Datasets:

Modalities:
Audio
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 22,436 Bytes
47ec655
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ab72a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c89cc06
7ab72a4
 
 
 
 
 
 
 
 
 
 
 
 
 
c89cc06
7ab72a4
 
 
 
 
c89cc06
7ab72a4
 
 
 
 
 
 
 
 
 
 
c89cc06
7ab72a4
 
 
82fc842
47ec655
e811e43
a3f4966
 
8d8c66b
 
 
e811e43
 
a3f4966
 
 
 
 
 
5cc8a9d
a3f4966
 
e811e43
 
6a9de56
e811e43
6a9de56
e811e43
 
 
 
6a9de56
c691966
e811e43
 
 
 
 
 
 
c1bc4aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e811e43
 
 
 
6a9de56
 
c7f2fc9
6a9de56
 
 
 
 
 
 
 
e811e43
 
 
c7f2fc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e811e43
8d8c66b
 
 
 
 
ac93005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d8c66b
 
e811e43
 
 
c7f2fc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
913f2b3
 
 
38e9e96
913f2b3
 
38e9e96
 
 
 
 
 
 
 
 
913f2b3
c7f2fc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
913f2b3
c7f2fc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
913f2b3
c7f2fc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
---
task_categories:
- audio-classification
- automatic-speech-recognition
- audio-to-audio
- text-to-speech
language:
- bn
- en
- fr
- de
- it
- pl
- ru
- es
pretty_name: CAMEO
size_categories:
- 10K<n<100K
configs:
- config_name: default
  data_files:
  - split: crema_d
    path: data/crema_d-*
  - split: cafe
    path: data/cafe-*
  - split: emns
    path: data/emns-*
  - split: emozionalmente
    path: data/emozionalmente-*
  - split: enterface
    path: data/enterface-*
  - split: jl_corpus
    path: data/jl_corpus-*
  - split: mesd
    path: data/mesd-*
  - split: nemo
    path: data/nemo-*
  - split: oreau
    path: data/oreau-*
  - split: pavoque
    path: data/pavoque-*
  - split: ravdess
    path: data/ravdess-*
  - split: resd
    path: data/resd-*
  - split: subesco
    path: data/subesco-*
dataset_info:
  features:
  - name: file_id
    dtype: string
  - name: audio
    dtype: audio
  - name: emotion
    dtype: string
  - name: transcription
    dtype: string
  - name: speaker_id
    dtype: string
  - name: gender
    dtype: string
  - name: age
    dtype: string
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: license
    dtype: string
  splits:
  - name: crema_d
    num_bytes: 342545273.67
    num_examples: 7442
  - name: cafe
    num_bytes: 54069210
    num_examples: 936
  - name: emns
    num_bytes: 156240766.84
    num_examples: 1205
  - name: emozionalmente
    num_bytes: 375477772.912
    num_examples: 6902
  - name: enterface
    num_bytes: 131666289.491
    num_examples: 1257
  - name: jl_corpus
    num_bytes: 69820340.8
    num_examples: 2400
  - name: mesd
    num_bytes: 14065423
    num_examples: 862
  - name: nemo
    num_bytes: 211847701.518
    num_examples: 4481
  - name: oreau
    num_bytes: 18889100
    num_examples: 502
  - name: pavoque
    num_bytes: 370348884.894
    num_examples: 5442
  - name: ravdess
    num_bytes: 51317971.48
    num_examples: 1440
  - name: resd
    num_bytes: 143550017.82
    num_examples: 1396
  - name: subesco
    num_bytes: 386556564
    num_examples: 7000
  download_size: 2295830304
  dataset_size: 2326395316.425
license: cc-by-nc-sa-4.0
---
# CAMEO: Collection of Multilingual Emotional Speech Corpora

## Dataset Description
**CAMEO** is a curated collection of multilingual emotional speech datasets. 
It includes 13 distinct datasets with transcriptions, encompassing a total of 41,265 audio samples. 
The collection features audio in eight languages: Bengali, English, French, German, Italian, Polish, Russian, and Spanish.

