from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info import json def read_json(file_path): with open(file_path, 'r', encoding='utf-8') as file: data = json.load(file) return data def write_json(file_path, data): with open(file_path, 'w', encoding='utf-8') as file: json.dump(data, file, ensure_ascii=False, indent=4) # default: Load the model on the available device(s) model_path = '/inspire/hdd/ws-ba572160-47f8-4ca1-984e-d6bcdeb95dbb/a100-maybe/albus/ICCV_2025/qvq/models/QVQ-72B-Preview' model = Qwen2VLForConditionalGeneration.from_pretrained( model_path, torch_dtype="auto", device_map="auto" ) # default processer processor = AutoProcessor.from_pretrained(model_path) # The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage. # min_pixels = 256*28*28 # max_pixels = 1280*28*28 #processor = AutoProcessor.from_pretrained("Qwen/QVQ-72B-Preview", min_pixels=min_pixels, max_pixels=max_pixels) import glob from PIL import Image import argparse import os # parser = argparse.ArgumentParser(description="Process a dataset with specific index range.") # parser.add_argument("--batch_size", type=int, default = 1,help="batch size") # #parser.add_argument("--index", type=int, default = 0,help="index") # args = parser.parse_args() folder = "/inspire/hdd/ws-ba572160-47f8-4ca1-984e-d6bcdeb95dbb/a100-maybe/albus/ICCV_2025/qvq/dataset" file_names = os.listdir(folder) num_image = len(file_names) begin, end, batch_size= 0, num_image, 6 print(f"beigin : {begin}, end : {end}, batch_size : {batch_size}") messages = [ { "role": "system", "content": [ {"type": "text", "text": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."} ], }, { "role": "user", "content": [ { "type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/QVQ/demo.png", }, {"type": "text", "text": "Please describe in detail the content of the picture."}, ], } ] from tqdm import tqdm # Preparation for inference ans = [] counter = 0 for batch_idx in tqdm(range(begin, end, batch_size)): up = min(batch_idx + batch_size, end) batch = file_names[batch_idx: up] print(f"data index range : {batch_idx} ~ {up}") image_inputs_batch, video_inputs_batch,text_batch = [], [], [] for idx,i in enumerate(batch): #img = batch[i] #print('gain image successfully !') img_path = '/inspire/hdd/ws-ba572160-47f8-4ca1-984e-d6bcdeb95dbb/a100-maybe/albus/ICCV_2025/qvq/dataset/' + i #print(img_path) messages[1]["content"][0]["image"] = '/inspire/hdd/ws-ba572160-47f8-4ca1-984e-d6bcdeb95dbb/a100-maybe/albus/ICCV_2025/qvq/dataset/' + i text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) text_batch.append(text) image_inputs, video_inputs = process_vision_info(messages) print(video_inputs) image_inputs_batch.append(image_inputs) video_inputs_batch.append(video_inputs) inputs = processor( text=text_batch, # [text] images=image_inputs_batch, videos=None, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Inference: Generation of the output #print(inputs) # for x in range(len(inputs)): # print(f"Generating {x}th image") # generated_ids = model.generate(**x, max_new_tokens=8192) # generated_ids_trimmed = [ # out_ids[len(in_ids) :] for in_ids, out_ids in zip(x.input_ids, generated_ids) # ] # output_text = processor.batch_decode( # generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=True # ) # ans.append(output_text) generated_ids = model.generate(**inputs, max_new_tokens=8192) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) ans.append(output_text) save_path = "output_final.json" counter = counter + 1 if counter % 10 == 0 or up + 10 >= end: print(f"Saving data at iteration {idx + 1}") write_json(save_path, ans)