File size: 14,846 Bytes
d45fdef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
import os
import argparse
import csv
import json
import logging
import pickle
import time
import glob
from pathlib import Path
from tqdm import tqdm
import pdb
import re

import numpy as np
import torch
import transformers

import contriever.src.index
import contriever.src.contriever
import contriever.src.utils
import contriever.src.slurm
from contriever.src.evaluation import calculate_matches
import contriever.src.normalize_text

from src.data import load_eval_data
from src.search import get_merged_search_output_path, get_search_output_path
from src.decontamination import check_below_lexical_overlap_threshold

os.environ["TOKENIZERS_PARALLELISM"] = "true"

device = "cuda" if torch.cuda.is_available() else "cpu"


class PplEvalOutput:
    def __init__(
        self, cfg, average_loss, perplexity, bit_per_byte, no_enough_docs_count=None
    ):
        self.cfg = cfg
        self.average_loss = average_loss
        self.perplexity = perplexity
        self.bit_per_byte = bit_per_byte
        self.no_enough_docs_count = no_enough_docs_count

    def log_message(
        self,
    ):
        msg = (
            f"Domain = {self.cfg.evaluation.domain}"
            f"\t DS_domain = {self.cfg.datastore.domain}"
            f"\tconcate_k = {self.cfg.evaluation.concate_k}"
            f"\tavg Loss = {self.average_loss:.4f}"
            f"\tperplexity = {self.perplexity.item():.4f}"
            f"\tbpb = {self.bit_per_byte.item():.4f}"
            f"\ttotal shards = {self.cfg.datastore.embedding.num_shards}"
            f"\tsampled shards = {len(self.cfg.datastore.index.index_shard_ids)}"
            f"\t#eval samples = {self.cfg.evaluation.data.num_eval_samples}"
            f"\tds chunk size = {self.cfg.datastore.embedding.chunk_size}"
            f"\teval chunk size = {self.cfg.evaluation.data.max_eval_data_seq_length}"
            f"\teval stride = {self.cfg.evaluation.data.eval_stride}"
            f"\tall shards = {self.cfg.datastore.index.index_shard_ids}"
        )
        if self.no_enough_docs_count:
            msg += f"\tno enough docs = {self.no_enough_docs_count}"

        return msg

    def log_short_message(
        self,
    ):
        msg = (
            f"Domain = {self.cfg.evaluation.domain}"
            f"\ttotal shards = {self.cfg.datastore.embedding.num_shards}"
            f"\t#eval samples = {self.cfg.evaluation.data.num_eval_samples}"
            f"\tconcate_k = {self.cfg.evaluation.concate_k}"
            f"\tavg Loss = {self.average_loss:.4f}"
            f"\tperplexity = {self.perplexity.item():.4f}"
            f"\tbpb = {self.bit_per_byte.item():.4f}"
        )
        return msg


def evaluate_perplexity(cfg):
    if cfg.tasks.eval.task_name == "perplexity_calibration":
        outputs = evaluate_calibration(cfg)
        return outputs

    eval_args = cfg.evaluation
    lm_only = False if eval_args.concate_k else True

    if lm_only:
        eval_data = load_eval_data(cfg)

    else:
        # eval_data_path = os.path.join(eval_args.eval_output_dir, os.path.basename(eval_args.data.eval_data).replace('.jsonl', '_retrieved_results.jsonl'))
        if eval_args.search.get("merged_path", None):
            eval_data_path = eval_args.search.merged_path
        else:
            eval_data_path = get_merged_search_output_path(cfg)
        eval_data = []
        with open(eval_data_path, "r") as file:
            for line in file:
                ex = json.loads(line)
                eval_data.append(ex)

    all_context, all_answer, no_enough_docs_count = build_doc_prompts(
        eval_data, eval_args
    )  # prompt_k+...+prompt_1+query

    tokenizer = transformers.AutoTokenizer.from_pretrained(cfg.model.lm_model)
    try:
        lm = transformers.AutoModelForCausalLM.from_pretrained(
            cfg.model.lm_model,
            torch_dtype=torch.bfloat16,
            attn_implementation="flash_attention_2",
        ).to(device)
    except:
        lm = transformers.AutoModelForCausalLM.from_pretrained(
            cfg.model.lm_model,
            torch_dtype=torch.bfloat16,
        ).to(device)

    pad_token = (
        tokenizer.pad_token_id
        if tokenizer.eos_token_id is None
        else tokenizer.eos_token_id
    )

    total_loss = 0
    total_samples = 0
    for i, (context, answer) in enumerate(zip(all_context, all_answer)):
        if eval_args.debug_mode and i % 10 == 0:
            print(f"Debugging mode:\nContext:\n{context}\nAnswer:\n{answer}\n")

