File size: 9,414 Bytes
d45fdef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import argparse
import logging
import pickle
from typing import Any
from omegaconf import DictConfig
from tqdm import tqdm
from pathlib import Path

import numpy as np
import torch
import transformers
from vllm import LLM
from transformers import AutoTokenizer, AutoModel
from sentence_transformers import SentenceTransformer

import contriever.src.slurm
import contriever.src.contriever
import contriever.src.utils
import contriever.src.normalize_text

from src.data import fast_load_jsonl_shard
import os


def get_model(args: DictConfig):
    model_name_or_path: str = args.model_name_or_path
    logging.info(f"Loading retriever model from {model_name_or_path}...")

    if args.get("use_vllm", False):
        tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
        os.environ["VLLM_ATTENTION_BACKEND"] = "XFORMERS"
        model = LLM(
            model=model_name_or_path,
            dtype="auto",  # TODO: should respect args.no_fp16
            task="embed",
            enforce_eager=True,
        )
        return model, tokenizer

    if "contriever" in model_name_or_path:
        model, tokenizer, _ = contriever.src.contriever.load_retriever(
            model_name_or_path
        )
        model = model.cuda()  # type: ignore
        if not args.no_fp16:
            model = model.half()
        model.eval()
    elif "dragon" in model_name_or_path:
        tokenizer_name_or_path = (
            args.tokenizer if args.get("tokenizer", None) else model_name_or_path
        )
        tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path)
        model = AutoModel.from_pretrained(model_name_or_path)
        model = model.cuda()
        if not args.no_fp16:
            model = model.half()
        model.eval()
    elif "sentence-transformers" in model_name_or_path:
        tokenizer = None
        model = SentenceTransformer(model_name_or_path)
        model.eval()
    else:
        raise AttributeError(f"{model_name_or_path} is not supported!")

    return model, tokenizer


def generate_passage_embeddings(cfg: DictConfig):
    if "sparse_retriever" not in cfg.model:
        print(f"No need to run the embedding step for sparse retrieval, skipping...")
        return

    args: DictConfig = cfg.datastore.embedding
    model, tokenizer = get_model(args)

    for shard_id in map(int, args.shard_ids):
        embedding_shard_save_path: Path = Path(args.embedding_dir) / (
            args.prefix + f"_{shard_id:02d}.pkl"
        )

        if args.get("use_saved_if_exists", True) and embedding_shard_save_path.exists():
            print(f"Embeddings exist in {embedding_shard_save_path}")
            continue

        shard_passages = fast_load_jsonl_shard(args, shard_id, return_all_passages=True)
        all_ids, all_embeddings = embed_passages(args, shard_passages, model, tokenizer)
        assert all_embeddings[0].shape == (cfg.datastore.index.projection_size,), (
            f"Embedding shape is {all_embeddings[0].shape}, while index requires {cfg.datastore.index.projection_size}"
        )

        Path(args.embedding_dir).mkdir(parents=True, exist_ok=True)
        print(
            f"Saving {len(all_ids)} passage embeddings to {embedding_shard_save_path}."
        )
        with open(embedding_shard_save_path, mode="wb") as file:
            pickle.dump((all_ids, all_embeddings), file)
        print(
            f"Processed {len(all_ids)} passages in the {shard_id}-th (out of {args.num_shards}) shard.\n"
            f"Written to {embedding_shard_save_path}."
        )


def embed_passages(
    args: DictConfig,
    passages: list[dict[str, Any]],
    model: Any,
    tokenizer: transformers.AutoTokenizer,
) -> tuple[list[int], list[np.ndarray]]:
    def preprocess_text(p: dict[str, Any]) -> str:
        if args.no_title or "title" not in p:
            text: str = p["text"]
        else:
            text: str = p["title"] + " " + p["text"]
        if args.lowercase:
            text = text.lower()
        if args.normalize_text:
            text = contriever.src.normalize_text.normalize(text)

        if "GritLM" in args.model_name_or_path:
            text = "<|embed|>\n" + text

        return text

    all_ids: list[int] = []
    all_embeddings: list[np.ndarray] = []

    if "sentence-transformers" in args.model_name_or_path:
        all_texts: list[str] = []

        for passage in tqdm(passages):
            all_ids.append(passage["id"])
            all_texts.append(preprocess_text(passage))

        with torch.no_grad():
            all_embeddings = model.encode(
                all_texts, batch_size=64
            )  # default is 512, but got oom

    else:
        if args.get("use_vllm", False):
            BATCH_SIZE = args.per_gpu_batch_size
            for batch_idx in tqdm(range(0, len(passages), BATCH_SIZE)):
                batch = passages[batch_idx : batch_idx + BATCH_SIZE]
                batch_ids = [p["id"] for p in batch]
                batch_texts = [preprocess_text(p) for p in batch]

                outputs = model.embed(batch_texts)
                batch_embeddings = [output.outputs.embedding for output in outputs]

