Upload wizmap_diffusiondb_vidprom_final.py
Browse files
wizmap_diffusiondb_vidprom_final.py
ADDED
|
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# coding: utf-8
|
| 3 |
+
|
| 4 |
+
# In[1]:
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
from VidProM.isc.io import read_descriptors
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# In[2]:
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
vid_name, vid_feature = read_descriptors(['./VidProM/vidprom_embed.hdf5'])
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
# In[3]:
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
vid_feature.shape
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
# In[4]:
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
import re
|
| 26 |
+
|
| 27 |
+
def remove_numbers_and_words(s):
|
| 28 |
+
# 删除所有数字
|
| 29 |
+
s = re.sub(r'\d+', '', s)
|
| 30 |
+
# 删除指定的单词
|
| 31 |
+
s = re.sub(r'(image|message|attachment|quot|make)', '', s, flags=re.IGNORECASE)
|
| 32 |
+
return s
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
# In[5]:
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
import pandas as pd
|
| 39 |
+
df = pd.read_csv('./prompts4video_unique.csv')
|
| 40 |
+
imdb_reviews = list(df['prompt'])
|
| 41 |
+
imdb_reviews_clean = [i.split('-')[0] for i in imdb_reviews]
|
| 42 |
+
vidprom_prompts = [remove_numbers_and_words(i) for i in imdb_reviews_clean]
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
# In[6]:
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
len(vidprom_prompts)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
# In[7]:
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
diffdb_name, diffdb_feature = read_descriptors(['./DiffusionDB/diffusiondb_embed.hdf5'])
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
# In[8]:
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
diffdb_feature.shape
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
# In[1]:
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
import pandas as pd
|
| 67 |
+
path_to_prompt_parquet = "DiffusionDB/metadata-large.parquet"
|
| 68 |
+
prompts = pd.read_parquet(
|
| 69 |
+
path_to_prompt_parquet,
|
| 70 |
+
columns=['prompt']
|
| 71 |
+
)
|
| 72 |
+
diffdb_prompts = sorted(list(set(prompts['prompt'])))
|
| 73 |
+
print("Length of prompts: ", len(diffdb_prompts))
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
# In[2]:
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
diffdb_prompts_1 = list(set(prompts['prompt']))
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
# In[3]:
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
with open("diffusiondb_prompts.txt", 'w', encoding='utf-8') as file:
|
| 86 |
+
for fruit in diffdb_prompts_1:
|
| 87 |
+
file.write(fruit + '\n')
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
# In[5]:
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
len(diffdb_prompts_1)
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
# In[ ]:
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
hf.upload_file(path_or_fileobj="./wizmap_vidprom_diffusiondb_final/data_vidprom_diffusiondb.ndjson", \
|
| 100 |
+
path_in_repo="data_vidprom_diffusiondb.ndjson", repo_id="WenhaoWang/VidProM", \
|
| 101 |
+
repo_type="dataset")
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
# In[ ]:
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
# In[ ]:
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
# In[ ]:
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
import umap
|
| 120 |
+
import numpy as np
|
| 121 |
+
embedding_0 = umap.UMAP(n_neighbors=60,
|
| 122 |
+
min_dist=0.1,
|
| 123 |
+
metric='correlation').fit_transform(np.concatenate([vid_feature,diffdb_feature]))
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
# In[ ]:
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
np.save('umap_diffusiondb_vidprom.npy', embedding_0)
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
# In[10]:
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
import numpy as np
|
| 136 |
+
embedding_0 = np.load('umap_diffusiondb_vidprom.npy')
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
# In[11]:
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
texts = vidprom_prompts + diffdb_prompts
|
| 143 |
+
xs = embedding_0[:, 0].astype(float).tolist()
|
| 144 |
+
ys = embedding_0[:, 1].astype(float).tolist()
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
# In[12]:
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
from glob import glob
|
| 151 |
+
from os.path import exists, join, basename
