File size: 6,330 Bytes
454975f bea976b 454975f bea976b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
---
dataset_info:
features:
- name: starting
sequence: int64
- name: target
dtype: int64
- name: closest
dtype: int64
- name: expression
dtype: string
- name: delta
dtype: int64
- name: score
dtype: int64
- name: size
dtype: int64
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 102996508
num_examples: 799484
- name: test
num_bytes: 25752631
num_examples: 199872
download_size: 31950252
dataset_size: 128749139
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
license: mit
tags:
- countdown
- math
- reasoning
pretty_name: Countdown Numbers Game (uniformly random puzzles using countdown rules)
size_categories:
- 100K<n<1M
---
# Countdown Numbers Game Dataset
This dataset contains configurations and solutions for variations of the Countdown numbers game. Each example comprises a sequence of numbers, a target number, the computed solution (closest value), the arithmetic expression that achieves that value, the difference between the target and the computed value, and the final Countdown score.
## HuggingFace Download Links
<div align="center">
| **Dataset Variant** | **Dataset Name** | **Download** |
| ------------------- | -------------------------- | --------------------------------------------------------------------------------------- |
| Random | `countdown-numbers-3-8` | [🤗 HuggingFace](https://huggingface.co/datasets/alexjackson17/countdown-numbers-3-8) |
| Random Solvable | `countdown-numbers-3-8-nz` | [🤗 HuggingFace](https://huggingface.co/datasets/alexjackson17/countdown-numbers-3-8-nz) |
| Coundown Game Rules | `countdown-numbers-6-gr` | [🤗 HuggingFace](https://huggingface.co/datasets/alexjackson17/countdown-numbers-6-gr) |
</div>
---
## Dataset Overview
Each data point in the dataset includes:
- **Numbers:**
A sequence of $n$ integers $s_1, s_2, \ldots, s_n$ where $s_i \in \{1, 2, \ldots, 100\}$ for all $i \in \{1, 2, \ldots, n\}$, and $n \in \{3, 4, \ldots, 8\}$.
(Note: In the traditional Countdown game, the numbers are subject to more specific restrictions.)
- **Target:**
An integer $t \in \{1, 2, \ldots, 999\}$. (For context, the standard Countdown game usually features targets from 101 and above.)
- **Closest:**
The value computed by a solver $r \in \{1, 2, \ldots, 999\}$ that is closest to the target number.
- **Expression:**
The arithmetic expression used to compute the closest value.
For instance, $((2 + 48) \times 5) \div 10$
- **Delta:**
The absolute difference between the target and the closest value, i.e. $|t - r|$.
- **Score:**
The Countdown score calculated as $\max(0, 10 - |t - r|)$.
This score reflects how close the computed value is to the target.
---
## Dataset Variants
This dataset is provided in three variants:
1. **Random:**
Configurations and solutions generated by uniformly sampling and solving one million game instances, without additional restrictions.
1. **Random Solvable (Score > 0):**
Configurations are generated by uniformly sampling numbers and then **rejecting** any sample that results in an unsolvable instance (i.e., a score of 0). This variant ensures that each instance has a solution that yields a positive score.
1. **Countdown:**
Configurations generated by sampling **6 numbers** in the style of the British TV show *Countdown*.
### Score Distributions
The following histograms show the distribution of scores for each dataset variant:
#### Random Variant
<img src="random_3_8_1m_score_distribution.png" width="600"/>
#### Random Solvable (Score > 0) Variant
<img src="random_solvable_3_8_1m_score_distribution.png" width="600" />
#### Countdown Game Rules
<img src="countdown_score_distribution.png" width="500"/>
---
## Generation Process
The dataset was created by:
- Uniformly sampling numbers within the specified ranges.
- Solving each sampled instance to determine the closest value, the corresponding expression, the difference from the target, and the score.
- For the **Random Solvable (Score > 0)** variant, rejection sampling was applied: instances that did not yield a positive score were discarded.
The train and test splits were created by randomly partitioning the instances into 80% training and 20% testing, using a stratified split based on the score and number of starting values.
### Split Score/Size Distributions
The final distributions of scores and numbers are shown in the following histograms:
#### Random Variant
<img src="random_3_8_1m_distribution_comparison.png" width="600" />
#### Random Solvable (Score > 0) Variant
<img src="random_solvable_3_8_1m_distribution_comparison.png" width="600" />
#### Countdown Game Rules
<img src="countdown_random_1m_distribution_comparison.png" width="600" />
---
## How to Use the Dataset
You can load and use this dataset with the Hugging Face `datasets` library. For example:
```python
from datasets import load_dataset
dataset = load_dataset("alexjackson17/countdown-numbers-6-gr")
# Example: Access the first entry in the training split
example = dataset["train"][0]
print("Numbers: ", example["starting"])
print("Target: ", example["target"])
print("Closest: ", example["closest"])
print("Expression: ", example["expression"])
print("Difference: ", example["delta"])
print("Score: ", example["score"])
```
---
## Citation
If you use this dataset in your research or projects, please cite it as follows:
```bibtex
@misc{jackson2025countdown,
title = {Countdown Numbers Game Dataset},
author = {Alex Jackson},
year = {2025},
note = {Released under the MIT License},
}
```
---
## Funding Attribution
This work was supported by UK Research and Innovation [grant number EP/S023356/1], in the UKRI Centre for Doctoral Training in Safe and Trusted Artificial Intelligence ([www.safeandtrustedai.org](https://www.safeandtrustedai.org)).
---
## License
This dataset is released under the MIT License. See the [LICENSE](LICENSE) file for more information.
For questions, feedback, or further information, please contact [Alex Jackson](mailto:[email protected]). |