Datasets:

Modalities:
Text
Formats:
text
Languages:
English
ArXiv:
DOI:
Libraries:
Datasets
License:
File size: 10,182 Bytes
aaa15e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "2a56cf68-b4bb-4d64-989c-7cbc6a5ffcab",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a34bf8b7-c3ac-443f-9377-7b0244ff4405",
   "metadata": {},
   "source": [
    "### merge.csv"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "b7d3de23-c1ae-4cdf-b90d-84a21ccbe288",
   "metadata": {},
   "outputs": [],
   "source": [
    "def read_csv(file_path):\n",
    "    if not os.path.exists(file_path):\n",
    "        print(\"Error: File not found.\")\n",
    "        return None\n",
    "    else:\n",
    "        df = pd.read_csv(file_path)\n",
    "        return df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "cd134954-2da9-44ac-8943-c5cabc9503d0",
   "metadata": {},
   "outputs": [],
   "source": [
    "def save_csv(dataframe, file_path):\n",
    "    try:\n",
    "        dataframe.to_csv(file_path, index=False)\n",
    "        print(\"CSV file saved successfully.\")\n",
    "    except Exception as e:\n",
    "        print(f\"Error saving CSV file: {e}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "9d04fbcb-1ea3-4b77-b581-576ad28d27c7",
   "metadata": {},
   "outputs": [],
   "source": [
    "def delete_0_status(data_frame, column_name=\"Status\"):\n",
    "    try:\n",
    "        data_frame = data_frame[data_frame[column_name] != 0]\n",
    "        return data_frame\n",
    "    except Exception as e:\n",
    "        print(f\"Error deleting rows with status zero: {e}\")\n",
    "        return None\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "c7127d9c-a21b-4fab-abf5-c5fcc94df9b8",
   "metadata": {},
   "outputs": [],
   "source": [
    "def merge(file1, file2):\n",
    "    df1 = read_csv(file1) \n",
    "    df2 = read_csv(file2)\n",
    "\n",
    "    same_rows = pd.merge(df1, df2, how=\"inner\")\n",
    "    print(\"same rows:\", same_rows)\n",
    "\n",
    "    merged_df = pd.merge(df1, df2, on=list(df1.columns), how='outer')\n",
    "    # show duplicated row\n",
    "    duplicates = merged_df[merged_df.duplicated()]\n",
    "    if not duplicates.empty:\n",
    "        print(duplicates)\n",
    "    else:\n",
    "        print(\"no duplicate row\")\n",
    "        \n",
    "    # drop duplicata rows\n",
    "    merged_df.drop_duplicates(inplace=True, keep=\"first\")\n",
    "    \n",
    "    return merged_df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "07a066ef-1cd9-454a-8494-ee195601a0d1",
   "metadata": {},
   "outputs": [],
   "source": [
    "def type_reform(df, column_name=\"Type of Report\"):\n",
    "    # construct report_type: tcfd -> 1, none_tcfd->0\n",
    "\n",
    "    new_column_name = \"tcfd\"\n",
    "    df[column_name] = df[column_name].fillna(\"\") # del nan \n",
    "    df[new_column_name] = df[column_name].apply(lambda x: 1 if x == 'TCFD' else (0 if 'TCFD' not in x else -1))\n",
    "    \n",
    "    # delete status == 0 row\n",
    "    df = delete_0_status(df, column_name=\"Status\")\n",
    "\n",
    "    return df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "23549957-4b26-40c1-9aed-b879775924f6",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "same rows:      Company                                         Report URL  \\\n",
      "0  Wolfspeed  https://assets.wolfspeed.com/uploads/2022/10/W...   \n",
      "1    Aurizon          https://www.aurizon.com.au/sustainability   \n",
      "\n",
      "          Type of Report  Year Published  \\\n",
      "0  TCFD,SASB,GRI,UN_SDGs            2022   \n",
      "1                   TCFD            2020   \n",
      "\n",
      "                                       Industry                 Geography  \\\n",
      "0  Energy Equipment and Services, Manufacturing  United States of America   \n",
      "1                           Rail Transportation                 Australia   \n",
      "\n",
      "   Status  \n",
      "0       1  \n",
      "1       1  \n",
      "            Company                                         Report URL  \\\n",
      "80       Fortum Oyj  https://www.fortum.com/about-us/investors/repo...   \n",
      "81       Fortum Oyj  https://www.fortum.com/about-us/investors/repo...   \n",
      "117  AcBel Polytech    https://www.acbel.com.tw/en/csr-report-download   \n",
      "\n",
      "    Type of Report  Year Published                    Industry Geography  \\\n",
      "80       TCFD, GRI            2020  Electric and Gas Utilities   Finland   \n",
      "81       TCFD, GRI            2020  Electric and Gas Utilities   Finland   \n",
      "117      GRI, SASB            2020               Capital Goods    Taiwan   \n",