## Example Usage

The dataset can be loaded and processed using the datasets library:

```python
from datasets import load_dataset

dataset = load_dataset("amu-cai/CAMEO", split=split)
```

## Supported Tasks

- **Audio Classification**: Primarily designed for speech emotion recognition, each recording is annotated with a label corresponding to an emotional state. Additionally, most samples include speaker identifier and gender, enabling its use in various audio classification tasks.

- **Automatic Speech Recognition (ASR)**: With orthographic transcriptions for each recording, this dataset is a valuable resource for ASR tasks.

- **Text-to-Speech (TTS)**: The dataset's emotional audio recordings, complemented by transcriptions, are beneficial for developing TTS systems that aim to produce emotionally expressive speech.

## Languages

**CAMEO** contains audio and transcription in eight languages: Bengali, English, French, German, Italian, Polish, Russian, Spanish.

## Data Structure

### Data Instances

```python
{
  'file_id': 'e80234c75eb3f827a0d85bb7737a107a425be1dd5d3cf5c59320b9981109b698.flac', 
  'audio': {
    'path': None, 
    'array': array([-3.05175781e-05,  3.05175781e-05, -9.15527344e-05, ...,
       -1.49536133e-03, -1.49536133e-03, -8.85009766e-04]), 
    'sampling_rate': 16000
  }, 
  'emotion': 'neutral', 
  'transcription': 'Cinq pumas fiers et passionnés', 
  'speaker_id': 'cafe_12', 
  'gender': 'female', 
  'age': '37', 
  'dataset': 'CaFE', 
  'language': 'French', 
  'license': 'CC BY-NC-SA 4.0'
}
```

### Data Fields

- `file_id` (`str`): A unique identifier of the audio sample.
- `audio` (`dict`): A dictionary containing the file path to the audio sample, the raw waveform, and the sampling rate (16 kHz).
- `emotion` (`str`): A label indicating the expressed emotional state.
- `transcription` (`str`): The orthographic transcription of the utterance.
- `speaker_id` (`str`): A unique identifier of the speaker.
- `gender` (`str`): The gender of the speaker.
- `age` (`str`): The age of the speaker.
- `dataset` (`str`): The name of the dataset from which the sample was taken.
- `language` (`str`): The primary language spoken in the audio sample.
- `license` (`str`): The license under which the original dataset is distributed.

## Data Splits

Since all corpora are already publicly available, there is a risk of contamination. Because of that, **CAMEO** is not divided into train and test splits.

| Split | Dataset | Language | Samples | Emotions |
| ----- |---------|----------|---------|---------|
| `cafe` | CaFE  | French   | 936     | anger, disgust, fear, happiness, neutral, sadness, surprise |
| `crema_d` | CREMA-D | English | 7442   | anger, disgust, fear, happiness, neutral, sadness |
| `emns` | EMNS  | English  | 1205    | anger, disgust, excitement, happiness, neutral, sadness, sarcasm, surprise |
| `emozionalmente` | Emozionalmente | Italian | 6902 |anger, disgust, fear, happiness, neutral, sadness, surprise |
| `enterface` | eNTERFACE | English | 1257 | anger, disgust, fear, happiness, sadness, surprise |
| `jl_corpus` | JL-Corpus | English | 2400 | anger, anxiety, apology, assertiveness, concern, encouragement, excitement, happiness, neutral, sadness |
| `mesd` | MESD  | Spanish  | 862       |anger, disgust, fear, happiness, neutral, sadness |
| `nemo` | nEMO  | Polish   | 4481    | anger, fear, happiness, neutral, sadness, surprise |
| `oreau` | Oréau | French   | 502     | anger, disgust, fear, happiness, neutral, sadness, surprise |
| `pavoque` | PAVOQUE | German | 5442    | anger, happiness, neutral, poker, sadness |
| `ravdess` | RAVDESS | English | 1440   | anger, calm, disgust, fear, happiness, neutral, sadness, surprise |
| `resd` | RESD  | Russian  | 1396    | anger, disgust, enthusiasm, fear, happiness, neutral, sadness |
| `subesco` | SUBESCO | Bengali | 7000   | anger, disgust, fear, happiness, neutral, sadness, surprise |

