File size: 3,452 Bytes
963742d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de5b5e9
 
963742d
5b97765
 
 
de5b5e9
 
 
 
5b97765
 
 
 
 
 
de5b5e9
 
 
9124000
de5b5e9
60d4b75
de5b5e9
 
5b97765
 
de5b5e9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
---
dataset_info:
  features:
  - name: factuality_value
    dtype: string
  - name: predicat@xml:space
    dtype: string
  - name: predicat@charOffset
    dtype: string
  - name: predicat@headOffset
    dtype: string
  - name: predicat@id
    dtype: string
  - name: predicat@text
    dtype: string
  - name: predicat@type
    dtype: string
  - name: predicat@charOffsetMin
    dtype: int64
  - name: predicat@charOffsetMax
    dtype: int64
  - name: subject@xml:space
    dtype: string
  - name: subject@charOffset
    dtype: string
  - name: subject@headOffset
    dtype: string
  - name: subject@id
    dtype: string
  - name: subject@text
    dtype: string
  - name: subject@type
    dtype: string
  - name: subject@charOffsetMin
    dtype: int64
  - name: subject@charOffsetMax
    dtype: int64
  - name: object@xml:space
    dtype: string
  - name: object@charOffset
    dtype: string
  - name: object@headOffset
    dtype: string
  - name: object@id
    dtype: string
  - name: object@text
    dtype: string
  - name: object@type
    dtype: string
  - name: object@charOffsetMin
    dtype: int64
  - name: object@charOffsetMax
    dtype: int64
  - name: id
    dtype: string
  - name: raw_sent_text
    dtype: string
  - name: sent_charOffset
    dtype: string
  - name: sent_charOffsetMin
    dtype: int64
  - name: sent_charOffsetMax
    dtype: int64
  - name: formated_sentence
    dtype: string
  splits:
  - name: train
    num_bytes: 2278527
    num_examples: 3149
  - name: test
    num_bytes: 1559577
    num_examples: 2179
  download_size: 1308178
  dataset_size: 3838104
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
task_categories:
- text-classification
---

# Introduction

Factuality classification/quantification is one of the most difficult tasks in NLP.
As apposed to sentiment analysis or other NLP tasks with statistical patterns, this task requires syntactic dependency patterns (aka, paradigmatics).
In fact, [N. Jiang et al](https://aclanthology.org/2021.tacl-1.64/) have demonstrated BERTs inability to recognize paradigmatics.

# Dataset Description

This dataset was constructed by [H. Kilicoglu et al](https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179926) to predict the factuality expressed in text about a certain event/triple.
Each triple is composed out of a subject-predicate-object. The dataset contains the position of each triple in a sentence, the raw sentence and a masked sentence where those positions are marked with special characters.
It also contains the factuality value assigned by the [H. Kilicoglu et al](https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179926).

The sentences are taken from the PubMed biomedical abstracts.

The dataset factuality classes belong to a factuality scale introduced by [H. Kilicoglu et al](https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179926).
The following figure shows this factuality scale. Counterfact, Doubtful, Possible, Probable, Certain represent varyibg levels of certainty, while Uncommited and Conditional represent a lack of information that would express factuality regarding a claim or an event.

<img src="https://cdn-uploads.huggingface.co/production/uploads/656f0e5abaa95d8b8cc90a37/Xc8UIt0ZlmD2-Eho9MCYs.png" width="500"/>


# Tasks

The main task that this data was designed for is factuality classification.