Datasets:
File size: 22,436 Bytes
47ec655 7ab72a4 c89cc06 7ab72a4 c89cc06 7ab72a4 c89cc06 7ab72a4 c89cc06 7ab72a4 82fc842 47ec655 e811e43 a3f4966 8d8c66b e811e43 a3f4966 5cc8a9d a3f4966 e811e43 6a9de56 e811e43 6a9de56 e811e43 6a9de56 c691966 e811e43 c1bc4aa e811e43 6a9de56 c7f2fc9 6a9de56 e811e43 c7f2fc9 e811e43 8d8c66b ac93005 8d8c66b e811e43 c7f2fc9 913f2b3 38e9e96 913f2b3 38e9e96 913f2b3 c7f2fc9 913f2b3 c7f2fc9 913f2b3 c7f2fc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 |
---
task_categories:
- audio-classification
- automatic-speech-recognition
- audio-to-audio
- text-to-speech
language:
- bn
- en
- fr
- de
- it
- pl
- ru
- es
pretty_name: CAMEO
size_categories:
- 10K<n<100K
configs:
- config_name: default
data_files:
- split: crema_d
path: data/crema_d-*
- split: cafe
path: data/cafe-*
- split: emns
path: data/emns-*
- split: emozionalmente
path: data/emozionalmente-*
- split: enterface
path: data/enterface-*
- split: jl_corpus
path: data/jl_corpus-*
- split: mesd
path: data/mesd-*
- split: nemo
path: data/nemo-*
- split: oreau
path: data/oreau-*
- split: pavoque
path: data/pavoque-*
- split: ravdess
path: data/ravdess-*
- split: resd
path: data/resd-*
- split: subesco
path: data/subesco-*
dataset_info:
features:
- name: file_id
dtype: string
- name: audio
dtype: audio
- name: emotion
dtype: string
- name: transcription
dtype: string
- name: speaker_id
dtype: string
- name: gender
dtype: string
- name: age
dtype: string
- name: dataset
dtype: string
- name: language
dtype: string
- name: license
dtype: string
splits:
- name: crema_d
num_bytes: 342545273.67
num_examples: 7442
- name: cafe
num_bytes: 54069210
num_examples: 936
- name: emns
num_bytes: 156240766.84
num_examples: 1205
- name: emozionalmente
num_bytes: 375477772.912
num_examples: 6902
- name: enterface
num_bytes: 131666289.491
num_examples: 1257
- name: jl_corpus
num_bytes: 69820340.8
num_examples: 2400
- name: mesd
num_bytes: 14065423
num_examples: 862
- name: nemo
num_bytes: 211847701.518
num_examples: 4481
- name: oreau
num_bytes: 18889100
num_examples: 502
- name: pavoque
num_bytes: 370348884.894
num_examples: 5442
- name: ravdess
num_bytes: 51317971.48
num_examples: 1440
- name: resd
num_bytes: 143550017.82
num_examples: 1396
- name: subesco
num_bytes: 386556564
num_examples: 7000
download_size: 2295830304
dataset_size: 2326395316.425
license: cc-by-nc-sa-4.0
---
# CAMEO: Collection of Multilingual Emotional Speech Corpora
## Dataset Description
**CAMEO** is a curated collection of multilingual emotional speech datasets.
It includes 13 distinct datasets with transcriptions, encompassing a total of 41,265 audio samples.
The collection features audio in eight languages: Bengali, English, French, German, Italian, Polish, Russian, and Spanish.
## Example Usage
The dataset can be loaded and processed using the datasets library:
```python
from datasets import load_dataset
dataset = load_dataset("amu-cai/CAMEO", split=split)
```
## Supported Tasks
- **Audio Classification**: Primarily designed for speech emotion recognition, each recording is annotated with a label corresponding to an emotional state. Additionally, most samples include speaker identifier and gender, enabling its use in various audio classification tasks.
- **Automatic Speech Recognition (ASR)**: With orthographic transcriptions for each recording, this dataset is a valuable resource for ASR tasks.
- **Text-to-Speech (TTS)**: The dataset's emotional audio recordings, complemented by transcriptions, are beneficial for developing TTS systems that aim to produce emotionally expressive speech.
## Languages
**CAMEO** contains audio and transcription in eight languages: Bengali, English, French, German, Italian, Polish, Russian, Spanish.
