Wendy-Fly commited on
Commit
7ab4de4
·
verified ·
1 Parent(s): 67eb5e9

Upload QWQ_infer.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. QWQ_infer.py +86 -0
QWQ_infer.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ import json
4
+ import pprint
5
+
6
+
7
+ def read_json(file_path):
8
+ with open(file_path, 'r', encoding='utf-8') as file:
9
+ data = json.load(file)
10
+ return data
11
+
12
+ def write_json(file_path, data):
13
+ with open(file_path, 'w', encoding='utf-8') as file:
14
+ json.dump(data, file, ensure_ascii=False, indent=4)
15
+
16
+ data = read_json("DataSet/train_samples_all_tuning.json")
17
+
18
+
19
+ from transformers import AutoModelForCausalLM, AutoTokenizer
20
+
21
+ model_name = "Model/QwQ-32B-Preview"
22
+ model = AutoModelForCausalLM.from_pretrained(
23
+ model_name,
24
+ torch_dtype="auto",
25
+ device_map="auto"
26
+ )
27
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
28
+
29
+
30
+
31
+ def chat_QwQ(prompt):
32
+
33
+ messages = [
34
+ {"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."},
35
+ {"role": "user", "content": prompt}
36
+ ]
37
+
38
+ text = tokenizer.apply_chat_template(
39
+ messages,
40
+ tokenize=False,
41
+ add_generation_prompt=True
42
+ )
43
+
44
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
45
+
46
+ generated_ids = model.generate(
47
+ **model_inputs,
48
+ max_new_tokens=512
49
+ )
50
+
51
+ generated_ids = [
52
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
53
+ ]
54
+
55
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
56
+ # print(response)
57
+ return response
58
+
59
+
60
+
61
+
62
+ # from transformers import MarianMTModel, MarianTokenizer
63
+
64
+ # model_name = "Model/opus-mt-en-zh"
65
+ # tokenizer = MarianTokenizer.from_pretrained(model_name)
66
+ # model = MarianMTModel.from_pretrained(model_name)
67
+
68
+
69
+
70
+
71
+
72
+ for i in data:
73
+ sent1 = i['conversations'][0]['value']
74
+ sent2 = i['conversations'][1]['value']
75
+ sentence = sent1 + sent2
76
+ prompt = "This is a question-answering datapoint based on image information. Determine whether the answer can be judged without relying on the image. If it can, this is considered bad data; if it requires the image, it is considered good data. Rate this datapoint on a scale from 1 (bad) to 5 (good). ###### " + sentence
77
+ answer = chat_QwQ(prompt)
78
+
79
+
80
+ # english_text = answer
81
+ # inputs = tokenizer.encode(english_text, return_tensors="pt", truncation=True)
82
+ # translated = model.generate(inputs, max_length=40, num_beams=4, early_stopping=True)
83
+ # chinese_translation = tokenizer.decode(translated[0], skip_special_tokens=True)
84
+ pprint.pprint(prompt)
85
+ pprint.pprint(answer)
86
+ break