## Dataset Creation

The inclusion of a dataset in the collection was determined by the following criteria:
- The corpus is publicly available and distributed under a license that allows free use for non-commercial purposes and creation of derivative works.
- The dataset includes transcription of the speech, either directly within the dataset, associated publications or documentation.
- The annotations corresponding to basic emotional states are included and consistent with commonly used naming conventions.
- The availability of speaker-related metadata (e.g., speaker identifiers or demographic information) was considered valuable, but not mandatory.

### Evaluation

To evaluate your model according to the methodology used in our paper, you can use the following code.

```python
import os
import string

from Levenshtein import ratio
from datasets import load_dataset, Dataset, concatenate_datasets
from sklearn.metrics import classification_report, f1_score, accuracy_score

# 🔧 Change this path to where your JSONL prediction files are stored
outputs_path = "./"

_DATASETS = [
    "cafe", "crema_d", "emns", "emozionalmente", "enterface",
    "jl_Corpus", "mesd", "nemo", "oreau", "pavoque",
    "ravdess", "resd", "subesco",
]

THRESHOLD = 0.57


def get_expected(split: str) -> tuple[set, str, dict]:
    """Load expected emotion labels and language metadata from CAMEO dataset."""
    ds = load_dataset("amu-cai/CAMEO", split=split)
    return set(ds["emotion"]), ds["language"][0], dict(zip(ds["file_id"], ds["emotion"]))


def process_outputs(dataset_name: str) -> tuple[Dataset, set, str]:
    """Clean and correct predictions, returning a Dataset with fixed predictions."""
    outputs = Dataset.from_json(os.path.join(outputs_path, f"{dataset_name}.jsonl"))
    options, language, expected = get_expected(dataset_name)

    def preprocess(x):
        return {
            "predicted": x["predicted"].translate(str.maketrans('', '', string.punctuation)).lower().strip(),
            "expected": expected.get(x["file_id"]),
        }

    outputs = outputs.map(preprocess)

    def fix_prediction(x):
        if x["predicted"] in options:
            x["fixed_prediction"] = x["predicted"]
        else:
            predicted_words = x["predicted"].split()
            label_scores = {
                label: sum(r for r in (ratio(label, word) for word in predicted_words) if r > THRESHOLD)
                for label in options
            }
            x["fixed_prediction"] = max(label_scores, key=label_scores.get)
        return x

    outputs = outputs.map(fix_prediction)
    return outputs, options, language


def calculate_metrics(outputs: Dataset, labels: set) -> dict:
    """Compute classification metrics."""
    y_true = outputs["expected"]
    y_pred = outputs["fixed_prediction"]

    return {
        "f1_macro": f1_score(y_true, y_pred, average="macro"),
        "weighted_f1": f1_score(y_true, y_pred, average="weighted"),
        "accuracy": accuracy_score(y_true, y_pred),
        "metrics_per_label": classification_report(
            y_true, y_pred, target_names=sorted(labels), output_dict=True
        ),
    }


# 🧮 Main Evaluation Loop
results = []
outputs_per_language = {}
full_outputs, full_labels = None, set()

for dataset in _DATASETS:
    jsonl_path = os.path.join(outputs_path, f"{dataset}.jsonl")

    if not os.path.isfile(jsonl_path):
        print(f"Jsonl file for {dataset} not found.")
        continue

    outputs, labels, language = process_outputs(dataset)
    metrics = calculate_metrics(outputs, labels)
    results.append({"language": language, "dataset": dataset, **metrics})

    if language not in outputs_per_language:
        outputs_per_language[language] = {"labels": labels, "outputs": outputs}
    else:
        outputs_per_language[language]["labels"] |= labels
        outputs_per_language[language]["outputs"] = concatenate_datasets([
            outputs_per_language[language]["outputs"], outputs
        ])

    full_outputs = outputs if full_outputs is None else concatenate_datasets([full_outputs, outputs])
    full_labels |= labels

# 🔤 Per-language evaluation
for language, data in outputs_per_language.items():
    metrics = calculate_metrics(data["outputs"], data["labels"])
    results.append({"language": language, "dataset": "all", **metrics})

# 🌍 Global evaluation
if full_outputs is not None:
    metrics = calculate_metrics(full_outputs, full_labels)
    results.append({"language": "all", "dataset": "all", **metrics})

# 💾 Save results
Dataset.from_list(results).to_json(os.path.join(outputs_path, "results.jsonl"))
```