## Data Structure
### Data Instances
```python
{
'file_id': 'e80234c75eb3f827a0d85bb7737a107a425be1dd5d3cf5c59320b9981109b698.flac',
'audio': {
'path': None,
'array': array([-3.05175781e-05, 3.05175781e-05, -9.15527344e-05, ...,
-1.49536133e-03, -1.49536133e-03, -8.85009766e-04]),
'sampling_rate': 16000
},
'emotion': 'neutral',
'transcription': 'Cinq pumas fiers et passionnés',
'speaker_id': 'cafe_12',
'gender': 'female',
'age': '37',
'dataset': 'CaFE',
'language': 'French',
'license': 'CC BY-NC-SA 4.0'
}
```
### Data Fields
- `file_id` (`str`): A unique identifier of the audio sample.
- `audio` (`dict`): A dictionary containing the file path to the audio sample, the raw waveform, and the sampling rate (16 kHz).
- `emotion` (`str`): A label indicating the expressed emotional state.
- `transcription` (`str`): The orthographic transcription of the utterance.
- `speaker_id` (`str`): A unique identifier of the speaker.
- `gender` (`str`): The gender of the speaker.
- `age` (`str`): The age of the speaker.
- `dataset` (`str`): The name of the dataset from which the sample was taken.
- `language` (`str`): The primary language spoken in the audio sample.
- `license` (`str`): The license under which the original dataset is distributed.
## Data Splits
Since all corpora are already publicly available, there is a risk of contamination. Because of that, **CAMEO** is not divided into train and test splits.
| Split | Dataset | Language | Samples | Emotions |
| ----- |---------|----------|---------|---------|
| `cafe` | CaFE | French | 936 | anger, disgust, fear, happiness, neutral, sadness, surprise |
| `crema_d` | CREMA-D | English | 7442 | anger, disgust, fear, happiness, neutral, sadness |
| `emns` | EMNS | English | 1205 | anger, disgust, excitement, happiness, neutral, sadness, sarcasm, surprise |
| `emozionalmente` | Emozionalmente | Italian | 6902 |anger, disgust, fear, happiness, neutral, sadness, surprise |
| `enterface` | eNTERFACE | English | 1257 | anger, disgust, fear, happiness, sadness, surprise |
| `jl_corpus` | JL-Corpus | English | 2400 | anger, anxiety, apology, assertiveness, concern, encouragement, excitement, happiness, neutral, sadness |
| `mesd` | MESD | Spanish | 862 |anger, disgust, fear, happiness, neutral, sadness |
| `nemo` | nEMO | Polish | 4481 | anger, fear, happiness, neutral, sadness, surprise |
| `oreau` | Oréau | French | 502 | anger, disgust, fear, happiness, neutral, sadness, surprise |
| `pavoque` | PAVOQUE | German | 5442 | anger, happiness, neutral, poker, sadness |
| `ravdess` | RAVDESS | English | 1440 | anger, calm, disgust, fear, happiness, neutral, sadness, surprise |
| `resd` | RESD | Russian | 1396 | anger, disgust, enthusiasm, fear, happiness, neutral, sadness |
| `subesco` | SUBESCO | Bengali | 7000 | anger, disgust, fear, happiness, neutral, sadness, surprise |
## Dataset Creation
The inclusion of a dataset in the collection was determined by the following criteria:
- The corpus is publicly available and distributed under a license that allows free use for non-commercial purposes and creation of derivative works.
- The dataset includes transcription of the speech, either directly within the dataset, associated publications or documentation.
- The annotations corresponding to basic emotional states are included and consistent with commonly used naming conventions.
- The availability of speaker-related metadata (e.g., speaker identifiers or demographic information) was considered valuable, but not mandatory.
### Evaluation
To evaluate your model according to the methodology used in our paper, you can use the following code.
```python
import os
import string
from Levenshtein import ratio
from datasets import load_dataset, Dataset, concatenate_datasets
from sklearn.metrics import classification_report, f1_score, accuracy_score
# 🔧 Change this path to where your JSONL prediction files are stored
outputs_path = "./"
_DATASETS = [
"cafe", "crema_d", "emns", "emozionalmente", "enterface",
"jl_Corpus", "mesd", "nemo", "oreau", "pavoque",
"ravdess", "resd", "subesco",
]
THRESHOLD = 0.57
def get_expected(split: str) -> tuple[set, str, dict]:
"""Load expected emotion labels and language metadata from CAMEO dataset."""