      "\n",
      "     Status  \n",
      "80        1  \n",
      "81        1  \n",
      "117       1  \n",
      "CSV file saved successfully.\n"
     ]
    }
   ],
   "source": [
    "if __name__ == \"__main__\":\n",
    "    # merge two files\n",
    "    esg = \"./input/esg_new.csv\"    # (123, 7)\n",
    "    tcfd = \"./input/tcfd_new.csv\"  # (118, 7)\n",
    "    merge_df = merge(esg, tcfd)\n",
    "\n",
    "    merged_file = \"./output/merge.csv\" # (187, 8)\n",
    "    reform_df = type_reform(merge_df)\n",
    "    save_csv(reform_df, merged_file)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fccdee41-08b9-46f6-912c-2867705b4da1",
   "metadata": {},
   "source": [
    "### save merge_onehot.csv"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "6a7f0360-e48c-4d09-a268-be9e8f730887",
   "metadata": {},
   "outputs": [],
   "source": [
    "def one_hot(df, column_name=\"Type of Report\"):\n",
    "    # construct report_type: tcfd -> 1, none_tcfd->0\n",
    "    # df = pd.read_csv(input_file)\n",
    "\n",
    "    column_data = df[column_name]\n",
    "\n",
    "    # split \",\"\n",
    "    split_contents = set()\n",
    "    for item in column_data.str.split(','):\n",
    "        if isinstance(item, list):\n",
    "            split_contents.update(filter(None, map(str.strip, item)))\n",
    "\n",
    "    print(split_contents)\n",
    "    for content in split_contents:\n",
    "        new_column_name = f\"{content.strip()}\"\n",
    "        print(\"new_column_name: \", new_column_name)\n",
    "        df[new_column_name] = df.apply(lambda row: 1 if isinstance(row[column_name], str) and new_column_name in [x.strip() for x in row[column_name].split(',')] else 0, axis=1)\n",
    "    \n",
    "    # delete status == 0 row\n",
    "    df = delete_0_status(df, column_name=\"Status\")\n",
    "\n",
    "    return df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "e03d0cb8-c558-482d-b95e-4cbc03506693",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "same rows:      Company                                         Report URL  \\\n",
      "0  Wolfspeed  https://assets.wolfspeed.com/uploads/2022/10/W...   \n",
      "1    Aurizon          https://www.aurizon.com.au/sustainability   \n",
      "\n",
      "          Type of Report  Year Published  \\\n",
      "0  TCFD,SASB,GRI,UN_SDGs            2022   \n",
      "1                   TCFD            2020   \n",
      "\n",
      "                                       Industry                 Geography  \\\n",
      "0  Energy Equipment and Services, Manufacturing  United States of America   \n",
      "1                           Rail Transportation                 Australia   \n",
      "\n",
      "   Status  \n",
      "0       1  \n",
      "1       1  \n",
      "            Company                                         Report URL  \\\n",
      "80       Fortum Oyj  https://www.fortum.com/about-us/investors/repo...   \n",
      "81       Fortum Oyj  https://www.fortum.com/about-us/investors/repo...   \n",
      "117  AcBel Polytech    https://www.acbel.com.tw/en/csr-report-download   \n",
      "\n",
      "    Type of Report  Year Published                    Industry Geography  \\\n",
      "80       TCFD, GRI            2020  Electric and Gas Utilities   Finland   \n",
      "81       TCFD, GRI            2020  Electric and Gas Utilities   Finland   \n",
      "117      GRI, SASB            2020               Capital Goods    Taiwan   \n",
      "\n",
      "     Status  \n",
      "80        1  \n",
      "81        1  \n",
      "117       1  \n",
      "{'SDGs', 'TNFD', 'TCFD', 'GRI', 'UN_SDGs', 'SFDR', 'NFRD', 'NGFS', 'UNGC', 'SASB'}\n",
      "new_column_name:  SDGs\n",
      "new_column_name:  TNFD\n",
      "new_column_name:  TCFD\n",
      "new_column_name:  GRI\n",
      "new_column_name:  UN_SDGs\n",
      "new_column_name:  SFDR\n",
      "new_column_name:  NFRD\n",
      "new_column_name:  NGFS\n",
      "new_column_name:  UNGC\n",
      "new_column_name:  SASB\n",
      "CSV file saved successfully.\n"
     ]
    }
   ],
   "source": [
    "if __name__ == \"__main__\":\n",
    "    # merge files\n",
    "    esg = \"./input/esg_new.csv\"    # (123, 7)\n",
    "    tcfd = \"./input/tcfd_new.csv\"  # (118, 7)\n",
    "    merge_df2 = merge(esg, tcfd)\n",
    "    \n",
    "    # process merge file\n",
    "    final_df = one_hot(merge_df2)\n",
    "    merged_file = \"./output/merge_onehot.csv\" # (187, )\n",
    "    save_csv(final_df, merged_file)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bf378765-3832-4106-a079-4e77b6d05c31",
   "metadata": {},
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.18"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}