        # todo: batch
        answer_ids = tokenizer(answer, return_tensors="pt", truncation=False).to(
            device
        )["input_ids"]
        context_ids = tokenizer(context, return_tensors="pt", truncation=False).to(
            device
        )["input_ids"]

        input_ids = torch.cat((context_ids, answer_ids), dim=1)
        labels = torch.cat(
            (torch.full(context_ids.size(), -100).to(device), answer_ids.clone()), dim=1
        )  # mask out retrieval tokens and query tokens
        labels = torch.where(
            labels == pad_token, torch.tensor(-100), labels
        )  # mask out padded tokens

        # truncate from left
        input_ids = input_ids[:, -lm.config.max_position_embeddings :]
        labels = labels[:, -lm.config.max_position_embeddings :]

        with torch.no_grad():
            try:
                outputs = lm(input_ids, labels=labels)
            except:
                continue

        loss = outputs.loss.cpu().detach()
        print(loss)
        total_loss += loss.item() * input_ids.size()[0]
        total_samples += input_ids.size()[0]

    average_loss = total_loss / total_samples
    perplexity = torch.exp(torch.tensor(average_loss))
    entropy_bits = torch.log2(perplexity)
    bit_per_byte = entropy_bits / 8

    outputs = PplEvalOutput(
        cfg, average_loss, perplexity, bit_per_byte, no_enough_docs_count
    )

    logging.info(outputs.log_message())
    return outputs


def build_doc_prompts(eval_data, args):
    num_docs = args.concate_k
    decontamination, contamination_threshold, decontamination_method = (
        args.get("decontamination", False),
        args.get("contamination_threshold", 0.5),
        args.get("decontamination_method", "longest"),
    )
    use_continuation, use_both_doc_and_continuation = (
        args.get("use_continuation", False),
        args.get("use_both_doc_and_continuation", False),
    )

    # concate the doc with query regardless of length constraint
    # make sure the number of tokens retrieved text + query is smaller than max_seq_len
    # prepend the doc in a reverse order wrt relevance such that we can truncate tokens from left
    all_contexts, all_answers = [], []
    for ex in eval_data[1:]:
        answer = extract_answer(ex["raw_inputs"], ex["raw_query"])
        doc = ""
        no_enough_docs_count = 0
        if num_docs > 0:
            try:
                if ex["ctxs"][0] is not None:
                    doc_added = 0
                    doc_index = 0
                    while doc_added < num_docs and doc_index < len(ex["ctxs"]):
                        if use_both_doc_and_continuation:
                            print("Prepending both ctx and its continuation")
                            retrieved_text = (
                                ex["ctxs"][doc_index]["retrieval text"]
                                + ex["ctxs"][doc_index]["retrieval next text"]
                                + " \n"
                            )

                        elif use_continuation:
                            print("Prepending ctx's continuation")
                            retrieved_text = (
                                ex["ctxs"][doc_index]["retrieval next text"] + " \n"
                            )

                        else:
                            print("Prepending ctx")
                            retrieved_text = (
                                ex["ctxs"][doc_index]["retrieval text"] + " \n"
                            )

                        if decontamination:
                            if check_below_lexical_overlap_threshold(
                                retrieved_text,
                                answer,
                                contamination_threshold,
                                decontamination_method,
                            ):
                                doc = retrieved_text + doc
                                doc_added += 1

                        else:
                            doc = retrieved_text + doc
                            doc_added += 1

                        doc_index += 1

                    if doc_added == 0:
                        print("No document prepended!")
                    if doc_added < num_docs:
                        no_enough_docs_count += 1
            except:
                print("No document prepended!")

        context = doc + ex["raw_query"]
        all_contexts.append(context)
        all_answers.append(answer)
    return all_contexts, all_answers, no_enough_docs_count


def extract_answer(raw_inputs, raw_query):
    inputs = raw_inputs.replace("<|endoftext|>", "")
    query = raw_query.replace("<|endoftext|>", "")
    try:
        answer = inputs.replace(query, "")
    except:
        try:
            answer = inputs.replace(query[:-1], "")
        except:
            answer = inputs[-len(inputs) // 2 :]
    return answer


def evaluate_calibration(cfg):
    eval_args = cfg.evaluation

    # eval_data_path = os.path.join(eval_args.eval_output_dir, os.path.basename(eval_args.data.eval_data).replace('.jsonl', '_retrieved_results.jsonl'))
    if eval_args.search.get("merged_path", None):
        eval_data_path = eval_args.search.merged_path
    else:
        eval_data_path = get_merged_search_output_path(cfg)

    eval_data = []
    with open(eval_data_path, "r") as file:
        for line in file:
            ex = json.loads(line)
            eval_data.append(ex)
    eval_data = eval_data[1:]