ds = load_dataset("amu-cai/CAMEO", split=split)
return set(ds["emotion"]), ds["language"][0], dict(zip(ds["file_id"], ds["emotion"]))
def process_outputs(dataset_name: str) -> tuple[Dataset, set, str]:
"""Clean and correct predictions, returning a Dataset with fixed predictions."""
outputs = Dataset.from_json(os.path.join(outputs_path, f"{dataset_name}.jsonl"))
options, language, expected = get_expected(dataset_name)
def preprocess(x):
return {
"predicted": x["predicted"].translate(str.maketrans('', '', string.punctuation)).lower().strip(),
"expected": expected.get(x["file_id"]),
}
outputs = outputs.map(preprocess)
def fix_prediction(x):
if x["predicted"] in options:
x["fixed_prediction"] = x["predicted"]
else:
predicted_words = x["predicted"].split()
label_scores = {
label: sum(r for r in (ratio(label, word) for word in predicted_words) if r > THRESHOLD)
for label in options
}
x["fixed_prediction"] = max(label_scores, key=label_scores.get)
return x
outputs = outputs.map(fix_prediction)
return outputs, options, language
def calculate_metrics(outputs: Dataset, labels: set) -> dict:
"""Compute classification metrics."""
y_true = outputs["expected"]
y_pred = outputs["fixed_prediction"]
return {
"f1_macro": f1_score(y_true, y_pred, average="macro"),
"weighted_f1": f1_score(y_true, y_pred, average="weighted"),
"accuracy": accuracy_score(y_true, y_pred),
"metrics_per_label": classification_report(
y_true, y_pred, target_names=sorted(labels), output_dict=True
),
}
# 🧮 Main Evaluation Loop
results = []
outputs_per_language = {}
full_outputs, full_labels = None, set()
for dataset in _DATASETS:
jsonl_path = os.path.join(outputs_path, f"{dataset}.jsonl")
if not os.path.isfile(jsonl_path):
print(f"Jsonl file for {dataset} not found.")
continue
outputs, labels, language = process_outputs(dataset)
metrics = calculate_metrics(outputs, labels)
results.append({"language": language, "dataset": dataset, **metrics})
if language not in outputs_per_language:
outputs_per_language[language] = {"labels": labels, "outputs": outputs}
else:
outputs_per_language[language]["labels"] |= labels
outputs_per_language[language]["outputs"] = concatenate_datasets([
outputs_per_language[language]["outputs"], outputs
])
full_outputs = outputs if full_outputs is None else concatenate_datasets([full_outputs, outputs])
full_labels |= labels
# 🔤 Per-language evaluation
for language, data in outputs_per_language.items():
metrics = calculate_metrics(data["outputs"], data["labels"])
results.append({"language": language, "dataset": "all", **metrics})
# 🌍 Global evaluation
if full_outputs is not None:
metrics = calculate_metrics(full_outputs, full_labels)
results.append({"language": "all", "dataset": "all", **metrics})
# 💾 Save results
Dataset.from_list(results).to_json(os.path.join(outputs_path, "results.jsonl"))
```
## Additional Information
### Licensing Information
The **CAMEO** collection is available under CC BY-NC-SA 4.0 license.
The datasets used for the creation of **CAMEO** have specific licensing terms that must be understood and agreed beforeuse.
The following licenses apply to the corpora:
- CC BY-NC-SA 4.0 applies to CaFE, nEMO, PAVOQUE, RAVDESS,
- Open Database License applies to CREMA-D,
- Apache 2.0 applies to EMNS,
- CC BY 4.0 applies to Emozionalmente, MESD, Oréau, SUBESCO,
- MIT applies to eNTERFACE, RESD,
- CC0: Public Domain applies to JL-Corpus.
Additionally, the licence of each dataset is described in the `license` field in the metadata.
### Contributions
Thanks to [@iwonachristop](https://huggingface.co/iwonachristop) and [@MaciejCzajka](https://huggingface.co/MaciejCzajka) for adding this dataset.
### Citation Information
You can access the **CAMEO** paper at [arXiv](https://arxiv.org/abs/2505.11051). When referencing the **CAMEO** collection, please cite the paper as follows, along with the original datasets incuded in the corpus.