## Additional Information

### Licensing Information

The **CAMEO** collection is available under CC BY-NC-SA 4.0 license.

The datasets used for the creation of **CAMEO** have specific licensing terms that must be understood and agreed beforeuse.
The following licenses apply to the corpora:
- CC BY-NC-SA 4.0 applies to CaFE, nEMO, PAVOQUE, RAVDESS,
- Open Database License applies to CREMA-D,
- Apache 2.0 applies to EMNS,
- CC BY 4.0 applies to Emozionalmente, MESD, Oréau, SUBESCO,
- MIT applies to eNTERFACE, RESD,
- CC0: Public Domain applies to JL-Corpus.

Additionally, the licence of each dataset is described in the `license` field in the metadata.

### Contributions

Thanks to [@iwonachristop](https://huggingface.co/iwonachristop) and [@MaciejCzajka](https://huggingface.co/MaciejCzajka) for adding this dataset.

### Citation Information

You can access the **CAMEO** paper at [arXiv](https://arxiv.org/abs/2505.11051). When referencing the **CAMEO** collection, please cite the paper as follows, along with the original datasets incuded in the corpus.

```
@misc{christop2025cameocollectionmultilingualemotional,
  title={CAMEO: Collection of Multilingual Emotional Speech Corpora}, 
  author={Iwona Christop and Maciej Czajka},
  year={2025},
  eprint={2505.11051},
  archivePrefix={arXiv},
  primaryClass={cs.CL},
  url={https://arxiv.org/abs/2505.11051}, 
}

@inproceedings{cafe,
  author = {Gournay, Philippe and Lahaie, Olivier and Lefebvre, Roch},
  title = {{A Canadian French Emotional Speech Dataset}},
  year = {2018},
  isbn = {9781450351928},
  publisher = {Association for Computing Machinery},
  address = {New York, NY, USA},
  url = {https://doi.org/10.1145/3204949.3208121},
  doi = {10.1145/3204949.3208121},
  booktitle = {Proceedings of the 9th ACM Multimedia Systems Conference},
  pages = {399–402},
  numpages = {4},
  keywords = {canadian french, digital recording, emotional speech, speech dataset},
  location = {Amsterdam, Netherlands},
  series = {MMSys '18}
}

@article{cremad,
  author = {Cao, Houwei and Cooper, David and Keutmann, Michael and Gur, Ruben and Nenkova, Ani and Verma, Ragini},
  year = {2014},
  month = {10},
  pages = {377-390},
  title = {{CREMA-D: Crowd-sourced emotional multimodal actors dataset}},
  volume = {5},
  journal = {IEEE transactions on affective computing},
  doi = {10.1109/TAFFC.2014.2336244}
}

@misc{emns,
  title={{EMNS /Imz/ Corpus: An emotive single-speaker dataset for narrative storytelling in games, television and graphic novels}},
  author={Kari Ali Noriy and Xiaosong Yang and Jian Jun Zhang},
  year={2023},
  eprint={2305.13137},
  archivePrefix={arXiv},
  primaryClass={cs.CL},
  url={https://arxiv.org/abs/2305.13137},
}

@article{emozionalmente,
  author = {Catania, Fabio and Wilke, Jordan and Garzotto, Franca},
  year = {2025},
  month = {01},
  pages = {1-14},
  title = {{Emozionalmente: A Crowdsourced Corpus of Simulated Emotional Speech in Italian}},
  volume = {PP},
  journal = {IEEE Transactions on Audio, Speech and Language Processing},
  doi = {10.1109/TASLPRO.2025.3540662}
}

@inproceedings{enterface,
  author={Martin, O. and Kotsia, I. and Macq, B. and Pitas, I.},
  booktitle={22nd International Conference on Data Engineering Workshops (ICDEW'06)},
  title={{The eNTERFACE' 05 Audio-Visual Emotion Database}},
  year={2006},
  volume={},
  number={},
  pages={8-8},
  keywords={Audio databases;Image databases;Emotion recognition;Spatial databases;Visual databases;Signal processing algorithms;Protocols;Speech analysis;Humans;Informatics},
  doi={10.1109/ICDEW.2006.145}
}

@inproceedings{jlcorpus,
  author = {James, Jesin and Tian, Li and Watson, Catherine},
  year = {2018},
