File size: 3,045 Bytes
69c5ceb
 
 
 
 
 
 
 
 
 
 
 
 
8196787
 
 
69c5ceb
 
 
 
8196787
 
69c5ceb
 
 
 
 
8196787
69c5ceb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8196787
69c5ceb
d665b34
69c5ceb
 
 
 
 
 
 
8196787
69c5ceb
 
 
 
8196787
 
69c5ceb
 
d665b34
 
69c5ceb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d665b34
69c5ceb
 
 
 
 
 
 
 
 
 
d665b34
69c5ceb
d665b34
 
 
69c5ceb
7c4cd25
69c5ceb
d665b34
 
 
 
 
69c5ceb
7c4cd25
69c5ceb
d665b34
 
 
69c5ceb
 
 
 
 
b83b42e
69c5ceb
 
 
d665b34
69c5ceb
7c4cd25
69c5ceb
d665b34
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
---
annotations_creators: []
language: en
size_categories:
- n<1K
task_categories:
- object-detection
task_ids: []
pretty_name: TAMPAR
tags:
- fiftyone
- image
- object-detection
- segmentation
- keypoints
dataset_summary: >




  This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 485
  samples.


  ## Installation


  If you haven't already, install FiftyOne:


  ```bash

  pip install -U fiftyone

  ```


  ## Usage


  ```python

  import fiftyone as fo

  from fiftyone.utils.huggingface import load_from_hub


  # Load the dataset

  # Note: other available arguments include 'max_samples', etc

  dataset = load_from_hub("voxel51/TAMPAR")


  # Launch the App

  session = fo.launch_app(dataset)

  ```
license: cc-by-4.0
---

# Dataset Card for TAMPAR

![image/png](tampar-skeletons.gif)

This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 485 samples.

The samples here are from the test set.

## Installation

If you haven't already, install FiftyOne:

```bash
pip install -U fiftyone
```

## Usage

```python
import fiftyone as fo
from fiftyone.utils.huggingface import load_from_hub

# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = load_from_hub("voxel51/TAMPAR")

# Launch the App
session = fo.launch_app(dataset)
```


## Dataset Details

### Dataset Description

TAMPAR is a novel real-world dataset of parcels

- with >900 annotated real-world images with >2,700 visible parcel side surfaces,
- 6 different tampering types, and
- 6 different distortion strengths

This dataset was collected as part of the WACV '24 [paper](https://arxiv.org/abs/2311.03124) _"TAMPAR: Visual Tampering Detection for Parcels Logistics in Postal Supply Chains"_

  
- **Curated by:** Alexander Naumann, Felix Hertlein, Laura Dörr and Kai Furmans
- **Funded by:** FZI Research Center for Information Technology, Karlsruhe, Germany
- **Shared by:** [Harpreet Sahota](https://huggingface.co/harpreetsahota), Hacker-in-Residence at Voxel51
- **License:** [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/legalcode)

### Dataset Sources

- **Repository:** https://github.com/a-nau/tampar
- **Paper:** https://arxiv.org/abs/2311.03124
- **Demo:** https://a-nau.github.io/tampar/

## Uses

### Direct Use

Multisensory setups within logistics facilities and a simple cell phone camera during the last-mile delivery, where only a single RGB image is taken and compared against a reference from an existing database to detect potential appearance changes that indicate tampering.

## Dataset Structure

COCO Format Annotations

## Citation

```bibtex
@inproceedings{naumannTAMPAR2024,
    author    = {Naumann, Alexander and Hertlein, Felix and D\"orr, Laura and Furmans, Kai},
    title     = {TAMPAR: Visual Tampering Detection for Parcels Logistics in Postal Supply Chains},
    booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
    month     = {January},
    year      = {2024},
    note      = {to appear in}
}
```