```
@misc{christop2025cameocollectionmultilingualemotional,
title={CAMEO: Collection of Multilingual Emotional Speech Corpora},
author={Iwona Christop and Maciej Czajka},
year={2025},
eprint={2505.11051},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2505.11051},
}
@inproceedings{cafe,
author = {Gournay, Philippe and Lahaie, Olivier and Lefebvre, Roch},
title = {{A Canadian French Emotional Speech Dataset}},
year = {2018},
isbn = {9781450351928},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3204949.3208121},
doi = {10.1145/3204949.3208121},
booktitle = {Proceedings of the 9th ACM Multimedia Systems Conference},
pages = {399–402},
numpages = {4},
keywords = {canadian french, digital recording, emotional speech, speech dataset},
location = {Amsterdam, Netherlands},
series = {MMSys '18}
}
@article{cremad,
author = {Cao, Houwei and Cooper, David and Keutmann, Michael and Gur, Ruben and Nenkova, Ani and Verma, Ragini},
year = {2014},
month = {10},
pages = {377-390},
title = {{CREMA-D: Crowd-sourced emotional multimodal actors dataset}},
volume = {5},
journal = {IEEE transactions on affective computing},
doi = {10.1109/TAFFC.2014.2336244}
}
@misc{emns,
title={{EMNS /Imz/ Corpus: An emotive single-speaker dataset for narrative storytelling in games, television and graphic novels}},
author={Kari Ali Noriy and Xiaosong Yang and Jian Jun Zhang},
year={2023},
eprint={2305.13137},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2305.13137},
}
@article{emozionalmente,
author = {Catania, Fabio and Wilke, Jordan and Garzotto, Franca},
year = {2025},
month = {01},
pages = {1-14},
title = {{Emozionalmente: A Crowdsourced Corpus of Simulated Emotional Speech in Italian}},
volume = {PP},
journal = {IEEE Transactions on Audio, Speech and Language Processing},
doi = {10.1109/TASLPRO.2025.3540662}
}
@inproceedings{enterface,
author={Martin, O. and Kotsia, I. and Macq, B. and Pitas, I.},
booktitle={22nd International Conference on Data Engineering Workshops (ICDEW'06)},
title={{The eNTERFACE' 05 Audio-Visual Emotion Database}},
year={2006},
volume={},
number={},
pages={8-8},
keywords={Audio databases;Image databases;Emotion recognition;Spatial databases;Visual databases;Signal processing algorithms;Protocols;Speech analysis;Humans;Informatics},
doi={10.1109/ICDEW.2006.145}
}
@inproceedings{jlcorpus,
author = {James, Jesin and Tian, Li and Watson, Catherine},
year = {2018},
month = {09},
pages = {2768-2772},
title = {{An Open Source Emotional Speech Corpus for Human Robot Interaction Applications}},
doi = {10.21437/Interspeech.2018-1349}
}
@inproceedings{mesd,
author = {Duville, Mathilde Marie and Alonso-Valerdi, Luz and Ibarra-Zarate, David I.},
year = {2021},
month = {12},
pages = {},
title = {{The Mexican Emotional Speech Database (MESD): elaboration and assessment based on machine learning}},
volume = {2021},
doi = {10.1109/EMBC46164.2021.9629934}
}
@article{mesd2,
author = {Duville, Mathilde Marie and Alonso-Valerdi, Luz and Ibarra-Zarate, David I.},
year = {2021},
month = {12},
pages = {},
title = {{Mexican Emotional Speech Database Based on Semantic, Frequency, Familiarity, Concreteness, and Cultural Shaping of Affective Prosody}},
volume = {6},
journal = {Data},
doi = {10.3390/data6120130}
}
@inproceedings{christop-2024-nemo,
title = "n{EMO}: Dataset of Emotional Speech in {P}olish",
author = "Christop, Iwona",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.1059/",
pages = "12111--12116",
abstract = "Speech emotion recognition has become increasingly important in recent years due to its potential applications in healthcare, customer service, and personalization of dialogue systems. However, a major issue in this field is the lack of datasets that adequately represent basic emotional states across various language families. As datasets covering Slavic languages are rare, there is a need to address this research gap. This paper presents the development of nEMO, a novel corpus of emotional speech in Polish. The dataset comprises over 3 hours of samples recorded with the participation of nine actors portraying six emotional states: anger, fear, happiness, sadness, surprise, and a neutral state. The text material used was carefully selected to represent the phonetics of the Polish language adequately. The corpus is freely available under the terms of a Creative Commons license (CC BY-NC-SA 4.0)."
