Datasets:
File size: 8,234 Bytes
60ea6fd 27de593 60ea6fd 97030f5 60ea6fd 97030f5 60ea6fd 97030f5 60ea6fd 97030f5 60ea6fd 97030f5 60ea6fd 27de593 60ea6fd 97030f5 60ea6fd 97030f5 60ea6fd 97030f5 60ea6fd 97030f5 60ea6fd 97030f5 60ea6fd 97030f5 60ea6fd 97030f5 60ea6fd 97030f5 60ea6fd 97030f5 60ea6fd 97030f5 60ea6fd 97030f5 60ea6fd 97030f5 60ea6fd 97030f5 60ea6fd 97030f5 60ea6fd 97030f5 60ea6fd 97030f5 60ea6fd 97030f5 60ea6fd 97030f5 60ea6fd 97030f5 60ea6fd 27de593 60ea6fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
---
annotations_creators: []
language: en
license: bsd-2-clause
size_categories:
- 10K<n<100K
task_categories:
- image-classification
- object-detection
task_ids: []
pretty_name: MPII Human Pose
tags:
- MPII Human Pose
- fiftyone
- image
- image-classification
- object-detection
- version1
dataset_summary: '
![image/png](dataset_preview.png)
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 24984 samples.
## Installation
If you haven''t already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include ''max_samples'', etc
dataset = fouh.load_from_hub("Voxel51/MPII_Human_Pose_Dataset")
# Launch the App
session = fo.launch_app(dataset)
```
'
---
# Dataset Card for MPII Human Pose
<!-- Provide a quick summary of the dataset. -->
MPII Human Pose dataset is a state of the art benchmark for evaluation of articulated human pose estimation.
The dataset includes around **25K images** containing over **40K people with annotated body joints**.
The images were systematically collected using an established **taxonomy of every day human activities**.
Overall the dataset covers **410 human activities** and each image is provided with an activity label.
Each image was extracted from a **YouTube video** and provided with preceding and following un-annotated frames.
In addition, for the test set, richer annotations were obtained including body part occlusions and 3D torso and head orientations.
Following the best practices for the performance evaluation benchmarks in the literature we withhold the test annotations to prevent overfitting and tuning on the test set.
We are working on an automatic evaluation server and performance analysis tools based on rich test set annotations.
![image/png](dataset_preview.png)
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 24984 samples.
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("Voxel51/MPII_Human_Pose_Dataset")
# Launch the App
session = fo.launch_app(dataset)
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
>MPII Human Pose Dataset, Version 1.0
Copyright 2015 Max Planck Institute for Informatics
Licensed under the Simplified BSD License
Annotations and the corresponding are freely available for research purposes. Commercial use is not allowed due to the fact that the authors do not have the copyright for the images themselves.
- **License:** bsd-2-clause
### Dataset Sources
<!-- Provide the basic links for the dataset. -->
- **Website:** http://human-pose.mpi-inf.mpg.de/#
- **Paper:** http://human-pose.mpi-inf.mpg.de/contents/andriluka14cvpr.pdf
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
At the time when dataset was released **(2014)**, dataset was evaluated on 2 main tasks:
* Multi-Person Pose Estimation
* Single Person Pose Estimation
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
```
Name: MPII Human Pose
Media type: image
Num samples: 24984
Persistent: True
Tags: ['version1', 'MPII Human Pose']
Sample fields:
id: fiftyone.core.fields.ObjectIdField
filepath: fiftyone.core.fields.StringField
tags: fiftyone.core.fields.ListField(fiftyone.core.fields.StringField)
metadata: fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.metadata.ImageMetadata)
rectangle_id: fiftyone.core.fields.ListField(fiftyone.core.fields.IntField)
activity: fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.labels.Classifications)
head_rect: fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.labels.Detections)
objpos: fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.labels.Keypoints)
scale: fiftyone.core.fields.VectorField
annopoints: fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.labels.Keypoints)
video_id: fiftyone.core.fields.StringField
frame_sec: fiftyone.core.fields.IntField
```
## Dataset Creation
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
See **Section 2. Dataset - Data collection paragraph** of this [paper](http://human-pose.mpi-inf.mpg.de/contents/andriluka14cvpr.pdf)
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[Source data producers](http://human-pose.mpi-inf.mpg.de/#contact)
### Annotations
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
Annotation description
Annotations are stored in a matlab structure **RELEASE** having following fields
```
.annolist(imgidx) - annotations for image imgidx
.image.name - image filename
.annorect(ridx) - body annotations for a person ridx
.x1, .y1, .x2, .y2 - coordinates of the head rectangle
.scale - person scale w.r.t. 200 px height
.objpos - rough human position in the image
.annopoints.point - person-centric body joint annotations
.x, .y - coordinates of a joint
id - joint id (0 - r ankle, 1 - r knee, 2 - r hip, 3 - l hip, 4 - l knee, 5 - l ankle, 6 - pelvis, 7 - thorax, 8 - upper neck, 9 - head top, 10 - r wrist, 11 - r elbow, 12 - r shoulder, 13 - l shoulder, 14 - l elbow, 15 - l wrist)
is_visible - joint visibility
.vidx - video index in video_list
.frame_sec - image position in video, in seconds
img_train(imgidx) - training/testing image assignment
single_person(imgidx) - contains rectangle id ridx of sufficiently separated individuals
act(imgidx) - activity/category label for image imgidx
act_name - activity name
cat_name - category name
act_id - activity id
video_list(videoidx) - specifies video id as is provided by YouTube. To watch video on youtube go to https://www.youtube.com/watch?v=video_list(videoidx)
```
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
See **Section 2. Dataset - Data annotation paragraph** of this [paper](http://human-pose.mpi-inf.mpg.de/contents/andriluka14cvpr.pdf)
## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
```
@inproceedings{andriluka14cvpr,
author = {Mykhaylo Andriluka and Leonid Pishchulin and Peter Gehler and Schiele, Bernt}
title = {2D Human Pose Estimation: New Benchmark and State of the Art Analysis},
booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2014},
month = {June}
}
```
## More Information
The following [**Github repo**](https://github.com/loloMD/51_contribution/tree/mpii_human_pose/mpii_human_pose) contains code to parse the raw data (in MATLAB format) and convert it into a FiftyOne Dataset
Dataset conversion and data card contributed by [Loic Mandine](https://lolomd.github.io/)
|