|
| 152 |
+
from tqdm import tqdm
|
| 153 |
+
from json import load, dump
|
| 154 |
+
from matplotlib import pyplot as plt
|
| 155 |
+
from collections import Counter
|
| 156 |
+
|
| 157 |
+
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
|
| 158 |
+
from quadtreed3 import Quadtree, Node
|
| 159 |
+
from scipy.sparse import csr_matrix
|
| 160 |
+
from sklearn.neighbors import KernelDensity
|
| 161 |
+
from scipy.stats import norm
|
| 162 |
+
from typing import Tuple
|
| 163 |
+
from io import BytesIO
|
| 164 |
+
from umap import UMAP
|
| 165 |
+
|
| 166 |
+
import pandas as pd
|
| 167 |
+
import numpy as np
|
| 168 |
+
import ndjson
|
| 169 |
+
import requests
|
| 170 |
+
import urllib
|
| 171 |
+
import wizmap
|
| 172 |
+
|
| 173 |
+
SEED = 20230501
|
| 174 |
+
|
| 175 |
+
plt.rcParams['figure.dpi'] = 300
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
# In[13]:
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
labels = [0]*len(vidprom_prompts) + [1] *len(diffdb_prompts)
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
# In[14]:
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
len(labels)
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
# In[15]:
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
group_names = ["VidProM", "DiffusionDB"]
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
# In[16]:
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
grid_dict = wizmap.generate_grid_dict(embedding_0[:, 0].astype(float).tolist(), \
|
| 200 |
+
embedding_0[:, 1].astype(float).tolist(), \
|
| 201 |
+
texts, \
|
| 202 |
+
embedding_name = 'VidProM_DiffusionDB', \
|
| 203 |
+
labels = labels, \
|
| 204 |
+
group_names = group_names)
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
# In[17]:
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
print(grid_dict.keys())
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
# In[18]:
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
data_list = wizmap.generate_data_list(xs, ys, texts, labels = labels)
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
# In[19]:
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
get_ipython().system('mkdir wizmap_vidprom_diffusiondb_final')
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
# In[20]:
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
wizmap.save_json_files(data_list, grid_dict, output_dir='./wizmap_vidprom_diffusiondb_final')
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
# In[21]:
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
get_ipython().system('mv ./wizmap_vidprom_diffusiondb_final/data.ndjson ./wizmap_vidprom_diffusiondb_final/data_vidprom_diffusiondb.ndjson')
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
# In[22]:
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
get_ipython().system('mv ./wizmap_vidprom_diffusiondb_final/grid.json ./wizmap_vidprom_diffusiondb_final/grid_vidprom_diffusiondb.json')
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
# In[6]:
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
import os
|
| 247 |
+
|
| 248 |
+
# os.environ["HF_ENDPOINT"] = "http://localhost:5564"
|
| 249 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 250 |
+
|
| 251 |
+
from huggingface_hub import HfApi, logging
|
| 252 |
+
|
| 253 |
+
logging.set_verbosity_debug()
|
| 254 |
+
hf = HfApi(
|
| 255 |
+
endpoint="https://huggingface.co", # Can be a Private Hub endpoint.
|
| 256 |
+
token="xxxx", # Token is not persisted on the machine.
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
# In[ ]:
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
hf.upload_file(path_or_fileobj="./wizmap_vidprom_diffusiondb_final/grid_vidprom_diffusiondb.json", \
|
| 264 |
+
path_in_repo="grid_vidprom_diffusiondb.json", repo_id="WenhaoWang/VidProM", \
|
| 265 |
+
repo_type="dataset")
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
# In[24]:
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
hf.upload_file(path_or_fileobj="./wizmap_vidprom_diffusiondb_final/grid_vidprom_diffusiondb.json", \
|
| 272 |
+
path_in_repo="grid_vidprom_diffusiondb.json", repo_id="WenhaoWang/VidProM", \
|
| 273 |
+
repo_type="dataset")
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
# In[25]:
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
hf.upload_file(path_or_fileobj="./wizmap_vidprom_diffusiondb_final/data_vidprom_diffusiondb.ndjson", \
|
| 280 |
+
path_in_repo="data_vidprom_diffusiondb.ndjson", repo_id="WenhaoWang/VidProM", \
|
| 281 |
+
repo_type="dataset")
|
| 282 |
+
|
| 283 |
+
|