--- viewer: false license: cc-by-nc-4.0 task_categories: - image-feature-extraction language: - en tags: - medical - image - biometry - biometrics - measurement - mri - brain pretty_name: feta24-biometrics size_categories: - n<1K --- ## About **FeTA24-Biometrics** is based on [FeTA 2024 (FeTA24) data from the University Children’s Hospital Zurich](https://fetachallenge.github.io/pages/Data_download). **Dataset summary:** - 65 T2-weighted brain MR scans, 7-class segmentation masks, and 5 biometric measurements for each case **What's new?** - We transformed the original images and segmentaion masks into the biometric measurement space using the transformation matrix in FeTA24 dataset. - We converted the landmark masks into JSON files. - Step 1: Get the corrdinates of 2 landmarks for each measurement. - Step 2: Label landmarks according to the definitions in `landmarks_map`. - Step 3: Save the coordinates of all 10 landmarks to a JSON file. - We provided visualization of biometric measurements in corresponding 2D slices and landmarks. - Cases without biometric measurement data are excluded from FeTA24. ## Changelog 🔥 - [2 Mar, 2025] Update data structure in JSON files within `Landmarks.zip`. Landmarks coordinates remain unchanged. - [2 Mar, 2025] Initial release ## Data Usage Agreement By using the dataset, you agree to the terms as follow. - You must agree to the [terms of use for FeTA24 dataset](https://www.synapse.org/Synapse:syn25649159/wiki/610007) - You must refer to the source of this dataset in any publication: `https://huggingface.co/datasets/YongchengYAO/FeTA24-Biometrics` ## Download from Huggingface ```bash #!/bin/bash pip install --upgrade huggingface-hub[cli] huggingface-cli login --token $HF_TOKEN ``` ```python # python from huggingface_hub import snapshot_download snapshot_download(repo_id="YongchengYAO/FeTA24-Biometrics", repo_type='dataset', local_dir="/your/local/folder") ``` ## Data Info ### Landmarks: ```python landmarks_map = { "P1": "most anterior point of corpus callosum", "P2": "most posterior point of corpus callosum", "P3": "most superior point of vermis", "P4": "most inferior point of vermis", "P5": "right parietal eminence ", "P6": "left parietal eminence", "P7": "right skull parietal eminence", "P8": "left skull parietal eminence", "P9": "most right point of cerebellar hemisphere", "P10": "most left point of cerebellar hemisphere", } ``` ### Biometric measurement: ```python biometrics_map = { "1": "Corpus_Callosum_Length", "2": "Vermis_Height", "3": "Brain_Biparietal_Diameter", "4": "Skull_Biparietal_Diameter", "5": "Transverse_Cerebellar_Diameter", } ``` ### Slice dimensions for measurements/landmarks: - {"P1": 0} means the landmark point P1 should be located from dim 0 (i.e., sagittal slices) - 0: sagittal slice - 1: coronal slice - 2: axial slice ```python LANDMARKS_SLICE_DIM = { "P1": 0, "P2": 0, "P3": 0, "P4": 0, "P5": 2, "P6": 2, "P7": 2, "P8": 2, "P9": 1, "P10": 1, } ``` ## License This dataset is released under the `CC BY-NC 4.0` license.