andreaschandra commited on
Commit
6d209ea
·
1 Parent(s): 7ed05d2

update readme

Browse files
Files changed (1) hide show
  1. README.md +90 -1
README.md CHANGED
@@ -1,8 +1,97 @@
1
  ---
 
 
2
  license: apache-2.0
3
  task_categories:
4
  - question-answering
5
  pretty_name: TyDi QA Indonesian
6
  size_categories:
7
  - 100K<n<1M
8
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - id
4
  license: apache-2.0
5
  task_categories:
6
  - question-answering
7
  pretty_name: TyDi QA Indonesian
8
  size_categories:
9
  - 100K<n<1M
10
+ source_datasets:
11
+ - google-research-datasets/tydiqa
12
+ configs:
13
+ - config_name: primary_task
14
+ data_files:
15
+ - split: train
16
+ path: "train.parquet"
17
+ - split: validation
18
+ path: "valid.parquet"
19
+ ---
20
+
21
+ # TyDi QA - Indonesian
22
+
23
+ This is a dataset card for TyDi QA specifically for indonesian subset.
24
+
25
+ This work only copy from the original dataset https://huggingface.co/datasets/google-research-datasets/tydiqa
26
+
27
+ ## Dataset Description
28
+
29
+ ### Dataset Summary
30
+
31
+ TyDi QA is a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs.
32
+ The languages of TyDi QA are diverse with regard to their typology -- the set of linguistic features that each language
33
+ expresses -- such that we expect models performing well on this set to generalize across a large number of the languages
34
+ in the world. It contains language phenomena that would not be found in English-only corpora. To provide a realistic
35
+ information-seeking task and avoid priming effects, questions are written by people who want to know the answer, but
36
+ don’t know the answer yet, (unlike SQuAD and its descendents) and the data is collected directly in each language without
37
+ the use of translation (unlike MLQA and XQuAD).
38
+
39
+ ## Dataset Structure
40
+
41
+ ### Data Instances
42
+
43
+ #### primary_task
44
+
45
+ An example of 'validation' looks as follows.
46
+ ```
47
+ This example was too long and was cropped:
48
+
49
+ {
50
+ 'annotations': {'minimal_answers_end_byte': array([-1], dtype=int32),
51
+ 'minimal_answers_start_byte': array([-1], dtype=int32),
52
+ 'passage_answer_candidate_index': array([-1], dtype=int32),
53
+ 'yes_no_answer': array(['NONE'], dtype=object)},
54
+ 'document_plaintext': '\n transl.\n\n Ras (dari bahasa Prancis race, yang sendirinya dari '
55
+ 'document_title': 'Ras manusia',
56
+ 'document_url': 'https://id.wikipedia.org/wiki/Ras%20manusia',
57
+ 'language': 'indonesian',
58
+ 'passage_answer_candidates': {'plaintext_end_byte': array([ 659, 843, 1195, 1353, 2125, 3607, 4161, 4508, 4740,
59
+ 6530, 7665, 7999, 8561, 9209, 9615, 10690, 11126, 11979,
60
+ 12746, 13304, 13486, 15385, 17455, 17505], dtype=int32),
61
+ 'plaintext_start_byte': array([ 1, 660, 844, 1196, 1354, 2126, 3608, 4198, 4509,
62
+ 4741, 6531, 7666, 8000, 8562, 9249, 9616, 10774, 11127,
63
+ 11980, 12747, 13325, 13503, 15400, 17459], dtype=int32)},
64
+ 'question_text': 'berapakah jenis ras yang ada didunia?'}
65
+ ```
66
+
67
+
68
+ ### Data Fields
69
+
70
+ The data fields are the same among all splits.
71
+
72
+ #### primary_task
73
+ - `passage_answer_candidates`: a dictionary feature containing:
74
+ - `plaintext_start_byte`: a `int32` feature.
75
+ - `plaintext_end_byte`: a `int32` feature.
76
+ - `question_text`: a `string` feature.
77
+ - `document_title`: a `string` feature.
78
+ - `language`: a `string` feature.
79
+ - `annotations`: a dictionary feature containing:
80
+ - `passage_answer_candidate_index`: a `int32` feature.
81
+ - `minimal_answers_start_byte`: a `int32` feature.
82
+ - `minimal_answers_end_byte`: a `int32` feature.
83
+ - `yes_no_answer`: a `string` feature.
84
+ - `document_plaintext`: a `string` feature.
85
+ - `document_url`: a `string` feature.
86
+
87
+
88
+ ```
89
+ @article{tydiqa,
90
+ title = {TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
91
+ author = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}
92
+ year = {2020},
93
+ journal = {Transactions of the Association for Computational Linguistics}
94
+ }
95
+
96
+ ```
97
+