                # normalize
                batch_embeddings = [
                    embedding / np.linalg.norm(embedding)
                    for embedding in batch_embeddings
                ]
                batch_embeddings = np.array(batch_embeddings)
                all_ids.extend(batch_ids)
                all_embeddings.append(np.array(batch_embeddings))

            all_embeddings = np.concatenate(all_embeddings, axis=0)
        else:
            BATCH_SIZE = args.per_gpu_batch_size
            for batch_idx in tqdm(range(0, len(passages), BATCH_SIZE)):
                batch = passages[batch_idx : batch_idx + BATCH_SIZE]
                batch_ids = [p["id"] for p in batch]
                batch_texts = [preprocess_text(p) for p in batch]

                with torch.no_grad():
                    encoded_batch = tokenizer.batch_encode_plus(
                        batch_texts,
                        return_tensors="pt",
                        max_length=args.passage_maxlength,
                        padding=True,
                        truncation=True,
                    )
                    encoded_batch = {k: v.cuda() for k, v in encoded_batch.items()}
                    batch_embeddings = model(
                        **encoded_batch
                    )  # shape: (batch_size, hidden_size)

                    if "contriever" not in args.model_name_or_path:
                        # assume in hf form
                        batch_embeddings = batch_embeddings.last_hidden_state[:, 0, :]

                batch_embeddings = batch_embeddings.cpu()

                all_ids.extend(batch_ids)
                all_embeddings.append(batch_embeddings)

            all_embeddings = torch.cat(all_embeddings, dim=0).numpy()

    return all_ids, all_embeddings


def get_sharded_passages(args, all_passages):
    total_num_passages = len(all_passages)
    shard_size = total_num_passages // args.num_shards
    start_idx = args.shard_id * shard_size
    end_idx = start_idx + shard_size
    if args.shard_id == args.num_shards - 1:
        end_idx = total_num_passages

    passages = all_passages[start_idx:end_idx]
    print(f"Using {len(passages)} passages from idx {start_idx} to {end_idx}.")
    return passages


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--raw_data_path",
        type=str,
        default=None,
        help="Path to passages (.jsonl or .tsv file)",
    )
    parser.add_argument(
        "--embedding_dir",
        type=str,
        default="wikipedia_embeddings",
        help="dir path to save embeddings",
    )
    parser.add_argument(
        "--prefix", type=str, default="passages", help="prefix path to save embeddings"
    )
    parser.add_argument(
        "--shard_id", type=int, default=0, help="Id of the current shard"
    )
    parser.add_argument(
        "--num_shards", type=int, default=1, help="Total number of shards"
    )
    parser.add_argument(
        "--per_gpu_batch_size",
        type=int,
        default=512,
        help="Batch size for the passage encoder forward pass",
    )
    parser.add_argument(
        "--chunk_size",
        type=int,
        default=512,
        help="Maximum number of words in a passage, the length will be further cut by passage_maxlength",
    )
    parser.add_argument(
        "--passage_maxlength",
        type=int,
        default=512,
        help="Maximum number of tokens in a passage",
    )
    parser.add_argument(
        "--model_name_or_path",
        type=str,
        help="path to directory containing model weights and config file",
    )
    parser.add_argument("--no_fp16", action="store_true", help="inference in fp32")
    parser.add_argument(
        "--no_title", action="store_true", help="title not added to the passage body"
    )
    parser.add_argument(
        "--lowercase", action="store_true", help="lowercase text before encoding"
    )
    parser.add_argument(
        "--normalize_text", action="store_true", help="lowercase text before encoding"
    )
    parser.add_argument(
        "--use_vllm", action="store_true", help="use vllm for embedding"
    )
    args = parser.parse_args()

    generate_passage_embeddings(DictConfig(args))