File size: 14,846 Bytes
d45fdef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
import os
import argparse
import csv
import json
import logging
import pickle
import time
import glob
from pathlib import Path
from tqdm import tqdm
import pdb
import re
import numpy as np
import torch
import transformers
import contriever.src.index
import contriever.src.contriever
import contriever.src.utils
import contriever.src.slurm
from contriever.src.evaluation import calculate_matches
import contriever.src.normalize_text
from src.data import load_eval_data
from src.search import get_merged_search_output_path, get_search_output_path
from src.decontamination import check_below_lexical_overlap_threshold
os.environ["TOKENIZERS_PARALLELISM"] = "true"
device = "cuda" if torch.cuda.is_available() else "cpu"
class PplEvalOutput:
def __init__(
self, cfg, average_loss, perplexity, bit_per_byte, no_enough_docs_count=None
):
self.cfg = cfg
self.average_loss = average_loss
self.perplexity = perplexity
self.bit_per_byte = bit_per_byte
self.no_enough_docs_count = no_enough_docs_count
def log_message(
self,
):
msg = (
f"Domain = {self.cfg.evaluation.domain}"
f"\t DS_domain = {self.cfg.datastore.domain}"
f"\tconcate_k = {self.cfg.evaluation.concate_k}"
f"\tavg Loss = {self.average_loss:.4f}"
f"\tperplexity = {self.perplexity.item():.4f}"
f"\tbpb = {self.bit_per_byte.item():.4f}"
f"\ttotal shards = {self.cfg.datastore.embedding.num_shards}"
f"\tsampled shards = {len(self.cfg.datastore.index.index_shard_ids)}"
f"\t#eval samples = {self.cfg.evaluation.data.num_eval_samples}"
f"\tds chunk size = {self.cfg.datastore.embedding.chunk_size}"
f"\teval chunk size = {self.cfg.evaluation.data.max_eval_data_seq_length}"
f"\teval stride = {self.cfg.evaluation.data.eval_stride}"
f"\tall shards = {self.cfg.datastore.index.index_shard_ids}"
)
if self.no_enough_docs_count:
msg += f"\tno enough docs = {self.no_enough_docs_count}"
return msg
def log_short_message(
self,
):
msg = (
f"Domain = {self.cfg.evaluation.domain}"
f"\ttotal shards = {self.cfg.datastore.embedding.num_shards}"
f"\t#eval samples = {self.cfg.evaluation.data.num_eval_samples}"
f"\tconcate_k = {self.cfg.evaluation.concate_k}"
f"\tavg Loss = {self.average_loss:.4f}"
f"\tperplexity = {self.perplexity.item():.4f}"
f"\tbpb = {self.bit_per_byte.item():.4f}"
)
return msg
def evaluate_perplexity(cfg):
if cfg.tasks.eval.task_name == "perplexity_calibration":
outputs = evaluate_calibration(cfg)
return outputs
eval_args = cfg.evaluation
lm_only = False if eval_args.concate_k else True
if lm_only:
eval_data = load_eval_data(cfg)
else:
# eval_data_path = os.path.join(eval_args.eval_output_dir, os.path.basename(eval_args.data.eval_data).replace('.jsonl', '_retrieved_results.jsonl'))
if eval_args.search.get("merged_path", None):
eval_data_path = eval_args.search.merged_path
else:
eval_data_path = get_merged_search_output_path(cfg)
eval_data = []
with open(eval_data_path, "r") as file:
for line in file:
ex = json.loads(line)
eval_data.append(ex)
all_context, all_answer, no_enough_docs_count = build_doc_prompts(
eval_data, eval_args
) # prompt_k+...+prompt_1+query
tokenizer = transformers.AutoTokenizer.from_pretrained(cfg.model.lm_model)
try:
lm = transformers.AutoModelForCausalLM.from_pretrained(
cfg.model.lm_model,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
).to(device)
except:
