Datasets:
Tasks:
Object Detection
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
< 1K
ArXiv:
License:
File size: 3,045 Bytes
69c5ceb 8196787 69c5ceb 8196787 69c5ceb 8196787 69c5ceb 8196787 69c5ceb d665b34 69c5ceb 8196787 69c5ceb 8196787 69c5ceb d665b34 69c5ceb d665b34 69c5ceb d665b34 69c5ceb d665b34 69c5ceb 7c4cd25 69c5ceb d665b34 69c5ceb 7c4cd25 69c5ceb d665b34 69c5ceb b83b42e 69c5ceb d665b34 69c5ceb 7c4cd25 69c5ceb d665b34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
---
annotations_creators: []
language: en
size_categories:
- n<1K
task_categories:
- object-detection
task_ids: []
pretty_name: TAMPAR
tags:
- fiftyone
- image
- object-detection
- segmentation
- keypoints
dataset_summary: >
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 485
samples.
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
from fiftyone.utils.huggingface import load_from_hub
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = load_from_hub("voxel51/TAMPAR")
# Launch the App
session = fo.launch_app(dataset)
```
license: cc-by-4.0
---
# Dataset Card for TAMPAR

This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 485 samples.
The samples here are from the test set.
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
from fiftyone.utils.huggingface import load_from_hub
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = load_from_hub("voxel51/TAMPAR")
# Launch the App
session = fo.launch_app(dataset)
```
## Dataset Details
### Dataset Description
TAMPAR is a novel real-world dataset of parcels
- with >900 annotated real-world images with >2,700 visible parcel side surfaces,
- 6 different tampering types, and
- 6 different distortion strengths
This dataset was collected as part of the WACV '24 [paper](https://arxiv.org/abs/2311.03124) _"TAMPAR: Visual Tampering Detection for Parcels Logistics in Postal Supply Chains"_
- **Curated by:** Alexander Naumann, Felix Hertlein, Laura Dörr and Kai Furmans
- **Funded by:** FZI Research Center for Information Technology, Karlsruhe, Germany
- **Shared by:** [Harpreet Sahota](https://huggingface.co/harpreetsahota), Hacker-in-Residence at Voxel51
- **License:** [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/legalcode)
### Dataset Sources
- **Repository:** https://github.com/a-nau/tampar
- **Paper:** https://arxiv.org/abs/2311.03124
- **Demo:** https://a-nau.github.io/tampar/
## Uses
### Direct Use
Multisensory setups within logistics facilities and a simple cell phone camera during the last-mile delivery, where only a single RGB image is taken and compared against a reference from an existing database to detect potential appearance changes that indicate tampering.
## Dataset Structure
COCO Format Annotations
## Citation
```bibtex
@inproceedings{naumannTAMPAR2024,
author = {Naumann, Alexander and Hertlein, Felix and D\"orr, Laura and Furmans, Kai},
title = {TAMPAR: Visual Tampering Detection for Parcels Logistics in Postal Supply Chains},
booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
month = {January},
year = {2024},
note = {to appear in}
}
``` |