Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# AToMiC Prebuilt Indexes
|
| 2 |
+
|
| 3 |
+
## Example Usage:
|
| 4 |
+
|
| 5 |
+
### Reproduction
|
| 6 |
+
|
| 7 |
+
Toolkits:
|
| 8 |
+
https://github.com/TREC-AToMiC/AToMiC/tree/main/examples/dense_retriever_baselines
|
| 9 |
+
|
| 10 |
+
```bash
|
| 11 |
+
# Skip the encode and index steps, search with the prebuilt indexes and topics directly
|
| 12 |
+
|
| 13 |
+
python search.py \
|
| 14 |
+
--topics topics/openai.clip-vit-base-patch32.text.validation \
|
| 15 |
+
--index indexes/openai.clip-vit-base-patch32.image.faiss.flat \
|
| 16 |
+
--hits 1000 \
|
| 17 |
+
--output runs/run.openai.clip-vit-base-patch32.validation.t2i.large.trec
|
| 18 |
+
|
| 19 |
+
python search.py \
|
| 20 |
+
--topics topics/openai.clip-vit-base-patch32.image.validation \
|
| 21 |
+
--index indexes/openai.clip-vit-base-patch32.text.faiss.flat \
|
| 22 |
+
--hits 1000 \
|
| 23 |
+
--output runs/run.openai.clip-vit-base-patch32.validation.i2t.large.trec
|
| 24 |
+
```
|
| 25 |
+
|
| 26 |
+
### Explore AToMiC datasets
|
| 27 |
+
|
| 28 |
+
```python
|
| 29 |
+
import torch
|
| 30 |
+
from pathlib import Path
|
| 31 |
+
from datasets import load_dataset
|
| 32 |
+
from transformers import AutoModel, AutoProcessor
|
| 33 |
+
|
| 34 |
+
INDEX_DIR='indexes'
|
| 35 |
+
INDEX_NAME='openai.clip-vit-base-patch32.image.faiss.flat'
|
| 36 |
+
QUERY = 'Elizabeth II'
|
| 37 |
+
|
| 38 |
+
images = load_dataset('TREC-AToMiC/AToMiC-Images-v0.2', split='train')
|
| 39 |
+
images.load_faiss_index(index_name=INDEX_NAME, file=Path(INDEX_DIR, INDEX_NAME, 'index'))
|
| 40 |
+
|
| 41 |
+
model = AutoModel.from_pretrained('openai/clip-vit-base-patch32')
|
| 42 |
+
processor = AutoProcessor.from_pretrained('openai/clip-vit-base-patch32')
|
| 43 |
+
|
| 44 |
+
# prebuilt indexes contain L2-normalized vectors
|
| 45 |
+
with torch.no_grad():
|
| 46 |
+
q_embedding = model.get_text_features(**processor(text=query, return_tensors="pt"))
|
| 47 |
+
q_embedding = torch.nn.functional.normalize(q_embedding, dim=-1).detach().numpy()
|
| 48 |
+
|
| 49 |
+
scores, retrieved = images.get_nearest_examples(index_name, q_embedding, k=10)
|
| 50 |
+
```
|