, 1) - embs) ** 2, -1)
) # [batch_size, k]
return scores
def _sample_and_train_index(
self,
):
print(
f"Sampling {self.sample_size} examples from {len(self.embed_paths)} files..."
)
per_shard_sample_size = self.sample_size // len(self.embed_paths)
all_sampled_embs = []
for embed_path in self.embed_paths:
print(f"Loading pickle embedding from {embed_path}...")
with open(embed_path, "rb") as fin:
_, embeddings = pickle.load(fin)
shard_size = len(embeddings)
print(
f"Finished loading, sampling {per_shard_sample_size} from {shard_size} for training..."
)
# per_shard_sample_size = shard_size
random_samples = np.random.choice(
np.arange(shard_size),
size=[min(per_shard_sample_size, shard_size)],
replace=False,
)
sampled_embs = embeddings[random_samples]
all_sampled_embs.extend(sampled_embs)
all_sampled_embs = np.stack(all_sampled_embs).astype(np.float32)
print("Training index...")
start_time = time.time()
self._train_index(all_sampled_embs, self.trained_index_path)
print("Finish training (%ds)" % (time.time() - start_time))
def _train_index(self, sampled_embs, trained_index_path):
quantizer = faiss.IndexFlatIP(self.dimension)
start_index = faiss.IndexIVFFlat(
quantizer,
self.dimension,
self.ncentroids,
)
start_index.nprobe = self.probe
np.random.seed(1)
if self.cuda:
# Convert to GPU index
res = faiss.StandardGpuResources()
co = faiss.GpuClonerOptions()
co.useFloat16 = True
gpu_index = faiss.index_cpu_to_gpu(res, 0, start_index, co)
gpu_index.verbose = False
# Train on GPU and back to CPU
gpu_index.train(sampled_embs)
start_index = faiss.index_gpu_to_cpu(gpu_index)
else:
# Faiss does not handle adding keys in fp16 as of writing this.
start_index.train(sampled_embs)
faiss.write_index(start_index, trained_index_path)
def _add_keys(self, index_path, trained_index_path):
index = faiss.read_index(trained_index_path)
assert index.is_trained and index.ntotal == 0
start_time = time.time()
for shard_id in range(len(self.embed_paths)):
if len(self.embed_paths) == 1:
# hacky fix on single-shard indexing
filename = os.path.basename(self.embed_paths[0])
match = re.search(r"passages_(\d+)\.pkl", filename)
shard_id = int(match.group(1))
to_add = self.get_embs(shard_id=shard_id).copy()
index.add(to_add)
ids_toadd = [
[shard_id, chunk_id] for chunk_id in range(len(to_add))
] # TODO: check len(to_add) is correct usage
self.index_id_to_db_id.extend(ids_toadd)
print(
"Added %d / %d shards, (%d min)"
% (shard_id + 1, len(self.embed_paths), (time.time() - start_time) / 60)
)
faiss.write_index(index, index_path)
with open(self.meta_file, "wb") as fout:
pickle.dump(self.index_id_to_db_id, fout)
print("Adding took {} s".format(time.time() - start_time))
return index
def build_passage_pos_id_map(
self,
):
convert_pkl_to_jsonl(self.passage_dir)
passage_pos_ids = get_passage_pos_ids(self.passage_dir, self.pos_map_save_path)
return passage_pos_ids
def load_psg_pos_id_map(
self,
):
if os.path.exists(self.pos_map_save_path):
with open(self.pos_map_save_path, "rb") as f:
psg_pos_id_map = pickle.load(f)
else:
psg_pos_id_map = self.build_passage_pos_id_map()
return psg_pos_id_map
def _id2psg(self, shard_id, chunk_id):
filename, position = self.psg_pos_id_map[shard_id][chunk_id]
with open(filename, "r") as file:
file.seek(position)
line = file.readline()
return json.loads(line)
def _get_passage(self, index_id):
shard_id, chunk_id = self.index_id_to_db_id[index_id]
return self._id2psg(shard_id, chunk_id)
def get_retrieved_passages(self, all_indices):
passages, db_ids = [], []
for query_indices in all_indices:
passages_per_query = [
self._get_passage(int(index_id))["text"] for index_id in query_indices
]
