Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Languages:
Indonesian
Size:
10K - 100K
License:
Commit
·
6d209ea
1
Parent(s):
7ed05d2
update readme
Browse files
README.md
CHANGED
|
@@ -1,8 +1,97 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
| 2 |
license: apache-2.0
|
| 3 |
task_categories:
|
| 4 |
- question-answering
|
| 5 |
pretty_name: TyDi QA Indonesian
|
| 6 |
size_categories:
|
| 7 |
- 100K<n<1M
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
language:
|
| 3 |
+
- id
|
| 4 |
license: apache-2.0
|
| 5 |
task_categories:
|
| 6 |
- question-answering
|
| 7 |
pretty_name: TyDi QA Indonesian
|
| 8 |
size_categories:
|
| 9 |
- 100K<n<1M
|
| 10 |
+
source_datasets:
|
| 11 |
+
- google-research-datasets/tydiqa
|
| 12 |
+
configs:
|
| 13 |
+
- config_name: primary_task
|
| 14 |
+
data_files:
|
| 15 |
+
- split: train
|
| 16 |
+
path: "train.parquet"
|
| 17 |
+
- split: validation
|
| 18 |
+
path: "valid.parquet"
|
| 19 |
+
---
|
| 20 |
+
|
| 21 |
+
# TyDi QA - Indonesian
|
| 22 |
+
|
| 23 |
+
This is a dataset card for TyDi QA specifically for indonesian subset.
|
| 24 |
+
|
| 25 |
+
This work only copy from the original dataset https://huggingface.co/datasets/google-research-datasets/tydiqa
|
| 26 |
+
|
| 27 |
+
## Dataset Description
|
| 28 |
+
|
| 29 |
+
### Dataset Summary
|
| 30 |
+
|
| 31 |
+
TyDi QA is a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs.
|
| 32 |
+
The languages of TyDi QA are diverse with regard to their typology -- the set of linguistic features that each language
|
| 33 |
+
expresses -- such that we expect models performing well on this set to generalize across a large number of the languages
|
| 34 |
+
in the world. It contains language phenomena that would not be found in English-only corpora. To provide a realistic
|
| 35 |
+
information-seeking task and avoid priming effects, questions are written by people who want to know the answer, but
|
| 36 |
+
don’t know the answer yet, (unlike SQuAD and its descendents) and the data is collected directly in each language without
|
| 37 |
+
the use of translation (unlike MLQA and XQuAD).
|
| 38 |
+
|
| 39 |
+
## Dataset Structure
|
| 40 |
+
|
| 41 |
+
### Data Instances
|
| 42 |
+
|
| 43 |
+
#### primary_task
|
| 44 |
+
|
| 45 |
+
An example of 'validation' looks as follows.
|
| 46 |
+
```
|
| 47 |
+
This example was too long and was cropped:
|
| 48 |
+
|
| 49 |
+
{
|
| 50 |
+
'annotations': {'minimal_answers_end_byte': array([-1], dtype=int32),
|
| 51 |
+
'minimal_answers_start_byte': array([-1], dtype=int32),
|
| 52 |
+
'passage_answer_candidate_index': array([-1], dtype=int32),
|
| 53 |
+
'yes_no_answer': array(['NONE'], dtype=object)},
|
| 54 |
+
'document_plaintext': '\n transl.\n\n Ras (dari bahasa Prancis race, yang sendirinya dari '
|
| 55 |
+
'document_title': 'Ras manusia',
|
| 56 |
+
'document_url': 'https://id.wikipedia.org/wiki/Ras%20manusia',
|
| 57 |
+
'language': 'indonesian',
|
| 58 |
+
'passage_answer_candidates': {'plaintext_end_byte': array([ 659, 843, 1195, 1353, 2125, 3607, 4161, 4508, 4740,
|
| 59 |
+
6530, 7665, 7999, 8561, 9209, 9615, 10690, 11126, 11979,
|
| 60 |
+
12746, 13304, 13486, 15385, 17455, 17505], dtype=int32),
|
| 61 |
+
'plaintext_start_byte': array([ 1, 660, 844, 1196, 1354, 2126, 3608, 4198, 4509,
|
| 62 |
+
4741, 6531, 7666, 8000, 8562, 9249, 9616, 10774, 11127,
|
| 63 |
+
11980, 12747, 13325, 13503, 15400, 17459], dtype=int32)},
|
| 64 |
+
'question_text': 'berapakah jenis ras yang ada didunia?'}
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
### Data Fields
|
| 69 |
+
|
| 70 |
+
The data fields are the same among all splits.
|
| 71 |
+
|
| 72 |
+
#### primary_task
|
| 73 |
+
- `passage_answer_candidates`: a dictionary feature containing:
|
| 74 |
+
- `plaintext_start_byte`: a `int32` feature.
|
| 75 |
+
- `plaintext_end_byte`: a `int32` feature.
|
| 76 |
+
- `question_text`: a `string` feature.
|
| 77 |
+
- `document_title`: a `string` feature.
|
| 78 |
+
- `language`: a `string` feature.
|
| 79 |
+
- `annotations`: a dictionary feature containing:
|
| 80 |
+
- `passage_answer_candidate_index`: a `int32` feature.
|
| 81 |
+
- `minimal_answers_start_byte`: a `int32` feature.
|
| 82 |
+
- `minimal_answers_end_byte`: a `int32` feature.
|
| 83 |
+
- `yes_no_answer`: a `string` feature.
|
| 84 |
+
- `document_plaintext`: a `string` feature.
|
| 85 |
+
- `document_url`: a `string` feature.
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
```
|
| 89 |
+
@article{tydiqa,
|
| 90 |
+
title = {TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
|
| 91 |
+
author = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}
|
| 92 |
+
year = {2020},
|
| 93 |
+
journal = {Transactions of the Association for Computational Linguistics}
|
| 94 |
+
}
|
| 95 |
+
|
| 96 |
+
```
|
| 97 |
+
|