import csv import datasets _CITATION = """\ @misc{abdallah2025good, title={How Good are LLM-based Rerankers? An Empirical Analysis of State-of-the-Art Reranking Models}, author={Abdelrahman Abdallah and Bhawna Piryani and Jamshid Mozafari and Mohammed Ali and Adam Jatowt}, year={2025}, eprint={2508.16757}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ _DESCRIPTION = """\ FutureQueryEval is a novel IR benchmark comprising 148 queries with 2,938 query-document pairs across 7 topical categories, designed to evaluate reranker performance on temporal novelty. All queries refer to events after April 2025 to ensure zero contamination with LLM pretraining data. """ _HOMEPAGE = "https://github.com/DataScienceUIBK/llm-reranking-generalization-study" _LICENSE = "Apache-2.0" _URLS = { "queries": "queries.csv", "corpus": "corpus.tsv", "qrels": "qrels.txt", } class FutureQueryEval(datasets.GeneratorBasedBuilder): """FutureQueryEval dataset for temporal IR evaluation.""" VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig( name="queries", version=VERSION, description="Query collection with categories", ), datasets.BuilderConfig( name="corpus", version=VERSION, description="Document corpus", ), datasets.BuilderConfig( name="qrels", version=VERSION, description="Relevance judgments", ), ] DEFAULT_CONFIG_NAME = "queries" def _info(self): if self.config.name == "queries": features = datasets.Features({ "query_id": datasets.Value("string"), "query_text": datasets.Value("string"), "category": datasets.Value("string"), }) elif self.config.name == "corpus": features = datasets.Features({ "doc_id": datasets.Value("string"), "title": datasets.Value("string"), "text": datasets.Value("string"), "url": datasets.Value("string"), }) elif self.config.name == "qrels": features = datasets.Features({ "query_id": datasets.Value("string"), "iteration": datasets.Value("int32"), "doc_id": datasets.Value("string"), "relevance": datasets.Value("int32"), }) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): downloaded_files = dl_manager.download(_URLS) if self.config.name == "queries": return [ datasets.SplitGenerator( name="queries", gen_kwargs={"filepath": downloaded_files["queries"]}, ), ] elif self.config.name == "corpus": return [ datasets.SplitGenerator( name="corpus", gen_kwargs={"filepath": downloaded_files["corpus"]}, ), ] elif self.config.name == "qrels": return [ datasets.SplitGenerator( name="qrels", gen_kwargs={"filepath": downloaded_files["qrels"]}, ), ] def _generate_examples(self, filepath): if self.config.name == "queries": with open(filepath, encoding="utf-8") as f: reader = csv.DictReader(f, delimiter=",") for key, row in enumerate(reader): yield key, { "query_id": row["query_id"], "query_text": row["query_text"], "category": row["category"], } elif self.config.name == "corpus": with open(filepath, encoding="utf-8") as f: reader = csv.DictReader(f, delimiter="\t") for key, row in enumerate(reader): yield key, { "doc_id": row["doc_id"], "title": row["title"], "text": row["text"], "url": row["url"], } elif self.config.name == "qrels": with open(filepath, encoding="utf-8") as f: for key, line in enumerate(f): parts = line.strip().split() if len(parts) == 4: yield key, { "query_id": parts[0], "iteration": int(parts[1]), "doc_id": parts[2], "relevance": int(parts[3]), }