db_ids_per_query = [
self.index_id_to_db_id[int(index_id)] for index_id in query_indices
]
passages.append(passages_per_query)
db_ids.append(db_ids_per_query)
return passages, db_ids
def search(self, query_embs, k=4096):
all_scores, all_indices = self.index.search(query_embs.astype(np.float32), k)
all_passages, db_ids = self.get_retrieved_passages(all_indices)
return all_scores.tolist(), all_passages, db_ids
def search_knn(
self, query_vectors: np.array, top_docs: int, index_batch_size: int = 2048
) -> List[Tuple[List[object], List[float]]]:
query_vectors = query_vectors.astype("float32")
result = []
nbatch = (len(query_vectors) - 1) // index_batch_size + 1
for k in tqdm(range(nbatch)):
start_idx = k * index_batch_size
end_idx = min((k + 1) * index_batch_size, len(query_vectors))
q = query_vectors[start_idx:end_idx]
scores, indexes = self.index.search(q, top_docs)
# convert to external ids
db_ids = [
[str(self.index_id_to_db_id[i][1]) for i in query_top_idxs]
for query_top_idxs in indexes
]
result.extend([(db_ids[i], scores[i]) for i in range(len(db_ids))])
return result
def test_build_multi_shard_dpr_wiki():
embed_dir = "/checkpoint/amaia/explore/comem/data/scaling_out/embeddings/facebook/contriever-msmarco/dpr_wiki/8-shards"
embed_paths = [
os.path.join(embed_dir, filename)
for filename in os.listdir(embed_dir)
if filename.endswith(".pkl")
]
sample_train_size = 6000000
projection_size = 768
ncentroids = 4096
formatted_index_name = (
f"index_ivf_flat_ip.{sample_train_size}.{projection_size}.{ncentroids}.faiss"
)
index_dir = "/checkpoint/amaia/explore/comem/data/scaling_out/embeddings/facebook/contriever-msmarco/dpr_wiki/8-shards/index_ivf_flat/"
os.makedirs(index_dir, exist_ok=True)
index_path = os.path.join(index_dir, formatted_index_name)
meta_file = os.path.join(index_dir, formatted_index_name + ".meta")
trained_index_path = os.path.join(index_dir, formatted_index_name + ".trained")
pos_map_save_path = os.path.join(index_dir, "passage_pos_id_map.pkl")
passage_dir = "/checkpoint/amaia/explore/comem/data/massive_ds_1.4t/scaling_out/passages/dpr_wiki/8-shards"
index = IVFFlatIndexer(
embed_paths,
index_path,
meta_file,
trained_index_path,
passage_dir=passage_dir,
pos_map_save_path=pos_map_save_path,
sample_train_size=sample_train_size,
dimension=projection_size,
ncentroids=ncentroids,
)
def test_build_single_shard_dpr_wiki():
embed_dir = "/checkpoint/amaia/explore/comem/data/scaling_out/embeddings/facebook/dragon-plus-context-encoder/dpr_wiki/8-shards"
embed_paths = [
os.path.join(embed_dir, filename)
for filename in os.listdir(embed_dir)
if filename.endswith(".pkl")
]
sample_train_size = 6000000
projection_size = 768
ncentroids = 4096
formatted_index_name = (
f"index_ivf_flat_ip.{sample_train_size}.{projection_size}.{ncentroids}.faiss"
)
index_dir = "/checkpoint/amaia/explore/comem/data/scaling_out/embeddings/facebook/dragon-plus-context-encoder/dpr_wiki/8-shards/index_ivf_flat/"
os.makedirs(index_dir, exist_ok=True)
index_path = os.path.join(index_dir, formatted_index_name)
meta_file = os.path.join(index_dir, formatted_index_name + ".meta")
trained_index_path = os.path.join(index_dir, formatted_index_name + ".trained")
pos_map_save_path = os.path.join(index_dir, "passage_pos_id_map.pkl")
passage_dir = "/checkpoint/amaia/explore/comem/data/massive_ds_1.4t/scaling_out/passages/dpr_wiki/8-shards"
index = IVFFlatIndexer(
embed_paths,
index_path,
meta_file,
trained_index_path,
passage_dir=passage_dir,
pos_map_save_path=pos_map_save_path,
sample_train_size=sample_train_size,
dimension=projection_size,
ncentroids=ncentroids,
)
if __name__ == "__main__":
test_build_multi_shard_dpr_wiki()