|
import datasets |
|
import pandas as pd |
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {plantations_segmentation}, |
|
author = {TrainingDataPro}, |
|
year = {2023} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The images consist of aerial photography of agricultural plantations with crops |
|
such as cabbage and zucchini. The dataset addresses agricultural tasks such as |
|
plant detection and counting, health assessment, and irrigation planning. |
|
The dataset consists of plantations' photographs with object and class |
|
segmentation of cabbage. |
|
""" |
|
_NAME = 'plantations_segmentation' |
|
|
|
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" |
|
|
|
_LICENSE = "" |
|
|
|
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" |
|
|
|
|
|
class PlantationsSegmentation(datasets.GeneratorBasedBuilder): |
|
"""Small sample of image-text pairs""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features({ |
|
'image_id': datasets.Value('int32'), |
|
'image': datasets.Image(), |
|
'class_segmentation': datasets.Image(), |
|
'object_segmentation': datasets.Image(), |
|
'shapes': datasets.Value('large_string') |
|
}), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
images = dl_manager.download(f"{_DATA}images.tar.gz") |
|
class_segmentation_masks = dl_manager.download( |
|
f"{_DATA}class_segmentation.tar.gz") |
|
object_segmentation_masks = dl_manager.download( |
|
f"{_DATA}object_segmentation.tar.gz") |
|
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv") |
|
images = dl_manager.iter_archive(images) |
|
class_segmentation_masks = dl_manager.iter_archive( |
|
class_segmentation_masks) |
|
object_segmentation_masks = dl_manager.iter_archive( |
|
object_segmentation_masks) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"images": images, |
|
'class_segmentation_masks': class_segmentation_masks, |
|
'object_segmentation_masks': object_segmentation_masks, |
|
'annotations': annotations |
|
}), |
|
] |
|
|
|
def _generate_examples(self, images, class_segmentation_masks, |
|
object_segmentation_masks, annotations): |
|
annotations_df = pd.read_csv(annotations) |
|
|
|
for idx, ((image_path, image), (class_segmentation_path, |
|
class_segmentation), |
|
(object_segmentation_path, |
|
object_segmentation)) in enumerate( |
|
zip(images, class_segmentation_masks, |
|
object_segmentation_masks)): |
|
yield idx, { |
|
'image_id': |
|
annotations_df.loc[ |
|
annotations_df['image_name'] == image_path] |
|
['image_id'].values[0], |
|
"image": { |
|
"path": image_path, |
|
"bytes": image.read() |
|
}, |
|
"class_segmentation": { |
|
"path": class_segmentation_path, |
|
"bytes": class_segmentation.read() |
|
}, |
|
"object_segmentation": { |
|
"path": object_segmentation_path, |
|
"bytes": object_segmentation.read() |
|
}, |
|
'shapes': |
|
annotations_df.loc[annotations_df['image_name'] == |
|
image_path]['shapes'].values[0][:500] + |
|
'...' |
|
} |
|
|