    tokenizer = transformers.AutoTokenizer.from_pretrained(cfg.model.lm_model)
    pad_token = (
        tokenizer.pad_token_id
        if tokenizer.eos_token_id is None
        else tokenizer.eos_token_id
    )
    try:
        lm = transformers.AutoModelForCausalLM.from_pretrained(
            cfg.model.lm_model,
            torch_dtype=torch.bfloat16,
            attn_implementation="flash_attention_2",
        ).to(device)
    except:
        lm = transformers.AutoModelForCausalLM.from_pretrained(
            cfg.model.lm_model,
            torch_dtype=torch.bfloat16,
        ).to(device)

    output_dir = cfg.evaluation.get("calibration_out_dir", "out_calibration")
    os.makedirs(output_dir, exist_ok=True)

    decontamination, contamination_threshold, decontamination_method = (
        eval_args.get("decontamination", False),
        eval_args.get("contamination_threshold", 0.5),
        eval_args.get("decontamination_method", "longest"),
    )
    use_continuation = eval_args.get("use_continuation", False)

    all_losses_min = []
    all_lm_losses_and_retrieval_scores = []
    for ex_id, ex in enumerate(eval_data):
        all_doc_inputs, all_query_inputs, all_retrieval_scores = (
            build_doc_prompts_for_calibration(
                ex,
                eval_args.search.n_docs,
                decontamination,
                contamination_threshold,
                decontamination_method,
                use_continuation,
            )
        )

        lm_losses = []
        loss_min = float("inf")
        for doc_id, (doc, text, score) in enumerate(
            zip(all_doc_inputs, all_query_inputs, all_retrieval_scores)
        ):
            docs_ids = tokenizer(doc, return_tensors="pt", truncation=False).to(device)[
                "input_ids"
            ]
            text_ids = tokenizer(text, return_tensors="pt", truncation=False).to(
                device
            )["input_ids"]
            input_ids = torch.cat((docs_ids, text_ids), dim=1)
            labels = torch.cat(
                (torch.full(docs_ids.size(), -100).to(device), text_ids), dim=1
            )
            labels = torch.where(labels == pad_token, torch.tensor(-100), labels)

            # truncate from left
            input_ids = input_ids[:, -lm.config.max_position_embeddings :]
            labels = labels[:, -lm.config.max_position_embeddings :]

            with torch.no_grad():
                outputs = lm(input_ids, labels=labels)

            loss = outputs.loss.cpu().detach().item()
            lm_losses.append(loss)

            print(loss, score)
            loss_min = min(loss, loss_min)
            # with open(os.path.join(output_dir, f'{cfg.evaluation.domain}_{cfg.evaluation.data.num_eval_samples}_losses.jsonl'), 'a') as file:
            #     file.write(json.dumps({"ex_id": ex_id, "doc_id": doc_id, "loss": loss, "retrieval_score": score}) + "\n")

        all_lm_losses_and_retrieval_scores.append([lm_losses, all_retrieval_scores])
        all_losses_min.append(loss_min)

    with open(
        os.path.join(
            output_dir,
            f"calibration_results_{cfg.evaluation.domain}_{cfg.evaluation.data.num_eval_samples}_samples.pkl",
        ),
        "wb",
    ) as file:
        pickle.dump(all_lm_losses_and_retrieval_scores, file)

    average_loss_min = sum(all_losses_min) / len(all_losses_min)
    perplexity = torch.exp(torch.tensor(average_loss_min))
    entropy_bits = torch.log2(perplexity)
    bit_per_byte = entropy_bits / 8

    outputs = PplEvalOutput(cfg, average_loss_min, perplexity, bit_per_byte)

    logging.info(outputs.log_message())

    return outputs


def build_doc_prompts_for_calibration(
    ex,
    n_docs,
    decontamination=False,
    contamination_threshold=1,
    decontamination_method="longest",
    use_continuation=False,
):
    contexts, answers, scores = [], [], []
    doc_added = 0
    doc_index = 0
    answer = extract_answer(ex["raw_inputs"], ex["raw_query"])
    while doc_added < n_docs and doc_index < len(ex["ctxs"]):
        try:
            retrieved_text = ex["ctxs"][doc_index]["retrieval text"] + " \n"
        except:
            pdb.set_trace()
        if decontamination:
            if check_below_lexical_overlap_threshold(
                retrieved_text, answer, contamination_threshold, decontamination_method
            ):
                doc_added += 1
                answers.append(answer)
                contexts.append(retrieved_text + ex["raw_query"])
                scores.append(float(ex["ctxs"][doc_index]["retrieval score"]))
        else:
            doc_added += 1
            answers.append(answer)
            contexts.append(retrieved_text + ex["raw_query"])
            scores.append(float(ex["ctxs"][doc_index]["retrieval score"]))
        doc_index += 1
    return contexts, answers, scores