}
@misc{oreau,
title = {{French emotional speech database - Or{\'e}au}},
author = {Kerkeni, Leila and Cleder, Catherine and Serrestou, Youssef and
Raoof, Kosai},
abstract = {This document presents the French emotional speech database -
Or{\'e}au, recorded in a quiet environment. The database is
designed for general study of emotional speech and analysis of
emotion characteristics for speech synthesis purposes. It
contains 79 utterances which could be used in everyday life in
the classroom. Between 10 and 13 utterances were written for
each of the 7 emotions in French language by 32 non-professional
speakers. 2 versions are available, the first one contains 502
sentences. A perception test was performed to evaluate the
recognition of emotions and their naturalness. 90\% of
utterances (434 utterances) were correctly identified and
retained after the test and various analyses, which constitutes
the second version of database.},
publisher = {Zenodo},
year = {2020}
}
@inproceedings{pavoque,
author = {Steiner, Ingmar and Schröder, Marc and Klepp, Annette},
title = {{The PAVOQUE corpus as a resource for analysis and synthesis of expressive speech}},
booktitle = {Phonetik & Phonologie 9. Phonetik & Phonologie (P&P-9), October 11-12, Zurich, Switzerland},
year = {2013},
month = {10},
pages = {83--84},
organization = {UZH},
publisher = {Peter Lang}
}
@article{ravdess,
doi = {10.1371/journal.pone.0196391},
author = {Livingstone, Steven R. AND Russo, Frank A.},
journal = {PLOS ONE},
publisher = {Public Library of Science},
title = {{The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English}},
year = {2018},
month = {05},
volume = {13},
url = {https://doi.org/10.1371/journal.pone.0196391},
pages = {1-35},
abstract = {The RAVDESS is a validated multimodal database of emotional speech and song. The database is gender balanced consisting of 24 professional actors, vocalizing lexically-matched statements in a neutral North American accent. Speech includes calm, happy, sad, angry, fearful, surprise, and disgust expressions, and song contains calm, happy, sad, angry, and fearful emotions. Each expression is produced at two levels of emotional intensity, with an additional neutral expression. All conditions are available in face-and-voice, face-only, and voice-only formats. The set of 7356 recordings were each rated 10 times on emotional validity, intensity, and genuineness. Ratings were provided by 247 individuals who were characteristic of untrained research participants from North America. A further set of 72 participants provided test-retest data. High levels of emotional validity and test-retest intrarater reliability were reported. Corrected accuracy and composite "goodness" measures are presented to assist researchers in the selection of stimuli. All recordings are made freely available under a Creative Commons license and can be downloaded at https://doi.org/10.5281/zenodo.1188976.},
number = {5},
}
@misc{resd,
author = {Artem Amentes and Nikita Davidchuk and Ilya Lubenets},
title = {{Russian Emotional Speech Dialogs with annotated text}},
year = {2022},
publisher = {Hugging Face},
journal = {Hugging Face Hub},
howpublished = {\url{https://huggingface.co/datasets/Aniemore/resd_annotated}},
}
@article{subesco,
doi = {10.1371/journal.pone.0250173},
author = {Sultana, Sadia AND Rahman, M. Shahidur AND Selim, M. Reza AND Iqbal, M. Zafar},
journal = {PLOS ONE},
publisher = {Public Library of Science},
title = {{SUST Bangla Emotional Speech Corpus (SUBESCO): An audio-only emotional speech corpus for Bangla}},
year = {2021},
month = {04},
volume = {16},
url = {https://doi.org/10.1371/journal.pone.0250173},
pages = {1-27},
abstract = {SUBESCO is an audio-only emotional speech corpus for Bangla language. The total duration of the corpus is in excess of 7 hours containing 7000 utterances, and it is the largest emotional speech corpus available for this language. Twenty native speakers participated in the gender-balanced set, each recording of 10 sentences simulating seven targeted emotions. Fifty university students participated in the evaluation of this corpus. Each audio clip of this corpus, except those of Disgust emotion, was validated four times by male and female raters. Raw hit rates and unbiased rates were calculated producing scores above chance level of responses. Overall recognition rate was reported to be above 70% for human perception tests. Kappa statistics and intra-class correlation coefficient scores indicated high-level of inter-rater reliability and consistency of this corpus evaluation. SUBESCO is an Open Access database, licensed under Creative Common Attribution 4.0 International, and can be downloaded free of charge from the web link: https://doi.org/10.5281/zenodo.4526477.},
number = {4},
}
``` |