  month = {09},
  pages = {2768-2772},
  title = {{An Open Source Emotional Speech Corpus for Human Robot Interaction Applications}},
  doi = {10.21437/Interspeech.2018-1349}
}

@inproceedings{mesd,
  author = {Duville, Mathilde Marie and Alonso-Valerdi, Luz and Ibarra-Zarate, David I.},
  year = {2021},
  month = {12},
  pages = {},
  title = {{The Mexican Emotional Speech Database (MESD): elaboration and assessment based on machine learning}},
  volume = {2021},
  doi = {10.1109/EMBC46164.2021.9629934}
}

  @article{mesd2,
  author = {Duville, Mathilde Marie and Alonso-Valerdi, Luz and Ibarra-Zarate, David I.},
  year = {2021},
  month = {12},
  pages = {},
  title = {{Mexican Emotional Speech Database Based on Semantic, Frequency, Familiarity, Concreteness, and Cultural Shaping of Affective Prosody}},
  volume = {6},
  journal = {Data},
  doi = {10.3390/data6120130}
}

@inproceedings{christop-2024-nemo,
  title = "n{EMO}: Dataset of Emotional Speech in {P}olish",
  author = "Christop, Iwona",
  editor = "Calzolari, Nicoletta  and
    Kan, Min-Yen  and
    Hoste, Veronique  and
    Lenci, Alessandro  and
    Sakti, Sakriani  and
    Xue, Nianwen",
  booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
  month = may,
  year = "2024",
  address = "Torino, Italia",
  publisher = "ELRA and ICCL",
  url = "https://aclanthology.org/2024.lrec-main.1059/",
  pages = "12111--12116",
  abstract = "Speech emotion recognition has become increasingly important in recent years due to its potential applications in healthcare, customer service, and personalization of dialogue systems. However, a major issue in this field is the lack of datasets that adequately represent basic emotional states across various language families. As datasets covering Slavic languages are rare, there is a need to address this research gap. This paper presents the development of nEMO, a novel corpus of emotional speech in Polish. The dataset comprises over 3 hours of samples recorded with the participation of nine actors portraying six emotional states: anger, fear, happiness, sadness, surprise, and a neutral state. The text material used was carefully selected to represent the phonetics of the Polish language adequately. The corpus is freely available under the terms of a Creative Commons license (CC BY-NC-SA 4.0)."
}

@misc{oreau,
  title = {{French emotional speech database - Or{\'e}au}},
  author = {Kerkeni, Leila and Cleder, Catherine and Serrestou, Youssef and
               Raoof, Kosai},
  abstract = {This document presents the French emotional speech database -
               Or{\'e}au, recorded in a quiet environment. The database is
               designed for general study of emotional speech and analysis of
               emotion characteristics for speech synthesis purposes. It
               contains 79 utterances which could be used in everyday life in
               the classroom. Between 10 and 13 utterances were written for
               each of the 7 emotions in French language by 32 non-professional
               speakers. 2 versions are available, the first one contains 502
               sentences. A perception test was performed to evaluate the
               recognition of emotions and their naturalness. 90\% of
               utterances (434 utterances) were correctly identified and
               retained after the test and various analyses, which constitutes
               the second version of database.},
  publisher = {Zenodo},
  year      =  {2020}
}

@inproceedings{pavoque,
  author = {Steiner, Ingmar and Schröder, Marc and Klepp, Annette},
  title = {{The PAVOQUE corpus as a resource for analysis and synthesis of expressive speech}},
