File size: 3,617 Bytes
2dcc73b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c732cf4
2dcc73b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66296d3
2dcc73b
 
 
 
 
 
 
 
 
 
c732cf4
2dcc73b
 
c732cf4
2dcc73b
 
 
 
 
 
 
1ca79d2
 
 
 
 
 
 
 
 
 
 
 
 
 
2dcc73b
 
 
1ca79d2
2dcc73b
1ca79d2
2dcc73b
 
 
 
 
1ca79d2
 
 
 
 
 
 
 
 
2dcc73b
1ca79d2
2dcc73b
1ca79d2
2dcc73b
 
 
1ca79d2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
---
annotations_creators: []
language: en
license: unknown
size_categories:
- 10K<n<100K
task_categories:
- image-segmentation
task_ids: []
pretty_name: DUTS
tags:
- fiftyone
- image
- image-segmentation
exists_ok: true
dataset_summary: '



  ![image/png](dataset_preview.jpg)



  This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 15572 samples.


  ## Installation


  If you haven''t already, install FiftyOne:


  ```bash

  pip install -U fiftyone

  ```


  ## Usage


  ```python

  import fiftyone as fo

  import fiftyone.utils.huggingface as fouh


  # Load the dataset

  # Note: other available arguments include ''max_samples'', etc

  dataset = fouh.load_from_hub("Voxel51/DUTS")


  # Launch the App

  session = fo.launch_app(dataset)

  ```

  '
---

# Dataset Card for DUTS

<!-- Provide a quick summary of the dataset. -->




![image/png](dataset_preview.jpg)


This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 15572 samples.

## Installation

If you haven't already, install FiftyOne:

```bash
pip install -U fiftyone
```

## Usage

```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh

# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("Voxel51/DUTS")

# Launch the App
session = fo.launch_app(dataset)
```


## Dataset Details

### Dataset Description

DUTS is a saliency detection dataset containing 10,553 training images and 5,019 test images. All training images are collected from the ImageNet DET training/val sets, while test images are collected from the ImageNet DET test set and the SUN data set. Both the training and test set contain very challenging scenarios for saliency detection. Accurate pixel-level ground truths are manually annotated by 50 subjects.


- **Curated by:** Lijun Wang, Huchuan Lu, Yifan Wang, Mengyang Feng, Dong Wang, Baocai Yin, and Xiang Ruan 
- **Language(s) (NLP):** en
- **License:** unknown

## Dataset Structure

<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->

```
Name:        DUTS
Media type:  image
Num samples: 15572
Persistent:  False
Tags:        []
Sample fields:
    id:           fiftyone.core.fields.ObjectIdField
    filepath:     fiftyone.core.fields.StringField
    tags:         fiftyone.core.fields.ListField(fiftyone.core.fields.StringField)
    metadata:     fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.metadata.ImageMetadata)
    ground_truth: fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.labels.Segmentation)
```
The dataset has 2 splits: "train" and "test". Samples are tagged with their split.

## Dataset Creation

Introduced by Wang et al. in [Learning to Detect Salient Objects With Image-Level Supervision](https://paperswithcode.com/paper/learning-to-detect-salient-objects-with-image)

## Citation

<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

```
@inproceedings{wang2017,
title={Learning to Detect Salient Objects with Image-level Supervision},
author={Wang, Lijun and Lu, Huchuan and Wang, Yifan and Feng, Mengyang 
and Wang, Dong, and Yin, Baocai and Ruan, Xiang}, 
booktitle={CVPR},
year={2017}
}
```

## Dataset Card Authors

Dataset conversion and data card contributed by [Rohith Raj Srinivasan](https://huggingface.co/rohis).

## Dataset Card Contact

[Rohith Raj Srinivasan](https://huggingface.co/rohis)