lm = transformers.AutoModelForCausalLM.from_pretrained(
cfg.model.lm_model,
torch_dtype=torch.bfloat16,
).to(device)
pad_token = (
tokenizer.pad_token_id
if tokenizer.eos_token_id is None
else tokenizer.eos_token_id
)
total_loss = 0
total_samples = 0
for i, (context, answer) in enumerate(zip(all_context, all_answer)):
if eval_args.debug_mode and i % 10 == 0:
print(f"Debugging mode:\nContext:\n{context}\nAnswer:\n{answer}\n")
# todo: batch
answer_ids = tokenizer(answer, return_tensors="pt", truncation=False).to(
device
)["input_ids"]
context_ids = tokenizer(context, return_tensors="pt", truncation=False).to(
device
)["input_ids"]
input_ids = torch.cat((context_ids, answer_ids), dim=1)
labels = torch.cat(
(torch.full(context_ids.size(), -100).to(device), answer_ids.clone()), dim=1
) # mask out retrieval tokens and query tokens
labels = torch.where(
labels == pad_token, torch.tensor(-100), labels
) # mask out padded tokens
# truncate from left
input_ids = input_ids[:, -lm.config.max_position_embeddings :]
labels = labels[:, -lm.config.max_position_embeddings :]
with torch.no_grad():
try:
outputs = lm(input_ids, labels=labels)
except:
continue
loss = outputs.loss.cpu().detach()
print(loss)
total_loss += loss.item() * input_ids.size()[0]
total_samples += input_ids.size()[0]
average_loss = total_loss / total_samples
perplexity = torch.exp(torch.tensor(average_loss))
entropy_bits = torch.log2(perplexity)
bit_per_byte = entropy_bits / 8
outputs = PplEvalOutput(
cfg, average_loss, perplexity, bit_per_byte, no_enough_docs_count
)
logging.info(outputs.log_message())
return outputs
def build_doc_prompts(eval_data, args):
num_docs = args.concate_k
decontamination, contamination_threshold, decontamination_method = (
args.get("decontamination", False),
args.get("contamination_threshold", 0.5),
args.get("decontamination_method", "longest"),
)
use_continuation, use_both_doc_and_continuation = (
args.get("use_continuation", False),
args.get("use_both_doc_and_continuation", False),
)
# concate the doc with query regardless of length constraint
# make sure the number of tokens retrieved text + query is smaller than max_seq_len
# prepend the doc in a reverse order wrt relevance such that we can truncate tokens from left
all_contexts, all_answers = [], []
for ex in eval_data[1:]:
answer = extract_answer(ex["raw_inputs"], ex["raw_query"])
doc = ""
no_enough_docs_count = 0
if num_docs > 0:
try:
if ex["ctxs"][0] is not None:
doc_added = 0
doc_index = 0
while doc_added < num_docs and doc_index < len(ex["ctxs"]):
if use_both_doc_and_continuation:
print("Prepending both ctx and its continuation")
retrieved_text = (
ex["ctxs"][doc_index]["retrieval text"]
+ ex["ctxs"][doc_index]["retrieval next text"]
+ " \n"
)
elif use_continuation:
print("Prepending ctx's continuation")
retrieved_text = (
ex["ctxs"][doc_index]["retrieval next text"] + " \n"
)
else:
print("Prepending ctx")
retrieved_text = (
ex["ctxs"][doc_index]["retrieval text"] + " \n"
)
if decontamination:
if check_below_lexical_overlap_threshold(
retrieved_text,
answer,
contamination_threshold,
decontamination_method,
):
doc = retrieved_text + doc
doc_added += 1
else:
doc = retrieved_text + doc
doc_added += 1
doc_index += 1
if doc_added == 0:
print("No document prepended!")
if doc_added < num_docs:
no_enough_docs_count += 1
except:
print("No document prepended!")