  booktitle = {Phonetik & Phonologie 9. Phonetik & Phonologie (P&P-9), October 11-12, Zurich, Switzerland},
  year = {2013},
  month = {10},
  pages = {83--84},
  organization = {UZH},
  publisher = {Peter Lang}
}

@article{ravdess,
  doi = {10.1371/journal.pone.0196391},
  author = {Livingstone, Steven R. AND Russo, Frank A.},
  journal = {PLOS ONE},
  publisher = {Public Library of Science},
  title = {{The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English}},
  year = {2018},
  month = {05},
  volume = {13},
  url = {https://doi.org/10.1371/journal.pone.0196391},
  pages = {1-35},
  abstract = {The RAVDESS is a validated multimodal database of emotional speech and song. The database is gender balanced consisting of 24 professional actors, vocalizing lexically-matched statements in a neutral North American accent. Speech includes calm, happy, sad, angry, fearful, surprise, and disgust expressions, and song contains calm, happy, sad, angry, and fearful emotions. Each expression is produced at two levels of emotional intensity, with an additional neutral expression. All conditions are available in face-and-voice, face-only, and voice-only formats. The set of 7356 recordings were each rated 10 times on emotional validity, intensity, and genuineness. Ratings were provided by 247 individuals who were characteristic of untrained research participants from North America. A further set of 72 participants provided test-retest data. High levels of emotional validity and test-retest intrarater reliability were reported. Corrected accuracy and composite "goodness" measures are presented to assist researchers in the selection of stimuli. All recordings are made freely available under a Creative Commons license and can be downloaded at https://doi.org/10.5281/zenodo.1188976.},
  number = {5},
}

@misc{resd,
  author = {Artem Amentes and Nikita Davidchuk and Ilya Lubenets},
  title = {{Russian Emotional Speech Dialogs with annotated text}},
  year = {2022},
  publisher = {Hugging Face},
  journal = {Hugging Face Hub},
  howpublished = {\url{https://huggingface.co/datasets/Aniemore/resd_annotated}},
}

@article{subesco,
  doi = {10.1371/journal.pone.0250173},
  author = {Sultana, Sadia AND Rahman, M. Shahidur AND Selim, M. Reza AND Iqbal, M. Zafar},
  journal = {PLOS ONE},
  publisher = {Public Library of Science},
  title = {{SUST Bangla Emotional Speech Corpus (SUBESCO): An audio-only emotional speech corpus for Bangla}},
  year = {2021},
  month = {04},
  volume = {16},
  url = {https://doi.org/10.1371/journal.pone.0250173},
  pages = {1-27},
  abstract = {SUBESCO is an audio-only emotional speech corpus for Bangla language. The total duration of the corpus is in excess of 7 hours containing 7000 utterances, and it is the largest emotional speech corpus available for this language. Twenty native speakers participated in the gender-balanced set, each recording of 10 sentences simulating seven targeted emotions. Fifty university students participated in the evaluation of this corpus. Each audio clip of this corpus, except those of Disgust emotion, was validated four times by male and female raters. Raw hit rates and unbiased rates were calculated producing scores above chance level of responses. Overall recognition rate was reported to be above 70% for human perception tests. Kappa statistics and intra-class correlation coefficient scores indicated high-level of inter-rater reliability and consistency of this corpus evaluation. SUBESCO is an Open Access database, licensed under Creative Common Attribution 4.0 International, and can be downloaded free of charge from the web link: https://doi.org/10.5281/zenodo.4526477.},
  number = {4},
}
```