|
import os |
|
import json |
|
import pickle |
|
import faiss |
|
import numpy as np |
|
import torch |
|
|
|
from src.indicies.index_utils import convert_pkl_to_jsonl, get_passage_pos_ids |
|
|
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "true" |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
class FlatIndexer(object): |
|
def __init__( |
|
self, |
|
index_path, |
|
meta_file, |
|
passage_dir=None, |
|
pos_map_save_path=None, |
|
): |
|
self.index_path = index_path |
|
self.meta_file = meta_file |
|
self.passage_dir = passage_dir |
|
self.pos_map_save_path = pos_map_save_path |
|
self.cuda = False |
|
|
|
if os.path.exists(index_path) and os.path.exists(self.meta_file): |
|
print("Loading index...") |
|
self.index = faiss.read_index(index_path) |
|
self.index_id_to_db_id = self.load_index_id_to_db_id() |
|
else: |
|
raise NotImplementedError |
|
|
|
if self.pos_map_save_path is not None: |
|
self.psg_pos_id_map = self.load_psg_pos_id_map() |
|
|
|
def load_index_id_to_db_id( |
|
self, |
|
): |
|
with open(self.meta_file, "rb") as reader: |
|
index_id_to_db_id = pickle.load(reader) |
|
return index_id_to_db_id |
|
|
|
def build_passage_pos_id_map( |
|
self, |
|
): |
|
convert_pkl_to_jsonl(self.passage_dir) |
|
passage_pos_ids = get_passage_pos_ids(self.passage_dir, self.pos_map_save_path) |
|
return passage_pos_ids |
|
|
|
def load_psg_pos_id_map( |
|
self, |
|
): |
|
if os.path.exists(self.pos_map_save_path): |
|
with open(self.pos_map_save_path, "rb") as f: |
|
psg_pos_id_map = pickle.load(f) |
|
else: |
|
psg_pos_id_map = self.build_passage_pos_id_map() |
|
return psg_pos_id_map |
|
|
|
def _id2psg(self, shard_id, chunk_id): |
|
filename, position = self.psg_pos_id_map[shard_id][chunk_id] |
|
with open(filename, "r") as file: |
|
file.seek(position) |
|
line = file.readline() |
|
return json.loads(line) |
|
|
|
def _get_passage(self, index_id): |
|
try: |
|
shard_id, chunk_id = self.index_id_to_db_id[index_id] |
|
except: |
|
shard_id, chunk_id = 0, self.index_id_to_db_id[index_id] |
|
return self._id2psg(shard_id, chunk_id) |
|
|
|
def get_retrieved_passages(self, all_indices): |
|
passages, db_ids = [], [] |
|
for query_indices in all_indices: |
|
passages_per_query = [ |
|
self._get_passage(int(index_id))["text"] for index_id in query_indices |
|
] |
|
db_ids_per_query = [ |
|
self.index_id_to_db_id[int(index_id)] for index_id in query_indices |
|
] |
|
passages.append(passages_per_query) |
|
db_ids.append(db_ids_per_query) |
|
return passages, db_ids |
|
|
|
def search(self, query_embs, k=4096): |
|
all_scores, all_indices = self.index.search(query_embs.astype(np.float32), k) |
|
all_passages, db_ids = self.get_retrieved_passages(all_indices) |
|
return all_scores.tolist(), all_passages, db_ids |
|
|