context = doc + ex["raw_query"]
all_contexts.append(context)
all_answers.append(answer)
return all_contexts, all_answers, no_enough_docs_count
def extract_answer(raw_inputs, raw_query):
inputs = raw_inputs.replace("<|endoftext|>", "")
query = raw_query.replace("<|endoftext|>", "")
try:
answer = inputs.replace(query, "")
except:
try:
answer = inputs.replace(query[:-1], "")
except:
answer = inputs[-len(inputs) // 2 :]
return answer
def evaluate_calibration(cfg):
eval_args = cfg.evaluation
# eval_data_path = os.path.join(eval_args.eval_output_dir, os.path.basename(eval_args.data.eval_data).replace('.jsonl', '_retrieved_results.jsonl'))
if eval_args.search.get("merged_path", None):
eval_data_path = eval_args.search.merged_path
else:
eval_data_path = get_merged_search_output_path(cfg)
eval_data = []
with open(eval_data_path, "r") as file:
for line in file:
ex = json.loads(line)
eval_data.append(ex)
eval_data = eval_data[1:]
tokenizer = transformers.AutoTokenizer.from_pretrained(cfg.model.lm_model)
pad_token = (
tokenizer.pad_token_id
if tokenizer.eos_token_id is None
else tokenizer.eos_token_id
)
try:
lm = transformers.AutoModelForCausalLM.from_pretrained(
cfg.model.lm_model,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
).to(device)
except:
lm = transformers.AutoModelForCausalLM.from_pretrained(
cfg.model.lm_model,
torch_dtype=torch.bfloat16,
).to(device)
output_dir = cfg.evaluation.get("calibration_out_dir", "out_calibration")
os.makedirs(output_dir, exist_ok=True)
decontamination, contamination_threshold, decontamination_method = (
eval_args.get("decontamination", False),
eval_args.get("contamination_threshold", 0.5),
eval_args.get("decontamination_method", "longest"),
)
use_continuation = eval_args.get("use_continuation", False)
all_losses_min = []
all_lm_losses_and_retrieval_scores = []
for ex_id, ex in enumerate(eval_data):
all_doc_inputs, all_query_inputs, all_retrieval_scores = (
build_doc_prompts_for_calibration(
ex,
eval_args.search.n_docs,
decontamination,
contamination_threshold,
decontamination_method,
use_continuation,
)
)
lm_losses = []
loss_min = float("inf")
for doc_id, (doc, text, score) in enumerate(
zip(all_doc_inputs, all_query_inputs, all_retrieval_scores)
):
docs_ids = tokenizer(doc, return_tensors="pt", truncation=False).to(device)[
"input_ids"
]
text_ids = tokenizer(text, return_tensors="pt", truncation=False).to(
device
)["input_ids"]
input_ids = torch.cat((docs_ids, text_ids), dim=1)
labels = torch.cat(
(torch.full(docs_ids.size(), -100).to(device), text_ids), dim=1
)
labels = torch.where(labels == pad_token, torch.tensor(-100), labels)
# truncate from left
input_ids = input_ids[:, -lm.config.max_position_embeddings :]
labels = labels[:, -lm.config.max_position_embeddings :]
with torch.no_grad():
outputs = lm(input_ids, labels=labels)
loss = outputs.loss.cpu().detach().item()
lm_losses.append(loss)
print(loss, score)
loss_min = min(loss, loss_min)
# with open(os.path.join(output_dir, f'{cfg.evaluation.domain}_{cfg.evaluation.data.num_eval_samples}_losses.jsonl'), 'a') as file:
# file.write(json.dumps({"ex_id": ex_id, "doc_id": doc_id, "loss": loss, "retrieval_score": score}) + "\n")
all_lm_losses_and_retrieval_scores.append([lm_losses, all_retrieval_scores])
all_losses_min.append(loss_min)
with open(
os.path.join(
output_dir,
f"calibration_results_{cfg.evaluation.domain}_{cfg.evaluation.data.num_eval_samples}_samples.pkl",
),
"wb",
) as file:
pickle.dump(all_lm_losses_and_retrieval_scores, file)
average_loss_min = sum(all_losses_min) / len(all_losses_min)
perplexity = torch.exp(torch.tensor(average_loss_min))
entropy_bits = torch.log2(perplexity)
bit_per_byte = entropy_bits / 8
outputs = PplEvalOutput(cfg, average_loss_min, perplexity, bit_per_byte)
logging.info(outputs.log_message())
return outputs
def build_doc_prompts_for_calibration(
ex,
n_docs,
decontamination=False,
contamination_threshold=1,
decontamination_method="longest",
use_continuation=False,
):
contexts, answers, scores = [], [], []
doc_added = 0
doc_index = 0
answer = extract_answer(ex["raw_inputs"], ex["raw_query"])
while doc_added < n_docs and doc_index < len(ex["ctxs"]):
try:
retrieved_text = ex["ctxs"][doc_index]["retrieval text"] + " \n"
except:
pdb.set_trace()
if decontamination:
if check_below_lexical_overlap_threshold(
retrieved_text, answer, contamination_threshold, decontamination_method
):
doc_added += 1
answers.append(answer)
contexts.append(retrieved_text + ex["raw_query"])
scores.append(float(ex["ctxs"][doc_index]["retrieval score"]))
else:
doc_added += 1
answers.append(answer)
contexts.append(retrieved_text + ex["raw_query"])
scores.append(float(ex["ctxs"][doc_index]["retrieval score"]))
doc_index += 1
return contexts, answers, scores
|